Purdue University
Purdue e-Pubs Computer Science Technical Reports
Department of Computer Science
1985
Finding a Minimum Independent Dominating Set in a Permutation Graph Mikhail J. Atallah Purdue University,
[email protected] Glenn Manacher J. Urritia Report Number: 85-514
Atallah, Mikhail J.; Manacher, Glenn; and Urritia, J., "Finding a Minimum Independent Dominating Set in a Permutation Graph" (1985). Computer Science Technical Reports. Paper 436. http://docs.lib.purdue.edu/cstech/436
This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact
[email protected] for additional information.
FINDING A MINIMUM INDEPENDENT DOMINATING SET IN A PERMUTATION GRAPH Mikhail J. Ala1Iah Glenn K. Manacher J. Urrutia CSD-lR-514 April 1985 Revised
Finding a l\lininmm liidepentlent Dominating Set in a Permutation Graph
Mikhail J. Amllah t
•
Glenn K. Manacher 1. Urrutia+
Abstract We give an 0 (nlogln) [ime algorirnm for finding a minimum independem dominating se[ in a pennmation graph. TItis improves on ilie previous D(n 3) time algorictun known for solving tllis problem [4].
.,. Dept of CompUlcr Sci., Purdue Univ., West Gf:tyelle, IN 47907. Rcso::trch ~upported by ONR. Contr:lct NOOOI-l-34-K. 0502:md NSF Gl':tnl DCR-8451393, wilh matching funds from AT&T. • o.:pt of MaihCiT\:tllcs, Universily oflllinois, Chil;;lgo, II. 60614.
+ Dept of CompUler Science, University of Oll:twa, Oll.:l.w:t. Ont:tno, Cm:td:l..
-2 1. Introduction Let II be a permutation on me set 111 =0,2, ... ,n}. Then the permutation graph G (II) is the undirecred graph with venex: set V (G )=1,'1 such that venex i is adjacem to vertex j in G(I1) if
and only if i