Slide

Report 7 Downloads 116 Views
 

A  Multi-­‐Element  VLC  Architecture  for   High  Spatial  Reuse    

Prabath  Palathingal1,  Murat  Yuksel1,  Ismail  Guvenc2,  and  Nezih  Pala2     1  University  of  Nevada,  Reno   2  Florida  International  University     [email protected]  

 

Project  website:  https://sites.google.com/site/nsfvlc/  

 

VLCS  2015  

1  

Why  Multi-­‐Element/Stream  VLC?  

Unused  space  

V i si b

le  lig ht  do

wnlo ad

LED Array

Photo-­‐ detector

Single  data  stream   PHY  solu9on   Large  divergence  –  for  smooth  ligh9ng  

Mul9ple  data  streams   Narrow  divergence  –  for  higher  spa9al  reuse   Spherical  structures  –  to  retain  smooth  ligh9ng   VLCS  2015  

2  

Problem  Statement   Ø  Develop  an  efficient  spatial  reuse  mechanism  that     –  takes  full  advantage  of  the  directionality  of  LEDs     –  provides  simultaneous  uniform  lighting  and  mobile  communication   across  a  room  

Ø  Challenges   –  –  –  – 

Handle  the  line-­‐of-­‐sight  (LOS)  alignment  management   Implement  seamless  communication  across  the  room   Resolve  inter-­‐LED  interference   Balance  the  tradeoff:  uniform  lighting  and  high  spatial  reuse  

VLCS  2015  

3  

The  Architecture  

le  lig ht  do V i si b

ad wnlo

Photo-­‐ detector

ht  do le  lig

Data  upload

Router  with   soEware-­‐ defined  LOS   management

V i si b

A  transmiIer:   LED  board  

wnlo ad

The  Internet  

Data  upload

RF  upload

Photo-­‐ detector

VLCS  2015  

4  

The  Architecture   Ø Main  features   –  Allows  multi-­‐user  communication  in  a  room.   –  Seamless  handling  of  mobility  of  receivers  for  seamless   communication.   –  Hybrid  RF/VLC  communication  mechanism.  VLC  is  used   for  download  and  RF  for  upload.  

Ø Main  components   –  The  Bulb   –  RF/FSO  LOS  management  protocol   VLCS  2015  

5  

The  Bulb  (as  an  AP)   Ø  Provides  uniform  lighting  and  simultaneous  multiple  data   downloads   Ø  Hemisphere  with  multiple  circular  layers  of  LED  transmitters   Ø  The  transmitters  are  arranged  so  as  to  increase  the  spatial  reuse   Ø  Each  transmitter  is  connected  to  the  router  to  achieve  seamless   steering  of  data  across  the  bulb  

VLCS  2015  

6  

The  Bulb  (as  an  AP)   Ø  Transmitter  placement  on  the  

The  bulb  

bulb   –  θ,  Angle  of  placement  of  the   transmitter  from  the  normal  of   the  bulb   –  α,  Angle  between  the   transmitters  in  the  same  layer.   –  Φ,  Divergence  angle  of  the   transmitter.   –  Ln  ,  Range  of  the  transmitter   where  communication  is   possible.  

VLCS  2015  

α ϑ

Slanted   Normal  

Ø  

Ln  

N(x,y)   Coverage  Area  

ϑ  

Z

Perpendicular   Normal  

O(x,y)   Normal  Distance  (DN)  

7  

RF/VLC  Hybrid  LOS  Management   Ø Association  Mechanisms   –  Join  with  LED-­‐RAT   –  Maintain   –  Leave  

VLCS  2015  

8  

Join  with  LED-­‐RAT   LED-­‐RAT   Tx  B

SECAoR nCnHe   c Frtaem d  es

  es radm CneHc  Fte SECAoRn

ACK|Rx  A|Tx  A  

Rx  A  

Tx  B  

Rx  B  

Router  with   soEware-­‐ defined  LOS   management

 

Tx  A

Tx  A  

ACK|Rx  B|Tx  B  

 

Rx  B  

Rx  A  

VLCS  2015  

9  

Join  with  LED-­‐RAT   Ø  Every  bulb  sends  SEARCH  frames   Ø  Receivers  filter  the  frame  with  the  maximum  intensity   Ø  ACK  verification   Ø  Updating  LED-­‐RAT  

VLCS  2015  

10  

Maintaining  the  Link  

LED-­‐RAT  

Tx  B

Rx  AB    

Tx  B  

Rx  BA    

Router  with   soEware-­‐ defined  LOS   management

  SECAoR nCnHe   c Frtaem d  es

ACK|Rx  B|Tx  A  

Tx  A

  es   eradm CneHc  Ft SECAoRn

A  transmiIer:   LED  board  

Tx  A  

ACK|Rx  A|Tx  B  

Rx  B  

Rx  A  

Trade  off  exists  on  the  time  interval  between  the  SEARCH  frame   transmissions   VLCS  2015  

11  

Partitioning  Algorithm   Ø  Divide  the  transmitters  into  sections  with  respect  to  receiver  positions   Ø  Each  “section”  serves  the  same  data  stream  to  the  respective  receiver  

Y-axis

Ø  Facilitates  mobility  

X1,Y1 Xmid,Ymid X2,Y2

X,0

VLCS  2015  

X-axis 12  

An  Initial  Evaluation   Ø  6m  x  6m  x  3m   Ø  The  bulb  in  the  middle  of  the  ceiling   Ø  25  transmitters  on  3  layers:  30⁰,  45⁰,  70⁰   Ø  8  transmitters  per  layer     Ø  Two  receivers  at  random  positions  on  the  floor  –  80K  runs   Ø  Any  signal  received  from  the  transmitters  assigned  to  the  other  receiver   is  considered  as  noise   Ø  Transmitter  radius:  4cm                  PD  radius:  3.75cm  Bulb  radius:  ~11cm   Ø  12W  transmitter,  e.g.,  600  LEDs  with  20mW  each   Ø  25  transmitters  on  the  bulb   VLCS  2015  

13  

Divergence  angle  =  45⁰   15

High   interference  

SNR (dB)

10

High  spa>al  reuse  

5

0

Max. SNR Min. SNR Avg. SNR

Low  signal   strength  

−5

−10 0

1

2

3

4

5

6

7

8

Distance between laptops (meter)

3-­‐region  behavior!   VLCS  2015  

14  

Effect  of  Divergence  angle   450  

200  

Large  divergence  angle  increases  the   distribution  of  light  across  the  room   but  can  create  sizable  interference  

VLCS  2015  

Spatial  reuse  is  better  as  expected   from  narrower  divergence  angles     For  smooth  lighting:  need  more   LEDs  with  narrower  divergence   15  

Three  Regions   Region  3   Region  2  

Region  1     High   interference  

Low  signal   strength   VLCS  2015  

16  

Effect  of  Divergence  angle   8 7

SNR (dB)

6 5 4 1 degree 20 degree 45 degree

3 2 1 0 0

2

4

6

8

10

Distance between laptops (meter)

Is  there  an  op>mal  divergence  angle?   VLCS  2015  

17  

Effect  of  Divergence  angle   12 50 W 25 W 20 W 10 W 5W

100-­‐160  

10

Avg. SNR (dB)

seems  to  be   the  best  

8

6

4

2

0 5

10

15

20

25

30

35

40

Divergence Angle (degree) VLCS  2015  

18  

Effect  of  Room  Size  

Room  height  is  3m.  Floor’s  edge  is  varied.  

8

SNR  in  region  1   reduces  much   slower  than  the   floor  area  

4

SNR  in  region  3   reduces  along   with  the  floor   area  

SNR (dB)

LED  divergence:  200   Tx  power:  20W  

1x   4m 8m 12 m 16 m 20 m

6

2

4x   9x  

0 −2 −4 −6 0

5

10

15

20

25

30

Distance between laptops (meter) VLCS  2015  

19  

Effect  of  Room  Size  &  Tx  Power  

Increase  tx  power  along  with  the  floor  size.  

LED  divergence:  200  

12

10

6

25x  

4x  

8

SNR (dB)

SNR  in  region  1   saturates  but   does  not  reduce  

16x  

1x   9x  

4m 8m 12 m 16 m 20 m

4

SNR  in  region  3   consistently   increases  but   sublinearly  tx   power  

2

0 0

5

10

15

20

25

30

Distance between laptops (meter) VLCS  2015  

20  

Summary   Ø  A  multi-­‐element  VLC  architecture  that   –  supports  multiple  simultaneous  data  streams  and  illumination     –  use  an  RF/FSO  hybrid  LOS  management  protocol  

Ø  Reasonably  high  SNRs  observed   Ø  A  heuristic  to  partition  the  LEDs  on  the  bulb/AP   Ø  3  regions:  a  guide  to  organize  room  layouts  

VLCS  2015  

21  

Future  Work   Ø  Test  the  architecture  with     –  More  LEDs   –  More  receivers   –  Varying  Tx  power  of  LEDs  

Ø  The  Bulb:  Optimize  the  #  of  LEDs  and  their  placements   Ø  Use  multiple  bulbs/APs  in  a  room   Ø  Joint  optimization  of  illumination  and  communication  in  a   room  

VLCS  2015  

22  

Other  or  Upcoming  VLC  Work   Ø  Extended  results  (with  wall  reflections):   –  Y.  S.  Eroglu,  A.  Sahin,  I.  Guvenc,  N.  Pala,  and  M.  Yuksel,  Multi-­‐Element   Transmitter  Design  and  Performance  Evaluation  for  Visible  Light   Communication,  to  appear  in  Proceedings  of  IEEE  GLOBECOM  Workshop  on   Optical  Wireless  Communication  (OWC),  San  Diego,  CA,  December  2015.  

Ø  VLC  localization:   –  A.  Sahin,  Y.  S.  Eroglu,  I.  Guvenc,  N.  Pala,  and  M.  Yuksel,  Hybrid  3D   Localization  for  Visible  Light  Communication  Systems,  to  appear  in  IEEE/ OSA  Journal  of  Lightwave  Technology.   –  A.  Sahin,  Y.  S.  Eroglu,  I.  Guvenc,  N.  Pala,  and  M.  Yuksel,  Accuracy  of  AOA-­‐ Based  and  RSS-­‐Based  3D  Localization  for  Visible  Light  Communications,   Proceedings  of  IEEE  VTC,  Boston,  MA,  September  2015.   –  Y.  S.  Eroglu,  I.  Guvenc,  N.  Pala,  and  M.  Yuksel,  AOA-­‐Based  Localization  and   Tracking  in  Multi-­‐Element  VLC  Systems,  Proceedings  of  IEEE  Wireless  and   Microwave  Technology  Conference  (WAMICON),  Cocoa  Beach,  FL,  April   2015.   VLCS  2015  

23  

Questions?      

Project  website:  https://sites.google.com/site/nsfvlc/  

 

VLCS  2015  

24