R A = (−620)2 + (610)2 + (−540)2 = 1024 lb (Magnitude) * o " −620 & " −0.6056 & ! , 127.3 $ $ $ $ ! R 1 , uR = A = # 610 ' = # 0.5958 ' → , 53.4o A R A 1024 $ −540 $ $ −0.5275 $ ,, 121.8o % ( % ( +
/ / (Direction) / // .
[1]
Q2. (Problem 3.42, page 101) The ball D has a mass of 20 kg. If a force F =100N is applied horizontally to the ring at A, determine the dimension d so that the force in cable AC is zero. Y TB
FBD
F
θB
A
X
W
Geometry
Known Forces
Tan θB = (1.5+d)/2
W = 20 kg (9.8 m/s2) = 196 N
Tan θC = d/2
TC = 0
F = 100 N
Equilibrium Equations ΣFx = 0 − TBCos θB +100 = 0
(1)
ΣFy = 0
(2)
TBSin θB – 196 = 0
Solution (20) Divide Eq (2) by Eq (1) TBSin θB 196 = −TBCos θB –100 1.5 + d 2 d = 2(1.96) −1.5 = 2.42 m
Tan θB = 1.96 =
◃ Answer (10)
[2]
Q3. (Problem F4.14, p 144) (
!
!
!
!
Determine the magnitude of the moment of the force F = (300 i – 200 j +150 k) N about the OA axis.