Implicit–explicit multistep methods for nonlinear parabolic equations Modern Techniques in the Numerical Solution of PDE’s, Heraklion, September 19–23, 2011
Georgios Akrivis
Computer Science Department University of Ioannina Greece G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
1 / 31
Outline 1
Nonlinear parabolic equations (notation)
2
Implicit–explicit multistep schemes Three implicit–explicit multistep schemes Stability conditions and stability constants
3
A priori error analysis Consistency Local stability Error estimates
4
More on the stability constants
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
2 / 31
1. Nonlinear parabolic equations Seek u : [0, T ] → D(A) s.t. ( 0 u (t) + Au(t) = B(t, u(t)), 0 < t < T, u(0) = u0 , with H, (·, ·) Hilbert space, A : D(A) → H positive definite, self-adjoint, linear operator, D(A) dense in H, B(t, ·) : D(A) → H, u0
t ∈ [0, T ], “small”,
∈ H.
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
3 / 31
Notation:
| · | norm of H V := D(A1/2 ) k · k norm of V, kvk = |A1/2 v| Identify H with its dual and denote by V 0 the dual of V k · k? norm of V 0 , kvk? = |A−1/2 v| (·, ·) inner product in H and duality pairing between V 0 and V Then kvk = (Av, v)1/2 ,
G. Akrivis (
[email protected])
kvk? = (v, A−1 v)1/2 .
Multistep schemes for parabolic equations
September 19–23, 2011
4 / 31
2. Implicit–explicit multistep schemes
(α, β) an implicit q−step scheme (α, γ) an explicit q−step scheme, α(ζ) =
q X
i
αi ζ ,
i=0
β(ζ) =
q X
i
βi ζ ,
γ(ζ) =
i=0
q−1 X
γi ζ i .
i=0
Let N ∈ N, k := T /N, and tn := nk, n = 0, . . . , N. Let U 0 , . . . , U q−1 be given starting approximations. We define approximations U m to um := u(tm ), m = q, . . . , N, in three different ways:
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
5 / 31
2. Implicit–explicit multistep schemes
(α, β) an implicit q−step scheme (α, γ) an explicit q−step scheme, α(ζ) =
q X
i
αi ζ ,
i=0
β(ζ) =
q X
i
βi ζ ,
γ(ζ) =
i=0
q−1 X
γi ζ i .
i=0
Let N ∈ N, k := T /N, and tn := nk, n = 0, . . . , N. Let U 0 , . . . , U q−1 be given starting approximations. We define approximations U m to um := u(tm ), m = q, . . . , N, in three different ways:
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
5 / 31
i) By the implicit (α, β) scheme q X
(αi I + kβi A)U n+i = k
i=0
q X
βi B(tn+i , U n+i ),
n = 0, . . . , N − q.
i=0
Assumption: The scheme (α, β) is A(ϑ)−stable, i.e., for z ∈ Sϑ , χ(z; ·) = α(·) − zβ(·) satisfies the root condition. y
Sϑ
ϑ ϑ
Advantage: Good stability properties Drawback: Difficult to implement G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
x
[(α, γ) is unstable] September 19–23, 2011
6 / 31
Let K(α,β) := sup max x>0 ζ∈K
|xβ(ζ)| , |α(ζ) + xβ(ζ)|
with K the unit circle, K := {ζ ∈ C : |ζ| = 1}. Then K(α,β) =
1 . sin ϑ
Local Lipschitz condition: kB(t, v) − B(t, w)k? ≤ λkv − wk + µ|v − w|
∀v, w ∈ Tu ,
with the stability constant λ < 1, in a tube Tu := {v ∈ V : min kv − u(t)k ≤ 1}. 0≤t≤T
Local stability:
for K(α,β) λ < 1
Instability in general: for K(α,β) λ > 1 G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
7 / 31
Let K(α,β) := sup max x>0 ζ∈K
|xβ(ζ)| , |α(ζ) + xβ(ζ)|
with K the unit circle, K := {ζ ∈ C : |ζ| = 1}. Then K(α,β) =
1 . sin ϑ
Local Lipschitz condition: kB(t, v) − B(t, w)k? ≤ λkv − wk + µ|v − w|
∀v, w ∈ Tu ,
with the stability constant λ < 1, in a tube Tu := {v ∈ V : min kv − u(t)k ≤ 1}. 0≤t≤T
Local stability:
for K(α,β) λ < 1
Instability in general: for K(α,β) λ > 1 G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
7 / 31
Let K(α,β) := sup max x>0 ζ∈K
|xβ(ζ)| , |α(ζ) + xβ(ζ)|
with K the unit circle, K := {ζ ∈ C : |ζ| = 1}. Then K(α,β) =
1 . sin ϑ
Local Lipschitz condition: kB(t, v) − B(t, w)k? ≤ λkv − wk + µ|v − w|
∀v, w ∈ Tu ,
with the stability constant λ < 1, in a tube Tu := {v ∈ V : min kv − u(t)k ≤ 1}. 0≤t≤T
Local stability:
for K(α,β) λ < 1
Instability in general: for K(α,β) λ > 1 G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
7 / 31
ii) By the implicit–explicit (α, β, γ) scheme q X
(αi I + kβi A)U
n+i
=k
q−1 X
i=0
γi B(tn+i , U n+i ),
n = 0, . . . , N − q.
i=0
Assumption: The scheme (α, β) is strongly A(0)−stable, i.e., A(0)−stable and s.t. the roots of β are (strictly) less than 1 in modulus. Advantage: Easy to implement Drawback: Not so good stability properties Let K(α,β,γ) := sup max x>0 ζ∈K
Local stability:
|xγ(ζ)| . |α(ζ) + xβ(ζ)|
for K(α,β,γ) λ < 1
Instability in general: for K(α,β,γ) λ > 1 G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
8 / 31
ii) By the implicit–explicit (α, β, γ) scheme q X
(αi I + kβi A)U
n+i
=k
q−1 X
i=0
γi B(tn+i , U n+i ),
n = 0, . . . , N − q.
i=0
Assumption: The scheme (α, β) is strongly A(0)−stable, i.e., A(0)−stable and s.t. the roots of β are (strictly) less than 1 in modulus. Advantage: Easy to implement Drawback: Not so good stability properties Let K(α,β,γ) := sup max x>0 ζ∈K
Local stability:
|xγ(ζ)| . |α(ζ) + xβ(ζ)|
for K(α,β,γ) λ < 1
Instability in general: for K(α,β,γ) λ > 1 G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
8 / 31
ii) By the implicit–explicit (α, β, γ) scheme q X
(αi I + kβi A)U
n+i
=k
q−1 X
i=0
γi B(tn+i , U n+i ),
n = 0, . . . , N − q.
i=0
Assumption: The scheme (α, β) is strongly A(0)−stable, i.e., A(0)−stable and s.t. the roots of β are (strictly) less than 1 in modulus. Advantage: Easy to implement Drawback: Not so good stability properties Let K(α,β,γ) := sup max x>0 ζ∈K
Local stability:
|xγ(ζ)| . |α(ζ) + xβ(ζ)|
for K(α,β,γ) λ < 1
Instability in general: for K(α,β,γ) λ > 1 G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
8 / 31
ii) By the implicit–explicit (α, β, γ) scheme q X
(αi I + kβi A)U
n+i
=k
q−1 X
i=0
γi B(tn+i , U n+i ),
n = 0, . . . , N − q.
i=0
Assumption: The scheme (α, β) is strongly A(0)−stable, i.e., A(0)−stable and s.t. the roots of β are (strictly) less than 1 in modulus. Advantage: Easy to implement Drawback: Not so good stability properties Let K(α,β,γ) := sup max x>0 ζ∈K
Local stability:
|xγ(ζ)| . |α(ζ) + xβ(ζ)|
for K(α,β,γ) λ < 1
Instability in general: for K(α,β,γ) λ > 1 G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
8 / 31
BDF schemes α(ζ) =
q X 1 j=1
j
ζ q−j (ζ − 1)j ,
K(α,β,γ) = 2q − 1,
β(ζ) = ζ q , K(α,β) =
γ(ζ) = ζ q − (ζ − 1)q .
1 , sin ϑq
q = 1, . . . , 6.
q
K(α,β,γ)
K(α,β)
K(α,β,γ) /K(α,β)
λ(α,β)
1 2 3 4 5 6
1 3 7 15 31 63
1 1 1.0024 1.0437 1.2718 3.2641
1 3 6.9832 14.3711 24.3750 19.3007
1 1 0.9976 0.9581 0.7863 0.3064
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
9 / 31
References
1
Crouzeix: Numer. Math. (1980)
2
A., Crouzeix, Makridakis: Math. Comp. (1998)
3
A., Crouzeix, Makridakis: Numer. Math. (1999)
4
A., Crouzeix: Math. Comp. (2003)
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
10 / 31
Motivation for an intermediate alternative
1
u0 (t) + Au(t) = B(t, u(t)) with A : D(A) → H positive definite, self-adjoint, time-independent, linear operator
2
K(α,β,γ) /K(α,β) may be large
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
11 / 31
iii) An intermediate alternative Decompose the nonlinear part B into two parts, B(t, u) = B1 (t, u) + B2 (t, u), u0 (t) + Au(t) − B1 (t, u(t)) = B2 (t, u(t)) Interesting example: u0 (t) + A(t)u(t) = B(t, u(t)) Choose: A := 12 [A(0) + A(0)? ] and B1 (t, u(t)) := A − A(t). q q−1 X X n+i n+i n+i n+i αi U +kβi AU −B1 (t , U ) = k γi B2 (tn+i , U n+i ), i=0
i=0
n = 0, . . . , N − q.
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
12 / 31
iii) An intermediate alternative Decompose the nonlinear part B into two parts, B(t, u) = B1 (t, u) + B2 (t, u), u0 (t) + Au(t) − B1 (t, u(t)) = B2 (t, u(t)) Interesting example: u0 (t) + A(t)u(t) = B(t, u(t)) Choose: A := 12 [A(0) + A(0)? ] and B1 (t, u(t)) := A − A(t). q q−1 X X n+i n+i n+i n+i αi U +kβi AU −B1 (t , U ) = k γi B2 (tn+i , U n+i ), i=0
i=0
n = 0, . . . , N − q.
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
12 / 31
iii) An intermediate alternative Decompose the nonlinear part B into two parts, B(t, u) = B1 (t, u) + B2 (t, u), u0 (t) + Au(t) − B1 (t, u(t)) = B2 (t, u(t)) Interesting example: u0 (t) + A(t)u(t) = B(t, u(t)) Choose: A := 12 [A(0) + A(0)? ] and B1 (t, u(t)) := A − A(t). q q−1 X X n+i n+i n+i n+i αi U +kβi AU −B1 (t , U ) = k γi B2 (tn+i , U n+i ), i=0
i=0
n = 0, . . . , N − q.
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
12 / 31
Local Lipschitz conditions: ∀v, w ∈ Tu
kB1 (t, v) − B1 (t, w)k? ≤ λ1 kv − wk + µ1 |v − w|,
∀v, w ∈ Tu
kB2 (t, v) − B2 (t, w)k? ≤ λ2 kv − wk + µ2 |v − w|
Local stability:
for K(α,β) λ1 + K(α,β,γ) λ2 < 1
Instability in general: for sup max x>0 ζ∈K
λ1 |xβ(ζ)| + λ2 |xγ(ζ)| >1 |α(ζ) + xβ(ζ)|
Advantage: Easier to implement than the implicit scheme (α, β), more expensive than the implicit–explicit scheme (α, β, γ) Drawback: Better stability properties than the (α, β, γ) scheme, but worse than the (α, β) scheme. G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
13 / 31
Local Lipschitz conditions: ∀v, w ∈ Tu
kB1 (t, v) − B1 (t, w)k? ≤ λ1 kv − wk + µ1 |v − w|,
∀v, w ∈ Tu
kB2 (t, v) − B2 (t, w)k? ≤ λ2 kv − wk + µ2 |v − w|
Local stability:
for K(α,β) λ1 + K(α,β,γ) λ2 < 1
Instability in general: for sup max x>0 ζ∈K
λ1 |xβ(ζ)| + λ2 |xγ(ζ)| >1 |α(ζ) + xβ(ζ)|
Advantage: Easier to implement than the implicit scheme (α, β), more expensive than the implicit–explicit scheme (α, β, γ) Drawback: Better stability properties than the (α, β, γ) scheme, but worse than the (α, β) scheme. G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
13 / 31
Local Lipschitz conditions: ∀v, w ∈ Tu
kB1 (t, v) − B1 (t, w)k? ≤ λ1 kv − wk + µ1 |v − w|,
∀v, w ∈ Tu
kB2 (t, v) − B2 (t, w)k? ≤ λ2 kv − wk + µ2 |v − w|
Local stability:
for K(α,β) λ1 + K(α,β,γ) λ2 < 1
Instability in general: for sup max x>0 ζ∈K
λ1 |xβ(ζ)| + λ2 |xγ(ζ)| >1 |α(ζ) + xβ(ζ)|
Advantage: Easier to implement than the implicit scheme (α, β), more expensive than the implicit–explicit scheme (α, β, γ) Drawback: Better stability properties than the (α, β, γ) scheme, but worse than the (α, β) scheme. G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
13 / 31
3. Error Analysis — i) Consistency E n consistency error for the solution u: kE n =
q−1 q X X γi B2 (tn+i , un+i ), αi un+i +kβi Aun+i −B1 (tn+i , un+i ) −k i=0
i=0
the amount by which the exact solution misses being an approximate solution. With E1n
=
q X
n+i
αi u
0
n+i
− kβi u (t
i=0
q X n ) , E2 = k (βi − γi )B2 (tn+i , un+i ) i=0
we have kE n = E1n + E2n .
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
14 / 31
Assumption:
q X
i ` αi = `
i=0
q X
i`−1 βi = `
i=0
q−1 X
i`−1 γi , ` = 0, 1, . . . , p,
i=0
i.e., the order of both schemes (α, β) and (α, γ) is p. Taylor expansion around tn yields q Z n+i 1 X t n E1 = (tn+i − s)p−1 αi (tn+i − s) − pkβi u(p+1) (s)ds p! n i=0 t Z tn+i q X k dp n E2 = (βi − γi ) (tn+i − s)p−1 p B2 s, u(s) ds. (p − 1)! dt tn i=0
Thus, under obvious regularity assumptions, max
0≤n≤N −q
G. Akrivis (
[email protected])
kE n k? ≤ Ck p .
Multistep schemes for parabolic equations
September 19–23, 2011
15 / 31
ii) Local stability Let U m , V m ∈ Tu be s.t., for n = 0, . . . , N − q, q X
αi U n+i + kβi AU n+i − B1 (tn+i , U n+i )
=k
q−1 X
i=0
i=0
q X
q−1 X
αi V n+i + kβi AV n+i − B1 (tn+i , V n+i )
=k
i=0
γi B2 (tn+i , U n+i ), γi B2 (tn+i , V n+i ).
i=0
With ϑn := U n − V n , bni := Bi (tn , U n ) − Bi (tn , V n ), i = 1, 2, we have q X
(αi I + kβi A)ϑ
i=0
n+i
=k
q X i=0
βi bn+i 1
+k
q−1 X
γi b2n+i ,
i=0
n = 0, . . . , N − q. G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
16 / 31
Let the rational functions f (`, ·) and f˜(`, ·) be defined through the expansions ∞ X γ(ζ) = f (`, x)ζ −` , α(ζ) + xβ(ζ) `=1
∞ X β(ζ) = f˜(`, x)ζ −` , α(ζ) + xβ(ζ) `=0
for |ζ| ≥ 1.
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
17 / 31
With n X n ϑ1 := k f˜(n − `, kA)b`1 , n = 0, . . . , N, `=0 n−1 X 0 n ϑ := 0, ϑ := k f (n − `, kA)b`2 , n = 1, . . . , N, 2 2 `=0 n ϑ3 := ϑn − ϑn1 − ϑn2 , n = 0, . . . , N, we have q X (αi I + kβi A)ϑn+i j i=0
G. Akrivis (
[email protected])
q X k βi bn+i 1 , j = 1, i=0 q−1 X = γi bn+i 2 , j = 2, k i=0 0, j = 3.
Multistep schemes for parabolic equations
September 19–23, 2011
18 / 31
Lemma For n = 0, . . . , N, the following estimates are valid n n−1 X X ` 2 2 k kϑ k ≤ K k kb`1 k2? , 1 (α,β) `=0 `=0 n n−1 X X 2 k kϑ`2 k2 ≤ K(α,β,γ) k kb`2 k2? , `=0 `=0 q−1 n X j X kϑ`3 k2 ≤ c |ϑ3 |2 + kkϑj3 k2 . k `=0
G. Akrivis (
[email protected])
j=0
Multistep schemes for parabolic equations
September 19–23, 2011
19 / 31
Proof. We shall prove the second estimate. It suffices to let b`2 = 0, for ` ≥ n, and replace n by ∞. Let ϑˆ2 (t) :=
∞ X
ˆb2 (t) :=
ϑ`2 e2 i π`t ,
`=0
∞ X
b`2 e2 i π`t .
`=0
Then n h i−1 o −1 ϑˆ2 (t) = kAγ e−2 i πt α e−2 i πt + kAβ e−2 i πt A ˆb2 (t), whence kϑˆ2 (t)k ≤ K(α,β,γ) kˆb2 (t)k? . Therefore, in view of Parseval’s identity, with K := K(α,β,γ) , ∞ X `=0
kϑ`2 k2
Z
1
= 0
G. Akrivis (
[email protected])
kϑˆ2 (t)k2 dt ≤ K 2
Z
1
kˆb2 (t)k2? dt = K 2
0 Multistep schemes for parabolic equations
∞ X
kb`2 k2? .
`=0 September 19–23, 2011
20 / 31
Proposition (Local stability) For n = q, . . . , N, the following estimate is valid n 2
|ϑ | + k
n X `=0
G. Akrivis (
[email protected])
` 2
kϑ k ≤ C
q−1 X
|ϑj |2 + kkϑj k2 .
j=0
Multistep schemes for parabolic equations
September 19–23, 2011
21 / 31
iii) Error estimates
Theorem (Error estimate) Let the stability conditions be satisfied, the order of both methods be p and the solution u be sufficiently smooth. Assume for the starting approximations that max |u(tj ) − U j | + k 1/2 ku(tj ) − U j k ≤ ck p . 0≤j≤q−1
Then, we have the error estimate max |u(tn ) − U n | ≤ Ck p .
0≤n≤N
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
22 / 31
4. More on the constants K(α,β) and K(α,β,γ) α(ζ) , ζ ∈ K, s.t. β(ζ) 6= 0, β(ζ) denote the points of the root locus curve Let d(ζ) :=
Let K+ := {ζ ∈ K : Re d(ζ) ≥ 0}, K− := {ζ ∈ K : Re d(ζ) < 0}. Let k(x, ζ) :=
xγ(ζ) 1 γ(ζ) = . −1 α(ζ) + xβ(ζ) 1 + x d(ζ) β(ζ)
Then, ∀ζ ∈ K+
sup |k(x, ζ)| = x>0
and ∀ζ ∈ K−
sup |k(x, ζ)| = x>0
G. Akrivis (
[email protected])
|γ(ζ)| |β(ζ)|
|d(ζ)| |γ(ζ)| . | Im d(ζ)| |β(ζ)|
Multistep schemes for parabolic equations
September 19–23, 2011
23 / 31
4. More on the constants K(α,β) and K(α,β,γ) α(ζ) , ζ ∈ K, s.t. β(ζ) 6= 0, β(ζ) denote the points of the root locus curve Let d(ζ) :=
Let K+ := {ζ ∈ K : Re d(ζ) ≥ 0}, K− := {ζ ∈ K : Re d(ζ) < 0}. Let k(x, ζ) :=
xγ(ζ) 1 γ(ζ) = . −1 α(ζ) + xβ(ζ) 1 + x d(ζ) β(ζ)
Then, ∀ζ ∈ K+
sup |k(x, ζ)| = x>0
and ∀ζ ∈ K−
sup |k(x, ζ)| = x>0
G. Akrivis (
[email protected])
|γ(ζ)| |β(ζ)|
|d(ζ)| |γ(ζ)| . | Im d(ζ)| |β(ζ)|
Multistep schemes for parabolic equations
September 19–23, 2011
23 / 31
4. More on the constants K(α,β) and K(α,β,γ) α(ζ) , ζ ∈ K, s.t. β(ζ) 6= 0, β(ζ) denote the points of the root locus curve Let d(ζ) :=
Let K+ := {ζ ∈ K : Re d(ζ) ≥ 0}, K− := {ζ ∈ K : Re d(ζ) < 0}. Let k(x, ζ) :=
xγ(ζ) 1 γ(ζ) = . −1 α(ζ) + xβ(ζ) 1 + x d(ζ) β(ζ)
Then, ∀ζ ∈ K+
sup |k(x, ζ)| = x>0
and ∀ζ ∈ K−
sup |k(x, ζ)| = x>0
G. Akrivis (
[email protected])
|γ(ζ)| |β(ζ)|
|d(ζ)| |γ(ζ)| . | Im d(ζ)| |β(ζ)|
Multistep schemes for parabolic equations
September 19–23, 2011
23 / 31
Therefore, K(α,β,γ) = max
n
max
|d(ζ)| |γ(ζ)| o |γ(ζ)| , max , |β(ζ)| ζ∈K− | Im d(ζ)| |β(ζ)|
max
|γ(ζ)| o |γ(ζ)| 1 , max , |β(ζ)| ζ∈K− | sin ϕ(ζ)| |β(ζ)|
ζ∈K+
or, equivalently, K(α,β,γ) = max
n
ζ∈K+
y d(ζ) ϕ(ζ)
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
x
September 19–23, 2011
24 / 31
Assumption: The scheme (α, β) is A−stable Then, K+ = K and K(α,β,γ) = max ζ∈K
|γ(ζ)| . |β(ζ)|
In particular, K(α,β) = 1. Assumption: The scheme (α, β) is A(ϑ)−stable Then, K(α,β) = max
ζ∈K−
G. Akrivis (
[email protected])
1 1 = . | sin ϕ(ζ)| sin ϑ
Multistep schemes for parabolic equations
September 19–23, 2011
25 / 31
Assumption: The scheme (α, β) is A−stable Then, K+ = K and K(α,β,γ) = max ζ∈K
|γ(ζ)| . |β(ζ)|
In particular, K(α,β) = 1. Assumption: The scheme (α, β) is A(ϑ)−stable Then, K(α,β) = max
ζ∈K−
G. Akrivis (
[email protected])
1 1 = . | sin ϕ(ζ)| sin ϑ
Multistep schemes for parabolic equations
September 19–23, 2011
25 / 31
Discrepancy between necessary and sufficient conditions Sufficient condition:
K(α,β) λ1 + K(α,β,γ) λ2 < 1
Necessary condition: sup max x>0 ζ∈K
λ1 |xβ(ζ)| + λ2 |xγ(ζ)| ≤1 |α(ζ) + xβ(ζ)|
The necessary condition can be equivalenty written as λ1 + λ2 max
ζ∈K+
|γ(ζ)| ≤ 1, |β(ζ)|
h |d(ζ)| |γ(ζ)| i λ1 + λ2 ≤ 1. |β(ζ)| ζ∈K− | Im d(ζ)| sup
A more practical, but weaker in general, necessary condition is λ1 + K(α,β,γ) λ2 ≤ 1,
K(α,β) λ1 + c?(β,γ) λ2 ≤ 1,
with c?(β,γ) := |γ(ζ ? )|/|β(ζ ? )|, if K(α,β) is attained at ζ ? ∈ K− . G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
26 / 31
y
y
1
1
1 K(α,β,γ)
1 K(α,β,γ)
1 K(α,β) c? (β,γ)
T
S 1 K(α,β)
x
1 K(α,β)
1
x 1
y 1
1 K(α,β,γ)
R
1 K(α,β)
G. Akrivis (
[email protected])
x 1
Multistep schemes for parabolic equations
September 19–23, 2011
27 / 31
BDF methods: q
|T |
|T |/|S|
|T |/|R|
c?(β,γ)
3 4 5 6
1.70 × 10−4 1.32 × 10−3 2.69 × 10−3 1.62 × 10−3
2.39 × 10−3 4.13 × 10−2 2.13 × 10−1 6.68 × 10−1
2.78 × 10−3 4.17 × 10−2 2.13 × 10−1 6.68 × 10−1
1.73 3.49 0.71 1.00
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
28 / 31
On the necessary stability condition Necessary condition: sup max x>0 ζ∈K
λ1 |xβ(ζ)| + λ2 |xγ(ζ)| ≤1 |α(ζ) + xβ(ζ)|
Assume this condition is not satisfied. Then, with an appropriate Θ ∈ [0, 2π), for the function k, k(x, ζ) :=
λ1 x ei Θ β(ζ) + λ2 xγ(ζ) , α(ζ) + xβ(ζ)
x > 0, |ζ| ≥ 1.
we have |k(x, z)| > 1 for appropriate z ∈ K, x > 0. Since lim |k(x, ζ)| = λ1
|ζ|→∞
xβq < 1, αq + xβq
there exists a ζ ? ∈ C with |ζ ? | > 1 s.t. |k(x, ζ ? )| = 1, i.e., λ1 x ei Θ β(ζ ? ) + λ2 xγ(ζ ? ) = e− i ϕ , α(ζ ? ) + xβ(ζ ? ) G. Akrivis (
[email protected])
for a ϕ ∈ [0, 2π).
Multistep schemes for parabolic equations
September 19–23, 2011
29 / 31
Therefore, α(ζ ? ) + xβ(ζ ? ) − λ1 x ei(Θ+ϕ) β(ζ ? ) − λ2 x ei ϕ γ(ζ ? ) = 0. For B1 (t, ·) := λ1 ei(Θ+ϕ) A and B2 (t, ·) := λ2 ei ϕ A, the Lipschitz conditions are satisfied. According to the von Neumann criterion, a necessary stability condition is that, if ν is an eigenvalue of A, the solutions of q X αi + kν βi − λ1 ei(Θ+ϕ) βi − λ2 ei ϕ γi v n+i = 0 i=0
are bounded; for kν = x this is not the case, since the root condition is not satisfied. Therefore, the scheme is not unconditionally stable.
G. Akrivis (
[email protected])
Multistep schemes for parabolic equations
September 19–23, 2011
30 / 31
Thank you very much!