2 abingdon

Report 4 Downloads 36 Views
The role of ECMWF in delivering advances in seasonal-to-decadal climate predictions With thanks to Magdalena Balmaseda, Judith Berner, Paco Doblas-Reyes, Mark Rodwell, Antje Weisheimer

Coapec/ncas/met office/ecmwf

Slide 1

ECMWF

The role of ECMWF in delivering advances in seasonal-to-decadal climate predictions ECMWF Seasonal Forecast System - Operational system, provision to Member States - Applications (eg Southern Africa Malaria Outlook Forum, Flood Forecasting for Bangladesh Met Department)

Multi-model ensembles: from DEMETER to EUROSIP ENSEMBLES (EU FP6) - Seasonal and decadal predictions - Comparing multi-model, stochastic physics, perturbed parameters methodologies of representing model uncertainty

Development of “seamless” approach to weather and climate prediction. Coapec/ncas/met office/ecmwf

Slide 2

ECMWF

Cellular Automaton Stochastic Backscatter Scheme (CASBS)

smooth scale

Cellular Automaton state

streamfunction forcing shape ! function

#% = $ ! " ( x, y ) ! D #t

D = sub-grid energy dissipation due to numerical diffusion, mountain drag and convection α = dimensional parameter

Coapec/ncas/met office/ecmwf

G.Shutts, 2005 Slide 3 ECMWF

The development of stochastic parametrisation is being aided by coarse-grain budget analyses from cloud resolving models (Shutts and Palmer, J. Clim, to appear)

Coapec/ncas/met office/ecmwf

Slide 4

ECMWF

1. Seasonal

Coapec/ncas/met office/ecmwf

Slide 5

ECMWF

∆ηµητηρ

Development of a European Multi-Model Ensemble System for Seasonal to Interannual Prediction

Reliability: 2m-Temp.>0 0.049 0.902 0.147

0.058 0.904 0.151

0.099 0.923 0.176

-0.007 0.886 0.107

0.075 0.921 0.153

-0.055 0.838 0.107

0.068 0.903 0.164

0.222 0.994 0.227

-- high malaria years -- low malaria years

-- high malaria years -- low malaria years

ROC Score

Precipitation

Event

CMAP

Incidence DEMETER

CMAP

DEMETER

Low

1.00 (1.00-1.00) 0.95 (0.82-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00)

High

1.00 (1.00-1.00) 0.52 (0.25-0.78) 0.94 (0.80-1.00) 0.84 (0.65-0.98)

Reliability: Precip>0.43σ -0.141 0.855 0.004

-0.115 0.880 0.004

-0.108 0.885 0.007

-0.086 0.910 0.004

-0.107 0.887 0.006

-0.137 0.862 0.001

-0.115 0.881 0.004

-0.022 0.969 0.009

Blocking frequency in seasonal hindcasts Northern Hemisphere blocking frequency for DEMETER hindcasts November start, 1959-2001, 9-member ensembles Top row: November (first month) Bottom row: January (third month) ERA40 Single models CNRM

ECMWF

Met Office

era-40 stoch phys control

Coapec/ncas/met office/ecmwf

Slide 12

ECMWF

Possible impact of Stochastic Parametrisation - a nonlinear paradigm for diagnosing the causes of model bias Eg ball bearing in potential well.

• Without smallscale “noise”, this regime is too dominant



Coapec/ncas/met office/ecmwf

Without small-scale “noise”, this minimum might be inaccessible

Jung et al 2006 Slide 13

ECMWF

There will now be a focus on the winter 2005/2006 in RT1 of the ENSEMBLES project.

Coapec/ncas/met office/ecmwf

Slide 14

ECMWF

If seasonal forecast models are generally under-dispersive in terms of blocking activity, can we be sure that consistency of multi-model climate-change predictions of mid-lat precipitation is an indication of forecast reliability?

Coapec/ncas/met office/ecmwf

Slide 15

ECMWF

Coapec/ncas/m et office/ecm wf

Slide 16

ECMWF

Probability of 1-in-20 year wet winter based on AR4 multi-model ensemble

Weisheimer and Palmer, 2006)

systematic bias 1991-2001 DJF (Nov start): precipitation control – GPCP

CASBS – control

CASBS – GPCP

2. Decadal

Slide 19

ECMWF

THC: Atlantic Meridional Transport (30N) 2.0·10

7

1.8·10

7

1.6·10

7

1.4·10

7

1.2·10

7

0001 ATL30NU 132

upper 1000m

1970

1980

1990

2000

1990

2000

Time -7.0·10

6

-8.0·10

6

-9.0·10

6

-1.0·10

7

-1.1·10

7

-1.2·10

7

0001 ATL30NI 132

1000m-3000m

1970

-1.0·10

7

-1.2·10

7

-1.4·10

7

-1.6·10

7

-1.8·10

7

1980

Time

0001 ATL30ND 132

3000m-5000m

Slide 20

Magdalena A. Balmaseda 1970

1980

1990 Time

Values from Bryden 2000et al 2005

THC: Atlantic Meridional Transport (30N) 0001 ATL30NU 132

2.0·107

1.8·107

1.6·107

1.4·107

1.2·10

upper 1000m

7

1970

1980

1990

2000

1990

2000

Time

0001 ATL30NI 132

-7.0·106 -8.0·106

1000m-3000m

-9.0·106 -1.0·107 -1.1·107 -1.2·107 1970

1980

Time

0001 ATL30ND 132 -1.0·107

-1.2·107

3000m-5000m

-1.4·107

-1.6·107

Values from Bryden et al 2005

-1.8·107 1970

1980

1990 Time

2000

decadal forecasts: forecast anomalies

global SST multi-model

start dates: 1965 and 1994

stochastic physics start dates: 1965 and 1994

perturbed physics start dates: 1991 - 1994

3. More benefits of a seamless NWP Climate approach

Slide 22

ECMWF

Stainforth et al (2005)

Previously unknown risk of catastrophic warming

IPCC (2001) range

Probability of Global Warming

Climate: Error vs Sensitivity

All Stainforth models accepted Highest sensitivity for low entrainment models

Circles: AGCM + Mixed-Layer model results from Stainforth et al. (2005) show combined RMSE of 8 year mean, annual mean T2m, SLP, precipitation and ocean-atmosphere sensible+latent heat fluxes (equally weighted and normalised by the control). Diamonds: AGCM results from Rodwell & Palmer (2006) show RMSE from 39 year mean, annual mean T850, SLP and precipitation (equally weighted and normalised by the control). Coapec/ncas/met office/ecmwf

Slide 24

ECMWF

January 2005 Initial T Tendencies 12 36

Rodwell and Palmer, 2006 12 36

96

96

CONTROL Pr e s s u r e (a p p r o x )

Pr e s s u r e (a p p r o x )

539

353

539

728

728

884

884

979 1012

979 1012 -9

-6

CLOUD

202

353

-3 Kday

0 (K for bias)

-1

3

6

9

Radiative Vertical Diffusion Cumulus Convection Large Scale Precipitation

202

Pressure (approx)

12 36

202

Dynamic

96

Total D+5 Bias Cloud Frac

353

539

CLOUD better for T, worse for q

728 -9

-6

-3 Kday

0 (K for bias)

-1

3

6

9

884 12 36

12 36

ENTRAIN/5

96

202

Pr e s s u r e (a p p r o x )

Pr e s s u r e (a p p r o x )

202

979 1012

ENTRAINx3

96

353

539

-6 353

539

728

728

884

884

979 1012

979 1012 -9

-6

-3

0

3

6

ENTRAIN/5 and ENTRAINx3 are completely out of balance: reject or down-weight? -3

-9

-6

-3

0

3

6

By D+5, interactions between processes (non-linearity) leads to completely different balance

Amazon = [300oE-320oE, 20oS-0oN]. 70% confidence intervals shown. Model = 29R1,T159,L60,1800S. Slide 25 Coapec/ncas/m et office/ecm wf

ECMWF

Conclusions • Multi-model ensembles are not necessarily reliable on seasonal timescales. DEMETER/Eurosip models systematically undersimulate blocking – implications for climate change prediction? • Stochastic parametrisations increase the probability of occurrence of sub-dominant regimes in the ECMWF model • ECMWF analyses appear to have realistic THC variability. Initial decadal runs of the ECMWF model have been performed within the ENSEMBLES project • Very short-range tendencies of the ECMWF model can be used to constrain climatically-important fast-physics parameter perturbations • Overall ECMWF contributions support WCRP “seamless” strategy – unified approach to days, seasons, decades, centuries. Coapec/ncas/m et office/ecm wf

Slide 26

ECMWF