2. Semester Analysis II Lecture Summary

Report 0 Downloads 85 Views
Lecture Summary Note This document was written in the following way (which might explain its structure): First, I copied Prof. Imamogluโ€™s non-example notes for the review. Then I merged the in-class examples from the review and our assistantโ€™s (Tim) review. The language is inconsistent.

Table of Contents 1

2

Integration .......................................................................................................................................................... 2 1.1

Facts ............................................................................................................................................................ 2

1.2

Properties .................................................................................................................................................... 2

1.3

Mittelwertsatz der Integralrechnung ............................................................................................................ 2

1.4

Fundamental theorem of Calculus ............................................................................................................... 2

1.5

How do we calculate integrals? .................................................................................................................... 2

1.6

Improper Integrals ....................................................................................................................................... 3

Differential Equations .......................................................................................................................................... 3 2.1

3

4

Linear differential equations with constant coefficients ................................................................................ 4

2.1.1

Finding the homogeneous solution ๐‘ฆ๐ป of ๐ฟ๐‘ฆ = 0 ................................................................................ 4

2.1.2

How to find the special solution of ๐ฟ๐‘ฆ = ๐‘๐‘ฅ using the method of โ€œAnsatzโ€ .......................................... 4

2.2

Boundary or initial value problems .............................................................................................................. 4

2.3

Solving DGL by separation of variables ......................................................................................................... 4

Differentiation in โ„๐‘› ........................................................................................................................................... 6 3.1

Differentiation rules ..................................................................................................................................... 6

3.2

Directional derivative ................................................................................................................................... 6

3.3

Higher partial derivatives ............................................................................................................................. 6

3.4

The extrema of a function ๐‘“: ฮฉ. โ†’ โ„ ............................................................................................................ 7

3.5

Line integral ................................................................................................................................................. 7

Integration in โ„๐‘› ................................................................................................................................................. 8 4.1

Substitution in โ„๐‘› ....................................................................................................................................... 8

4.2

Greenโ€™s theorem.......................................................................................................................................... 9

6/15/2014

Linus Metzler

1|9

1 Integration Let ๐‘“: โ„ โ†’ โ„ be a continuous function, ๐‘ƒ = {๐‘Ž = ๐‘ฅ๐‘œ < ๐‘ฅ1๐‘ฅ < โ‹ฏ < ๐‘ฅ๐‘› = ๐‘} a partition of the interval [๐‘Ž, ๐‘] and ๐œ‰๐‘˜ โˆˆ [๐‘ฅ๐‘˜ , ๐‘ฅ๐‘˜+1 ] points in each subinterval. Then the sum ๐‘†(๐‘“, ๐‘ƒ, ๐œ‰ ) = โˆ‘๐‘›โˆ’1 ๐‘˜=0 ๐‘“ (๐œ‰๐‘˜ )(๐‘ฅ๐‘˜+1 โˆ’ ๐‘ฅ๐‘˜ ) is called the Riemann sum attached

to

๐‘“

and

๐‘ƒ.

to

For

๐ผ๐‘˜ = [๐‘ฅ๐‘˜ , ๐‘ฅ๐‘˜+1 ],

๐‘ˆ(๐‘“, ๐‘ƒ ) = โˆ‘๐‘›โˆ’1 ๐‘˜=0 (inf ๐‘“) (๐‘ฅ๐‘˜+1 โˆ’ ๐‘ฅ๐‘˜ ) ๐ผ๐‘˜

and

๐‘‚(๐‘“, ๐‘ƒ ) =

๐‘

โˆ‘๐‘›โˆ’1 ๐‘˜=0 (sup ๐‘“) (๐‘ฅ๐‘˜+1 โˆ’ ๐‘ฅ๐‘˜ ) are called the lower and upper Riemann sums. Similarly โˆซ๐‘Ž ๐‘“ ๐‘‘๐‘ฅ = sup{๐‘ˆ(๐‘“, ๐‘ ), ๐‘ โˆˆ ๐‘ƒ(๐ผ)} ๐ผ๐‘˜ ๐‘ and โˆซ๐‘Ž ๐‘“ ๐‘‘๐‘ฅ ๐‘ โˆซ๐‘Ž ๐‘“ ๐‘‘๐‘ฅ.

๐‘

= inf{๐‘‚(๐‘“, ๐‘ ), ๐‘ โˆˆ ๐‘ƒ (๐ผ)} are called lower and upper integrals. ๐‘“ is called Riemann integrable if โˆซ๐‘Ž ๐‘“ ๐‘‘๐‘ฅ =

1.1 Facts -

Each continuous functions is Riemann integrable Each monotonic function is Riemann integrable

1.2 Properties -

Let ๐‘“, ๐‘” Riemann integrable on ๐ผ, ๐›ผ, ๐›ฝ โˆˆ โ„. Then ๐‘ ๐‘ ๐‘ 1. โˆซ๐‘Ž (๐›ผ๐‘“ + ๐›ฝ๐‘”)๐‘‘๐‘ฅ = ๐›ผ โˆซ๐‘Ž ๐‘“ ๐‘‘๐‘ฅ + ๐›ฝ โˆซ๐‘Ž ๐‘” ๐‘‘๐‘ฅ ๐‘

๐‘

2. If ๐‘“(๐‘ฅ) โ‰ค ๐‘”(๐‘ฅ) โˆ€๐‘ฅ โˆˆ [๐‘Ž, ๐‘] then โˆซ๐‘Ž ๐‘“ ๐‘‘๐‘ฅ < โˆซ๐‘Ž ๐‘” ๐‘‘๐‘ฅ ๐‘

๐‘

3. |โˆซ๐‘Ž ๐‘“ ๐‘‘๐‘ฅ| โ‰ค โˆซ๐‘Ž |๐‘“(๐‘ฅ)|๐‘‘๐‘ฅ ๐‘

4. (inf ๐‘“) (๐‘ โˆ’ ๐‘Ž) โ‰ค โˆซ๐‘Ž ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ โ‰ค (sup ๐‘“) (๐‘ โˆ’ ๐‘Ž) 5. 6.

I ๐‘ โˆซ๐‘Ž ๐‘“ ๐‘ โˆซ๐‘Ž ๐‘“

๐ผ

๐‘Ž

๐‘‘๐‘ฅ = โˆ’ โˆซ๐‘ ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ ๐‘

๐‘

๐‘‘๐‘ฅ = โˆซ๐‘Ž ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ + โˆซ๐‘ ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ โˆ€๐‘Ž, ๐‘, ๐‘ โˆˆ โ„

1.3 Mittelwertsatz der Integralrechnung ๐‘

๐‘“: [๐‘Ž, ๐‘] โ†’ โ„ continonous. Then โˆƒ๐œ‰ โˆˆ [๐‘Ž, ๐‘] such that โˆซ๐‘Ž ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ = ๐‘“(๐œ‰ )(๐‘ โˆ’ ๐‘Ž ).

1.4 Fundamental theorem of Calculus ๐‘ฅ

1. Let ๐‘“: [๐‘Ž, ๐‘] โ†’ โ„ continuous. Define ๐น (๐‘ฅ) โ‰” โˆซ๐‘Ž ๐‘“ (๐‘ก) ๐‘‘๐‘ก โˆ€๐‘ฅ โˆˆ [๐‘Ž, ๐‘]. Then ๐น is differentiable and ๐น โ€ฒ = ๐‘“. ๐น is called a primitive (Stammfunktion) of ๐‘“ 2. If ๐บ is an anohte rpmimirve of ๐‘“ then ๐บ = ๐น + ๐‘ for some constant ๐‘ ๐‘

3. Let ๐น be any pmirmitve of ๐‘“, then โˆซ๐‘Ž ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ = ๐น (๐‘) โˆ’ ๐น (๐‘Ž)

1.5 How do we calculate integrals? 1. Partial integration: follows product rule for differentiation โˆซ ๐‘“(๐‘ฅ)๐‘”โ€ฒ (๐‘ฅ) ๐‘‘๐‘ฅ = ๐‘“ (๐‘ฅ)๐‘”(๐‘ฅ) โˆ’ โˆซ ๐‘“ โ€ฒ (๐‘ฅ)๐‘”(๐‘ฅ) ๐‘‘๐‘ฅ ๐‘

๐‘

โˆซ๐‘Ž ๐‘“ (๐‘ฅ)๐‘”โ€ฒ (๐‘ฅ) ๐‘‘๐‘ฅ = ๐‘“ (๐‘ฅ)๐‘”(๐‘ฅ)|๐‘๐‘Ž โˆ’ โˆซ๐‘Ž ๐‘“ โ€ฒ (๐‘ฅ)๐‘”(๐‘ฅ) ๐‘‘๐‘ฅ 2. Substitution: follows chain rule for differentiation โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐œ‘(๐‘ฆ))๐œ‘โ€ฒ (๐‘ฆ) ๐‘‘๐‘ฆ ๐‘ฬƒ

๐‘

โˆซ๐‘Žฬƒ ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ๐‘Ž ๐‘“(๐œ‘(๐‘ฆ))๐œ‘โ€ฒ (๐‘ฆ) ๐‘‘๐‘ฆ where ๐œ‘(๐‘Ž) = ๐‘Žฬƒ, ๐œ‘(๐‘) = ๐‘ฬƒ a.

Partial fractions: to integration rational functions of the form

๐‘ƒ(๐‘ฅ)

, ๐‘ƒ, ๐‘„ are polynomials

๐‘„(๐‘ฅ)

๐‘ƒ (๐‘ฅ) ๐‘ƒ(๐‘ฅ) = 2 ๐‘„(๐‘ฅ) (๐‘ฅ + 1)(๐‘ฅ โˆ’ 1)2 (๐‘ฅ + 2) ๐‘ƒ (๐‘ฅ) ๐ด๐‘ฅ + ๐ต ๐ถ ๐ท ๐ธ โ†’ Ansatz: = 2 + + + 2 ( ) ( ) ๐‘„ ๐‘ฅ ๐‘ฅ +1 ๐‘ฅโˆ’1 ๐‘ฅโˆ’1 ๐‘ฅ+2 ๐๐ž๐š๐œ๐ก๐ญ๐ž Vielfachheiten, โ„‚ โˆ’ Nullstellen

6/15/2014

Linus Metzler

2|9

1.6 Improper Integrals The improper integral of an integrable function ๐‘“ on (๐‘Ž, ๐‘) which is integrable on any subinterval [๐‘Žโ€ฒ , ๐‘โ€ฒ ]. We define ๐‘โ€ฒ

๐‘

the improper integral โˆซ๐‘Ž ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ โ‰” lim lim โˆซ๐‘Žโ€ฒ ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ . โ€ฒ โ€ฒ ๐‘Ž โ†˜๐‘Ž ๐‘ โ†—๐‘

Facts ๐‘Ž 1โˆ’๐‘ 

= { ๐‘ โˆ’1 , ๐‘  > 1 โˆž, ๐‘  โ‰ค 1 โˆž 2. If ๐‘“ is on [๐‘Ž, โˆž) continuous and โˆƒ๐‘ and ๐‘  > 1 so that |๐‘“(๐‘ฅ)| โ‰ค ๐‘/๐‘ฅ ๐‘  โˆ€๐‘ฅ โ‰ฅ ๐‘Ž, then โˆซ๐‘Ž ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ converges 1. โˆ€๐‘  โˆˆ โ„, ๐‘Ž > 0,

โˆž ๐‘‘๐‘ฅ โˆซ๐‘Ž ๐‘ฅ ๐‘ 

โˆž

3. If ๐‘“ is in [๐‘Ž, โˆž) continuous and โˆƒ๐‘ > 0 such that ๐‘“(๐‘ฅ) โ‰ฅ ๐‘/๐‘ฅ, โˆ€๐‘ฅ โ‰ฅ ๐‘Ž, then โˆซ๐‘Ž ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ diverges to โˆž.

1.7 Examples 1.7.1 -

Examples BP 2013 2 โˆš1+ln ๐‘ฅ

โˆซ1

๐‘ฅ

๐‘‘๐‘ฅ ๐‘ข = 1 + ln ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ข = ๐‘ฅ 2 1+ln 2 ๐‘ข3/2 โˆš1 + ln ๐‘ฅ โˆซ ๐‘‘๐‘ฅ = โˆซ ๐‘ข1/2 ๐‘‘๐‘ข = ๐‘“๐‘Ÿ๐‘œ๐‘š 1 ๐‘ก๐‘œ1 + ln 2 ๐‘ฅ 3/2 1 1

-

โˆซ cos ๐‘ฅ cosh ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ข = cos ๐‘ฅ ๐‘ขโ€ฒ = โˆ’ sin ๐‘ฅ ๐‘ข

๐‘ฃ โ€ฒ = cosh ๐‘ฅ ๐‘ฃ = sinh ๐‘ฅ ๐‘ฃโ€ฒ

โž ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘ข๐‘ฃ โˆ’ โˆซ ๐‘ฃ๐‘ขโ€ฒ (cos ๐‘ฅ ) cosh ๐ผ=โˆซ โž ๐‘ข

๐‘ฃโ€ฒ

โž ๐‘ฅ ๐‘‘๐‘ฅ (๐‘ ๐‘–๐‘› ๐‘ฅ) ๐‘ ๐‘–๐‘›โ„Ž = (cos ๐‘ฅ )(cosh ๐‘ฅ ) + โˆซ โž = cos ๐‘ฅ cosh ๐‘ฅ + [sin ๐‘ฅ cosh ๐‘ฅ โˆ’ โˆซ cos ๐‘ฅ cosh ๐‘ฅ ๐‘‘๐‘ฅ]

-

1.7.2

1 ๐ผ = [cos ๐‘ฅ sinh ๐‘ฅ + sin ๐‘ฅ cosh ๐‘ฅ] + ๐ถ 2

๐‘ฅ 2โˆ’๐‘ฅ+2

โˆซ ๐‘ฅ 3โˆ’๐‘ฅ 2+๐‘ฅโˆ’1

๐‘ฅ 3 โˆ’ ๐‘ฅ 2 + ๐‘ฅ โˆ’ 1 = ๐‘ฅ 2 (๐‘ฅ โˆ’ 1) + (๐‘ฅ โˆ’ 1) = (๐‘ฅ โˆ’ 1)(๐‘ฅ 2 + 1) ๐‘ฅ2 โˆ’ ๐‘ฅ + 2 ๐ด ๐ต๐‘ฅ + ๐ถ โˆซ 3 = + 2 2 ๐‘ฅ โˆ’๐‘ฅ +๐‘ฅโˆ’1 ๐‘ฅโˆ’1 ๐‘ฅ +1 โ‡’ ๐ด(๐‘ฅ 2 + 1) + (๐ต๐‘ฅ + ๐ถ )(๐‘ฅ โˆ’ 1) = ๐‘ฅ 2 โˆ’ ๐‘ฅ + 2 ๐‘ฅ2 โˆ’ ๐‘ฅ + 2 1 1 โ‡’ ๐ด = 1, ๐ถ = โˆ’1, ๐ต = 0; โˆซ 3 =โˆซ โˆ’ 2 ๐‘‘๐‘ฅ 2 ๐‘ฅ โˆ’๐‘ฅ +๐‘ฅโˆ’1 ๐‘ฅโˆ’1 ๐‘ฅ +1 = ln ๐‘ฅ โˆ’ 1 โˆ’ tanโˆ’1 ๐‘ฅ + ๐ถ

Example Spring 2010 โˆž

Untersuche, ob das untere Integral โˆซ โˆž

1

๐‘ฅ2

1 ๐‘‘๐‘ฅ konvergiert. +๐‘ฅ

โˆž 1 1 2 2 โˆ’๐‘ฅ + ๐‘ฅ โ‰ฅ ๐‘ฅ โ†’ โˆซ 2 โ‰ค โˆซ 2 ๐‘‘๐‘ฅ โ†’ converges 1 ๐‘ฅ +๐‘ฅ 1 ๐‘ฅ or ๐‘ ๐‘ 1 1 1 lim โˆซ ๐‘‘๐‘ฅ = lim โˆซ โˆ’ ๐‘‘๐‘ฅ = lim[ln|๐‘ฅ| โˆ’ ln|๐‘ฅ + 1|]๐‘ ๐‘โ†’โˆž 1 ๐‘ฅ(๐‘ฅ + 1) ๐‘ฅ+1 1 ๐‘ฅ ๐‘ฅ ๐‘ ๐‘ 1 | = lim ln = lim ln | โˆ’ ln = ln 2 ๐‘โ†’โˆž ๐‘ฅ + 1 1 ๐‘โ†’โˆž ๐‘ + 1 2

1.8 Additional Wisdom ๏€ญ

From http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign:

6/15/2014

Linus Metzler

3|9

โ€บ โ€บ ๏€ญ ๏€ญ

๐‘

๐œ• ๐œ•๐‘

๐œ•

๐‘

(โˆซ๐‘Ž ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ ) = ๐‘“(๐‘), (โˆซ๐‘Ž ๐‘“ (๐‘ฅ) ๐‘‘๐‘ฅ ) = โˆ’๐‘“ (๐‘Ž) ๐œ•๐‘Ž ๐‘

๐‘‘๐œ‘

๐‘ ๐œ•

๐œ‘(๐›ผ ) โ‰” โˆซ๐‘Ž ๐‘“(๐‘ฅ, ๐›ผ ) ๐‘‘๐‘ฅ , ๐‘‘๐›ผ = โˆซ๐‘Ž ๐‘› ๐‘›

๐œ•๐›ผ

๐œ•๐‘

๐œ•๐‘Ž

๐‘“(๐‘ฅ, ๐›ผ ) ๐‘‘๐‘ฅ + ๐‘“ (๐‘, ๐›ผ ) ๐œ•๐›ผ โˆ’ ๐‘“ (๐‘Ž, ๐›ผ ) ๐œ•๐›ผ (Leibniz)

๐‘›! โ‰ˆ โˆš(2๐œ‹๐‘›) ( ๐‘’ ) (Stirling) Solids of revolution ๐‘

โ€บ

when integrating parallel to the axis of revolution: ๐‘‰ = ๐œ‹ โˆซ๐‘Ž ๐‘“ 2 (๐‘ฅ) ๐‘‘๐‘ฅ

โ€บ

when integrating perpendicular to the axis of revolution: ๐‘‰ = 2๐œ‹ โˆซ๐‘Ž ๐‘ฅ |๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ

๐‘

2 Differential Equations 2.1 Linear differential equations with constant coefficients To solve a linear differential equations of the form ๐ฟ๐‘ฆ โ€ฒ = ๐‘(๐‘ฅ) where ๐ฟ โ‰”

๐‘‘๐‘› ๐‘‘๐‘ฅ ๐‘›

+ ๐‘Ž๐‘›โˆ’1

๐‘‘๐‘›โˆ’1 ๐‘‘๐‘ฅ ๐‘›โˆ’1

+ โ‹ฏ + ๐‘Ž1

๐‘‘ ๐‘‘๐‘ฅ

+ ๐‘Ž0, ๐‘(๐‘ฅ) a

function, ๐‘Ž_๐‘– โˆˆ โ„. 1. Find a homogenous solution๐‘ฆ๐ป . Namely a solution of ๐ฟ๐‘ฆ = 0. 2. Find a special solution ๐‘ฆ๐‘† of ๐ฟ๐‘ฆ = ๐‘(๐‘ฅ) using the method of โ€œAnsatz vom Typ der rechten Seiteโ€. 3. The general solution is given by ๐‘ฆ = ๐‘ฆ๐ป + ๐‘ฆ๐‘†

2.1.1

Finding the homogeneous solution ๐‘ฆ๐ป of ๐ฟ๐‘ฆ = 0

1. Find the characteristic polynomial of ๐ฟ. Namely ๐‘ƒ๐ฟ (๐œ†) = ๐œ†๐‘› + ๐‘Ž๐‘›โˆ’1 ๐œ†๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž1 ๐œ† + ๐‘Ž0 2. Fact: if ๐œ†1 , โ€ฆ ๐œ†๐‘Ÿ โˆˆ โ„‚ are the pairwise distinct roots of ๐‘(๐œ†) = 0 with associated multiplicities ๐‘š1 , โ€ฆ , ๐‘š๐‘… , then the functions ๐‘ฅ โ†’ ๐‘ฅ ๐‘˜ ๐‘’ ๐œ†๐‘— ๐‘ฅ , 1 โ‰ค ๐‘— โ‰ค ๐‘Ÿ, 0 โ‰ค ๐‘˜ โ‰ค ๐‘š๐‘— form a system of fundamental solutions of the homogenous equation ๐ฟ๐‘ฆ = 0. Note: if ๐ฟ has real coffeicients, every pair of cimplex conjugate, non-ral roots ๐œ†๐‘— = ๐œ‡๐œ† ยฑ ๐‘–๐œˆ๐‘— of multiplicity ๐‘š๐‘— give a fundamental solution ๐‘ฅ ๐‘˜ ๐‘’ (๐œ‡๐‘— ยฑ๐‘–๐œˆ๐‘—)๐‘ฅ = ๐‘ฅ ๐‘˜ ๐‘’ ๐œ‡๐‘— (cos ๐œˆ๐‘— ๐‘ฅ ยฑ ๐‘– sin ๐œˆ๐‘— ๐‘ฅ) for 0 โ‰ค ๐‘˜ < ๐‘š๐‘— . So one can as a basis take ๐‘ฅ ๐‘˜ ๐‘’ ๐œ‡๐‘— ๐‘ฅ cos ๐œˆ๐‘— ๐‘ฅ and ๐‘ฅ ๐‘˜ ๐‘’ ๐œ‡๐‘— ๐‘ฅ sin ๐œˆ๐‘— ๐‘ฅ instead of ๐‘ฅ ๐‘˜ ๐‘’ (๐œ‡๐‘— +๐‘–๐œˆ๐‘—)๐‘ฅ and ๐‘ฅ ๐‘˜ ๐‘’ (๐œ‡๐‘— โˆ’๐‘–๐œˆ๐‘— )๐‘ฅ . Then the general homoge๐‘š

๐‘— nous solutions is of the form ๐‘ฆ๐ป (๐‘ฅ) = โˆ‘๐‘Ÿ๐‘—=1 โˆ‘๐‘˜=0 ๐‘๐‘—๐‘˜ ๐‘ฅ ๐‘˜ ๐‘’ ๐œ†๐‘— ๐‘ฅ with constants ๐‘๐‘—๐‘˜ .

2.1.2

How to find the special solution of ๐ฟ๐‘ฆ = ๐‘(๐‘ฅ ) using the method of โ€œAnsatzโ€

Facts 1. Let ๐œ† โˆˆ โ„‚. If ๐œ† is not a solution of ๐‘๐ฟ (๐œ†) =? ?, then the inhomongoues DGL ๐ฟ๐‘ฆ = ๐‘’ ๐œ†๐‘ฅ has particular solution ๐‘ฆ=๐‘

1

๐ฟ (๐œ†)

๐‘’ ๐œ†๐‘ฅ

2. Let ๐œ† โˆˆ โ„‚, ๐‘š its multiplicity as a solution of ๐‘๐ฟ(๐œ†) = 0 (๐‘š can be zero which means ๐œ† is not a solution of ๐‘๐ฟ (๐œ†) = 0). Let ๐‘„(๐‘ฅ) a polynomial of degree ๐‘˜. Then a particular solution of ๐ฟ๐‘ฆ(๐‘ฅ) = ๐‘„(๐‘ฅ)๐‘’ ๐œ†๐‘ฅ is of the form ๐‘ฆ(๐‘ฅ) = ๐‘… (๐‘ฅ)๐‘’ ๐œ†๐‘ฅ for a polynomial ๐‘… (๐‘ฅ) of degree ๐‘˜ + ๐‘š 3. If ๐ฟ has real coefficients. Let ๐œ‡, ๐œˆ โˆˆ โ„, ๐‘š the multiplicity of ๐œ‡ ยฑ ๐‘–๐œˆ as a solution of ๐‘๐ฟ (๐œ†) = 0 (๐‘š = 0 means ๐œ‡ ยฑ ๐‘–๐œˆ is a root of ๐‘๐ฟ ). Let ๐‘„(๐‘ฅ), ๐‘… (๐‘ฅ) be a polynomial of degreeโ‰ค ๐‘˜. The particular solution of the inhomogeneous DGL ๐ฟ๐‘ฆ = ๐‘„(๐‘ฅ)๐‘’ ๐œ‡๐‘ฅ cos ๐œˆ๐‘ฅ + ๐‘… (๐‘ฅ)๐‘’ ๐œ‡๐‘ฅ sin ๐‘ฅ is of the form ๐‘ฆ(๐‘ฅ) = ๐‘ (๐‘ฅ)๐‘’ ๐œ‡๐‘ฅ cos ๐œˆ๐‘ฅ + ๐‘‡(๐‘ฅ)๐‘’ ๐œ‡๐‘ฅ sin ๐‘ฅ for polynomials ๐‘†, ๐‘‡ of degree โ‰ค ๐‘˜ + ๐‘š

2.2 Boundary or initial value problems ๐‘ฆ(๐‘Ž1 ) = ๐ด1 ๐‘ฆ(0) = ๐ด1 ๐‘ฆ(๐‘Ž2 ) = ๐ด2 ๐‘ฆ โ€ฒ (0) = ๐ด2 When we are given a DGL ๐ฟ๐‘ฆ = ๐‘(๐‘ฅ) together with either boundary values or initial values , โ€ฆ โ€ฆ ๐‘›โˆ’1 (0) = ๐ด๐‘› ๐‘ฆ(๐‘Ž๐‘› ) = ๐ด๐‘› ๐‘ฆ we first find the general solution ๐‘ฆ = ๐‘ฆ๐ป + ๐‘ฆ๐‘† . Then we determine the constants ๐‘1 , โ€ฆ , ๐‘๐‘› in the homogenous solution using the given boundary/initial values.

2.3 Solving DGL by separation of variables Facts 6/15/2014

Linus Metzler

4|9

-

If ๐‘“: ฮฉ โ†’ โ„ is differentiable in ๐‘ฅ0 โˆˆ โ„, then the partial derivatives exists and the differential ๐‘‘๐‘“(๐‘ฅ0 ) has the matrix representation (

-

๐œ•๐‘“ ๐œ•๐‘ฅ โ€ฒ

(๐‘ฅ0 )

๐œ•๐‘“

โ€ฆ

๐œ•๐‘ฅ ๐‘›

(๐‘ฅ0 )) = โˆ‡๐‘“ the gradient of ๐‘“.

๐‘“ diff in ๐‘ฅ0 โŸน ๐‘“ is continous in ๐‘ฅ0 If all partial derivatives of ๐‘“ exists and continuous, then ๐‘“ is differentiable.

Using the last two facts and the definition of differentiability, one can study if a given is differentiable of not. Recipe ๐‘‘๐‘“(๐‘ฅ)

= ๐‘”(๐‘ฅ)โ„Ž(๐‘“(๐‘ฅ))

-

Sei die DG in der Form

-

Sei nun ๐‘ฆ = ๐‘“ (๐‘ฅ), dann

-

Falls โ„Ž(๐‘ฆ) โ‰  0, dann โ„Ž(๐‘ฆ) = ๐‘”(๐‘ฅ)๐‘‘๐‘ฅ

-

Alternative Notation: โ„Ž(๐‘ฆ) ๐‘‘๐‘ฅ = ๐‘”(๐‘ฅ)

-

werden nun beide Seiten nach x integriert, dann โˆซ โ„Ž(๐‘ฆ) ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ = โˆซ ๐‘”(๐‘ฅ) ๐‘‘๐‘ฅ โŸบ โˆซ โ„Ž(๐‘ฆ) ๐‘‘๐‘ฆ = โˆซ ๐‘”(๐‘ฅ) ๐‘‘๐‘ฅ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ

1

= ๐‘”(๐‘ฅ)โ„Ž(๐‘ฅ)

๐‘‘๐‘ฆ

1 ๐‘‘๐‘ฆ

1

2.4 Examples 2.4.1

Example Spring 2011

a) Bestimme alle Lรถsungen ๐‘ฆ = ๐‘ฆ(๐‘ฅ) der DGL ๐‘ฆ (4) โˆ’ ๐‘ฆ = 0 welche fรผr |๐‘ฅ| โ†’ โˆž beschrรคnkt bleiben. ๐ถโ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘ ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™: ๐‘ฅ 4 โˆ’ 1 = 0 โ‡” (๐‘ฅ 2 โˆ’ 1)(๐‘ฅ 2 + 1) = 0 ๐œ† = ยฑ1 โ†’ ๐‘’ ๐‘ฅ , ๐‘’ โˆ’๐‘ฅ โ‡’ ๐œ† = ยฑ๐‘– โ†’ cos ๐‘ฅ , sin ๐‘ฅ ๐‘ฆ๐ป (๐‘ฅ) = ๐‘1 ๐‘’ ๐‘ฅ + ๐‘2โˆ’๐‘ฅ + ๐‘3 cos ๐‘ฅ + ๐‘4 sin ๐‘ฅ The solutions that remain bounded as |๐‘ฅ| โ†’ โˆž are of the form ๐‘3 cos ๐‘ฅ + ๐‘4 sin ๐‘ฅ b) Bestimme eine Lรถsung ๐‘ฆ = ๐‘ฆ(๐‘ฅ) der DGL ๐‘ฆ (4) โˆ’ ๐‘ฆ = ๐‘’ โˆ’๐‘ฅ + ๐‘ฅ ๐‘ฆ 4 โˆ’ ๐‘ฆ = ๐‘’ โˆ’๐‘ฅ โ†’ ๐‘ฆ๐‘1 ๐‘ฆ 4 โˆ’ ๐‘ฆ = ๐‘ฅ โ†’ ๐‘ฆ๐‘2 Superposition: ๐‘ฆ๐‘ = ๐‘ฆ๐‘1 + ๐‘ฆ๐‘2 (๐‘ฅ) ๐‘ฆ = ๐‘1 ๐‘’ ๐‘ฅ + ๐‘2 ๐‘’ โˆ’๐‘ฅ + โ‹ฏ + ๐‘ฬƒ ๐‘ฆ๐‘1 = ๐ถ๐‘ฅ๐‘’ โˆ’๐‘ฅ and ๐‘ฆ๐‘2 = ๐ท๐‘ฅ + ๐ธ Try ๐‘ฆ๐‘ = ๐ถ๐‘ฅ๐‘’ โˆ’๐‘ฅ + ๐ท๐‘ฅ + ๐ธ, put this in ๐‘ฆ4 โˆ’ ๐‘ฆ = ๐‘’ ๐‘ฅ + ๐‘ฅ (4) ๐‘ฆ๐‘ (๐‘ฅ) = ๐ถ[โˆ’4๐‘’ โˆ’๐‘ฅ + ๐‘ฅ๐‘’ โˆ’๐‘ฅ ] (4) ๐‘ฆ๐‘ (๐‘ฅ) โˆ’ ๐‘ฆ๐‘ (๐‘ฅ) = ๐ถ[โˆ’4๐‘’ โˆ’๐‘ฅ + ๐‘ฅ๐‘’ โˆ’๐‘ฅ ] โˆ’ [๐ถ๐‘ฅ๐‘’ โˆ’๐‘ฅ + ๐ท๐‘ฅ + ๐ธ] = ๐‘’ โˆ’๐‘ฅ + ๐‘ฅ 1 โ‡’ ๐‘ = , ๐ท = โˆ’1 4

2.4.2

Example Summer 2013

a) Fรผr welche Werte des Paramaters ๐‘Ž โˆˆ โ„ strebt die allgemeine Lรถsung der DGL ๐‘ฆ โ€ฒโ€ฒ + 2๐‘ฆ โ€ฒ + ๐‘Ž๐‘ฆ = 0 unabhรคngig von den Anfangsbedingungen gegen 0 fรผr ๐‘ฅ โ†’ โˆž? โˆ’2 ยฑ โˆš4 โˆ’ 4๐‘Ž ๐œ†2 + 2๐œ† + ๐‘Ž = 0 โ‡’ ๐œ†1,2 = = โˆ’1 ยฑ โˆš1 โˆ’ ๐‘Ž 2 For 1 โˆ’ ๐‘Ž < 0: there are 2 complex conjugate roots. Let |1 โˆ’ ๐‘Ž| = ๐‘2 . ๐‘‡โ„Ž๐‘’๐‘› โˆ’ 1 ยฑ ๐‘๐‘– โ†’ ๐‘1 ๐‘’ ๐‘ฅ cos ๐‘๐‘ฅ + ๐‘2 ๐‘’ โˆ’๐‘ฅ sin ๐‘๐‘ฅ โ†’ 0 as ๐‘ฅ โ†’ โˆž For 1 โˆ’ ๐‘Ž = 0: (โˆ’1) is a double root. The solution c1 ๐‘’ โˆ’๐‘ฅ + ๐‘2 ๐‘’ โˆ’๐‘ฅ ๐‘ฅ โ†’ 0 independeant of the initial conditions. For 1 โˆ’ ๐‘Ž > 0: then one of the roots will be positive ๐ข๐Ÿ โˆš1 โˆ’ ๐‘Ž > 1. That will lead to ๐œ† = โˆ’1 + โˆš1 โˆ’ ๐‘Ž > 0 which leads to a growing solution. We do not want 1 โˆ’ ๐‘Ž > 1 or ๐‘Ž < 0. ๐ˆ๐Ÿ โˆš1 โˆ’ ๐‘Ž < 1 then ๐œ†1,2 < 0 b) Finden Sie eine homogene DGL 2. Ordnunug mit konstanten Koeffizienten, deren allgemeine Lรถsung ๐‘ฆ(๐‘ฅ) = ๐‘’ โˆ’๐‘ฅ + 2๐‘ฅ๐‘’ โˆ’๐‘ฅ ist. Was sind dann die Anfangsbedingungen bei ๐‘ฅ = 0? ๐‘ฆ = ๐‘’ โˆ’๐‘ฅ + 2๐‘ฅ๐‘’ โˆ’๐‘ฅ 6/15/2014

Linus Metzler

5|9

We are looking for a 2nd DGL. By looking at the equation, you can see that ๐œ† = โˆ’1 with multiplicity 2 (i. e. double root of the char. pol. ). โ†’ (๐œ† + 1)2 = ๐œ†2 + 2๐œ† + 1 โ€ฒโ€ฒ โ€ฒ ๐‘ฆ + 2๐‘ฆ + ๐‘ฆ = 0 + initial values โ‡’ ๐‘1 = 1, ๐‘2 = 2 ๐‘ฆโŸ = ๐‘1 ๐‘’ โˆ’๐‘ฅ + ๐‘2 ๐‘ฅ๐‘’ โˆ’๐‘ฅ ๐บ๐ป ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘™ โ„Ž๐‘œ๐‘š๐‘œ๐‘”๐‘’๐‘›๐‘œ๐‘ข๐‘  ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› โˆ’0 โ€ฒ( ) ( )

๐‘ฆ 0 =๐‘’

2.4.3

= 1 ๐‘Ž๐‘›๐‘‘ ๐‘ฆ 0 = โˆ’๐‘’ โˆ’๐‘ฅ + 2[๐‘’ โˆ’๐‘ฅ โˆ’ ๐‘ฅ๐‘’ โˆ’๐‘ฅ ] for ๐‘ฅ = 0 โ†’ = 1

Example Spring 2011 Bestimme die Lรถsung ๐‘ฆ = ๐‘ฆ(๐‘ฅ) der DGL ๐‘ฆ โ€ฒ = ๐‘’ ๐‘ฅโˆ’๐‘ฆ mit ๐‘ฆ(0) = 0 ๐‘’๐‘ฅ โ‡’ ๐‘ฆ โ€ฒ = ๐‘ฆ โ‡’ ๐‘‘๐‘ฆ๐‘’ ๐‘ฆ = ๐‘’ ๐‘ฅ ๐‘‘๐‘ฅ โ‡’ โˆซ ๐‘’ ๐‘ฆ ๐‘‘๐‘ฆ = โˆซ ๐‘’ ๐‘ฅ ๐‘‘๐‘ฅ โ‡’ ๐‘’ ๐‘ฆ = ๐‘’ ๐‘ฅ + ๐‘ ๐‘’ ๐‘ฆ = ln ๐‘’ ๐‘ฅ + ๐‘ 0 = ๐‘ฆ(0) = ln ๐‘’ 0 + ๐‘ = ln 1 + ๐‘ โ‡’ ๐‘ = 0

3 Differentiation in โ„๐‘› A function ๐‘“: ฮฉ โŠ‚ โ„๐‘› โ†’ โ„ is differentiable in ๐‘ฅ0 if there exists a linear map ๐ด: โ„๐‘› โ†’ โ„ such that ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฅ โˆ’ ๐‘ฅ0 ) + ๐‘…(๐‘ฅ,๐‘ฅ0) ๐‘ฅโ†’๐‘ฅ0 |๐‘ฅโˆ’๐‘ฅ0|

๐ด(๐‘ฅ โˆ’ ๐‘ฅ๐‘œ ) + ๐‘…(๐‘ฅ, ๐‘ฅ0 ) where lim

= 0. In this case ๐ด is called the differential of ๐‘“ at ๐‘ฅ0 and it is dented by

(๐‘‘๐‘“)(๐‘ฅ0 ). Let (๐ด1 , ๐ด2 , โ€ฆ , ๐ด๐‘› ) be a matrix representation of the linear map ๐ด: โ„๐‘› โ†’ โ„. The ๐‘“ differentiable at ๐‘ฅ0 means ๐‘“(๐‘ฅ) = ๐‘“ (๐‘ฅ0 ) + ๐ด1 (๐‘ฅ1 โˆ’ ๐‘ฅ01 ) + ๐ด2 (๐‘ฅ 2 โˆ’ ๐‘ฅ02 ) + โ‹ฏ + ๐ด๐‘› (๐‘ฅ ๐‘› โˆ’ ๐‘ฅ0๐‘› ) + ๐‘… (๐‘ฅ, ๐‘ฅ0 ). ๐œ•๐‘“

A partial derivative is defined as ๐œ•๐‘Ž (๐‘Žโƒ‘) โ‰” lim

๐‘“(๐‘Ž1,..,๐‘Ž๐‘–โˆ’1,๐‘Ž๐‘–+โ„Ž,๐‘Ž๐‘–+1 ,โ€ฆ,๐‘Ž๐‘›)โˆ’๐‘“(๐‘Ž1,โ€ฆ,๐‘Ž๐‘–,โ€ฆ,๐‘Ž๐‘›) โ„Ž

โ„Žโ†’0

๐‘–

Fact Let โ„Ž (๐‘ , ๐‘ก) be a continuously differentiable function of two variables and ๐‘(๐‘ก) a differentiable function of one ๐‘(๐‘ก)

variable. Define ๐‘ข(๐‘ก) โ‰” โˆซ๐‘Ž

๐‘(๐‘ก) ๐œ•โ„Ž

โ„Ž(๐‘ , ๐‘ก) ๐‘‘๐‘ . Then ๐‘ข is diffenetbale and ๐‘ขโ€ฒ (๐‘ก) = โ„Ž(๐‘(๐‘ก), ๐‘ก) โ‹… ๐‘โ€ฒ ๐‘ก(๐‘ก) + โˆซ๐‘Ž

๐œ•๐‘ก

(๐‘ , ๐‘ก) ๐‘‘? ?

๐‘

In particular if ๐‘ข(๐‘ก) is defined as a definite integral of โ„Ž (๐‘ , ๐‘ก) in the variable ๐‘ , ๐‘ข(๐‘ก) โ‰” โˆซ๐‘Ž โ„Ž (๐‘ , ๐‘ก) ๐‘‘๐‘ , then ๐‘ข is differentiable and one can interchange the order of differentiation and integration. That is ๐‘ ๐œ•

โˆซ๐‘Ž

๐œ•๐‘ก

๐‘‘ ๐‘‘๐‘ก

๐‘ข(๐‘ก) =

๐‘‘ ๐‘ โˆซ โ„Ž(๐‘ , ๐‘ก) ๐‘‘๐‘ก ๐‘Ž

๐‘‘๐‘  =

โ„Ž(๐‘ , ๐‘ก) ๐‘‘๐‘ .

3.1 Differentiation rules Let ๐‘“, ๐‘”: ฮฉ โ†’ โ„ differentiable in ๐‘ฅ0 . Then: 1. ๐‘‘(๐‘“ ยฑ ๐‘”)(๐‘ฅ0 ) = ๐‘‘๐‘“(๐‘ฅ0 ) + ๐‘‘๐‘”(๐‘ฅ0 ) 2. ๐‘‘(๐‘“๐‘”)(๐‘ฅ0 ) = ๐‘”(๐‘ฅ0 )๐‘‘๐‘“(๐‘ฅ0 ) + ๐‘“(๐‘ฅ0 )๐‘‘๐‘”(๐‘ฅ0 ) 3. If ๐‘”(๐‘ฅ0 ) โ‰  0 then ๐‘‘(๐‘“/๐‘”)(๐‘ฅ0 ) =

๐‘”(๐‘ฅ0)๐‘“๐‘‘(๐‘ฅ0)โˆ’๐‘“(๐‘ฅ0)๐‘‘๐‘”(๐‘ฅ0) (๐‘”(๐‘ฅ0))

2

4. Let โ„Ž: โ„ โ†’ โ„ be differentiable in ๐‘”(๐‘ฅ0 ). Then ๐‘‘(โ„Ž โˆ˜ ๐‘”)(๐‘ฅ0 ) = โ„Ž โ€ฒ (๐‘”(๐‘ฅ0 )) โ‹… ๐‘‘๐‘”(๐‘ฅ0 ) 5. Let ๐ป: ๐ผ โŠ‚ โ„ โ†’ ฮฉ โŠ‚ โ„๐‘› be differentiable in ๐‘ฅ0 โˆˆ ๐ผ and ๐‘“: ฮฉ โ†’ โ„ differentiable in ๐ป (๐‘ก0 ). Then

๐‘‘ ๐‘‘๐‘ก

(๐‘“ โˆ˜

๐ป)(๐‘ก0 ) = ๐‘‘๐‘“(๐ป(๐‘ก0 )) โ‹… ๐ปโ€ฒ (๐‘ก0 ) where ๐ป(๐‘ก) = (๐ป1 (๐‘ก), ๐ป2 (๐‘ก), โ€ฆ , ๐ป๐‘› (๐‘ก)), ๐ปโ€ฒ(๐‘ก) = (๐ป1โ€ฒ (๐‘ก), ๐ป2โ€ฒ (๐‘ก), โ€ฆ , ๐ป๐‘›โ€ฒ (๐‘ก))

3.2 Directional derivative The directional derivative of ๐‘“ is in the direction of a unit vector ๐‘’ โˆˆ โ„๐‘› โˆ’ {0} is given by ๐‘‘๐‘’ ๐‘“(๐‘ฅ0 ) = โˆ‡๐‘“ (๐‘ฅ0 ) โ‹… ๐‘’โƒ‘.

3.3 Higher partial derivatives One can similarly define higher order partial derivatives for functions ๐‘“ โˆˆ ๐ถ ๐‘š (ฮฉ). Fact (Schwarz) If ๐‘“ โˆˆ ๐ถ 2 (ฮฉ) then

๐œ•2 ๐‘“ ๐œ•๐‘ฅ ๐‘–๐‘ฅ ๐‘—

=

๐œ•2 ๐‘“ ๐œ•๐‘ฅ ๐‘—๐‘ฅ ๐‘–

and in general for ๐‘“ โˆˆ ๐ถ^๐‘š(ฮฉ), all partial derivatives of order โ‰ค ๐‘š are

independent of the order of differentiation. Using higher order derivatives one can analogous to the 1-dimensional case define a Taylor approximation of ๐‘“. 6/15/2014

Linus Metzler

6|9

๐œ•2 ๐‘“

1

Fact Let ๐‘“ โˆˆ ๐ถ ๐‘š (ฮฉ), ๐‘“: ฮฉ โ†’ โ„, ฮฉ โˆˆ โ„, ๐‘ฅ0 , ๐‘ฅ1 โˆˆ ฮฉ. Then ๐‘“(๐‘ฅ1 ) = ๐‘“(๐‘ฅ0 ) + โˆ‡๐‘“(๐‘ฅ0 )(๐‘ฅ1 โˆ’ ๐‘ฅ0 ) + 2 โˆ‘2๐‘–,๐‘—=1 ๐œ•๐‘ฅ ๐‘–๐‘ฅ ๐‘— (๐‘ฅ0 )(๐‘ฅ1๐‘– โˆ’ ๐‘…(๐‘“,๐‘ฅ1,๐‘ฅ0) ๐‘ฅ1 โ†’๐‘ฅ0 โ€–๐‘ฅ1โˆ’๐‘ฅ0โ€–

๐‘ฅ0๐‘– )(๐‘ฅ1๐‘— โˆ’ ๐‘ฅ0๐‘— ) + ๐‘… (๐‘“, ๐‘ฅ1 , ๐‘ฅ0 ) where lim

โ†’ 0.

The analog of the second derivative is given by the matrix of partial derivatives of order 2. The matrix is called the Hesse matrix of ๐‘“. ๐œ•2๐‘“ Hess ๐‘“ โ‰” โˆ‡2 ๐‘“ โ‰” ( ๐‘– ๐‘— ) ๐œ•๐‘ฅ ๐‘ฅ ๐‘–,๐‘—=1โ€ฆ๐‘›

3.4 The extrema of a function ๐‘“: ฮฉ. โ†’ โ„ Definition A point ๐‘ฅ โˆˆ ฮฉ is called a critical point if โˆ‡๐‘“(๐‘ฅ) = 0 Fact If ๐‘“ is differentiable and ๐‘ฅ0 is a local extrema of ๐‘“, then ๐‘ฅ0 is a critical point. Fact Let ๐‘ฅ0 be a critical point of ๐‘“. Then we have 1. ๐‘ฅ0 is a local minimum if โˆ‡2 ๐‘“(๐‘ฅ0 ) is positive definite 2. ๐‘ฅ0 is a local maximum if โˆ‡2 ๐‘“(๐‘ฅ0 ) is negative definite 3. Otherwise ๐‘ฅ0 is a saddle point To find extrema of ๐‘“ on a region ฮฉ. 1. Find critical points โ‡’ โˆ‡๐‘“ = 0, ๐‘ฅ0 is a critical point 2. Check the nature of critical points by Hess(๐‘“)(๐‘ฅ0 ) 3. Check the critical points that arise from here

๐œ•2๐‘“ (๐‘ฅ)) ๐ป๐‘“ (๐‘ฅ) โ‰” ( ๐œ•๐‘ฅ๐‘– ๐œ•๐‘ฅ๐‘—

๐‘–,๐‘—=1,โ€ฆ,๐‘›

๐œ•2๐‘“ (๐‘ฅ)) Falls 2D: ๐ป๐‘“ (๐‘ฅ) โ‰” ( ๐œ•๐‘ฅ๐œ•๐‘ฆ

๐œ•2๐‘“ ๐œ•2๐‘“ (๐‘ฅ) (๐‘ฅ) ๐œ•๐‘ฅ1 ๐œ•๐‘ฅ1 ๐œ•๐‘ฅ1 ๐œ•๐‘ฅ2 ๐œ•2๐‘“ ๐œ•2๐‘“ ( ) = ๐œ•๐‘ฅ2 ๐œ•๐‘ฅ1 ๐‘ฅ ๐œ•๐‘ฅ2 ๐œ•๐‘ฅ2 (๐‘ฅ) โ‹ฎ โ‹ฎ ๐œ•2๐‘“ ๐œ•2๐‘“ (๐‘ฅ) (๐‘ฅ) ( ๐œ•๐‘ฅ๐‘› ๐œ•๐‘ฅ1 ๐œ•๐‘ฅ๐‘› ๐œ•2

๐‘–,๐‘—=1,โ€ฆ,๐‘›

๐œ•2๐‘“ (๐‘ฅ) ๐œ•๐‘ฅ1 ๐œ•๐‘ฅ๐‘› ๐œ•2๐‘“ (๐‘ฅ) โ‹ฏ ๐œ•๐‘ฅ2 ๐œ•๐‘ฅ๐‘› โ‹ฑ โ‹ฎ ๐œ•2๐‘“ (๐‘ฅ) โ‹ฏ )๐‘›ร—๐‘› ๐œ•๐‘ฅ๐‘› ๐œ•๐‘ฅ๐‘› โ‹ฏ

๐œ•2๐‘“ ๐œ• 2๐‘“ (๐‘ฅ) (๐‘ฅ) ๐œ•๐‘ฅ๐œ•๐‘ฅ ๐œ•๐‘ฅ๐œ•๐‘ฆ = ๐œ•2๐‘“ ๐œ• 2๐‘“ (๐‘ฅ) (๐‘ฅ) ๐œ•๐‘ฆ๐œ•๐‘ฆ ( ๐œ•๐‘ฆ๐œ•๐‘ฅ )2ร—2

Fact Let ๐‘“: ฮฉ โ†’ โ„ be continours and differentiable on an open set ฮฉ โŠ‚ โ„๐‘› . Let ๐œ•ฮฉ be the boundary of ฮฉ. Then every global extrema of ๐‘“ is either a critical point of ๐‘“ in ฮฉ or a global extramal point of ๐‘“|๐œ•๐‘ฅ .

3.5 Line integral Let ๐‘ฃ: ฮฉ โ†’ โ„๐‘› be a vector field and ๐›พ a curve with parameterization ๐›พ: [๐‘Ž, ๐‘] โ†’ ฮฉ, ๐‘ก โ†’ ๐›พ (๐‘ก). Then the line integral of ๐‘ ๐‘ฃ along ๐›พ is deinfed as โˆซ ๐‘ฃ โ‹… โƒ‘โƒ‘โƒ‘โƒ‘โƒ‘ ๐‘‘๐‘  โ‰” โˆซ โŒฉ๐‘ฃ(๐›พ(๐‘ก)), ๐›พ โ€ฒ (๐‘ก)โŒช ๐‘‘๐‘ก. ๐›พ

๐‘Ž

Facts 1. โˆซ๐›พ๐‘ฃ ๐‘‘๐‘  is independent of the parameterization of the path 2. โˆซ๐›พ +๐›พ ๐‘ฃ ๐‘‘๐‘  = โˆซ๐›พ ๐‘ฃ ๐‘‘๐‘  + โˆซ๐›พ ๐‘ฃ ๐‘‘๐‘  1 2 1 2 3. โˆซ๐›พ๐‘ฃ ๐‘‘๐‘  = โˆ’ โˆซโˆ’๐›พ๐‘ฃ ๐‘‘๐‘ , where โ€“ ๐›พ is the same path as ๐›พ in opposite direction 4. If ๐‘ฃ is the gradient vector field assiicated toi a function ๐‘“ i.e. ๐‘ฃ = ๐‘‘๐‘“, then โˆซ๐›พ๐‘ฃ ๐‘‘๐‘  = ๐‘“(๐›พ(๐‘)) โˆ’ ๐‘“(๐›พ(๐‘Ž)), ๐›พ: [๐‘Ž, ๐‘] โ†’ ฮฉ

6/15/2014

Linus Metzler

7|9

Equivalent once can write everything in terms of 1 forms: ๐œ† = ๐œ†1 ๐‘‘๐‘ฅ1 + ๐œ†2 ๐‘‘๐‘ฅ 2 + โ‹ฏ + ๐œ†๐‘› ๐‘‘๐‘ฅ ๐‘› then โˆซ๐›พ๐œ† = ๐‘

โˆซ๐‘Ž ๐œ†(๐›พ(๐‘ก)) โ‹… ๐›พ โ€ฒ (๐‘ก) ๐‘‘๐‘ก Facts ๐œ†: ฮฉ โ†’ ๐ฟ (โ„๐‘› โ†’ โ„) a continuous 1 forms, then the following are equivalent 1. โˆƒ๐‘“ โˆˆ ๐ถ 1 (ฮฉ) st ๐‘‘๐‘“ = ๐œ† 2. For every two continuous ๐ถ 1 paths ๐›พ1 , ๐›พ2 with the same beginning and end points: โˆซ๐›พ ๐œ† = โˆซ๐›พ ๐œ† 1

2

3. For every closed curve ๐›พ, โˆซ๐›พ๐œ† = 0 Definition A vector field ๐‘ฃ: ฮฉ โ†’ โ„๐‘› is called conservative if โˆซ๐›พ ๐‘ฃ ๐‘‘๐‘  = 0 for all closed curves ๐›พ. Fact For a simply connected region ฮฉ, we have: ๐‘ฃ conservative โŸบ ๐‘ฃ = โˆ‡๐‘“ for some function ๐‘“. ๐๐ข๐ฏ, ๐ซ๐จ๐ญ, โ€ฆ ๏€ญ

div ๐พ โ‰” โˆ‡ โ‹… ๐พ =

๐œ•๐พ1 ๐œ•๐‘ฅ

+

๐œ•๐พ2 ๐œ•๐‘ฆ

+

๐œ•๐พ3 ๐œ•๐‘ง ๐œ•๐‘“

๏€ญ

๐œ•๐‘“

๐œ•๐‘“

grad ๐‘“ โˆถ= โˆ‡๐‘“ = (๐œ•๐‘ฅ 1 (๐‘ฅ0 ), โ€ฆ , ๐œ•๐‘ฅ ๐‘› (๐‘ฅ0 )) , in 3D:

๐œ•๐‘ฅ ๐œ•๐‘“ ๐œ•๐‘ฆ ๐œ•๐‘“

( ๐œ•๐‘ง ) ๐œ•๐พ3

๏€ญ ๏€ญ ๏€ญ ๏€ญ ๏€ญ ๏€ญ

rot ๐พ โ‰” โˆ‡ ร— ๐พ =

๐œ•๐‘ฆ ๐œ•๐พ1 ๐œ•๐‘ง ๐œ•๐พ2

โˆ’ โˆ’ โˆ’

๐œ•๐พ2 ๐œ•๐‘ง ๐œ•๐พ3 ๐œ•๐‘ฅ ๐œ•๐พ1

๐œ•๐‘ฆ ) ( ๐œ•๐‘ฅ div(๐‘“๐พ) = โˆ‡๐‘“ โ‹… ๐พ + ๐‘“ โ‹… div ๐พ div(๐พ ร— ๐ฟ) = ๐ฟ โ‹… rot ๐พ โˆ’ ๐พ โ‹… rot ๐ฟ 0 rot(grad ๐‘“) = (0) 0 div(rot ๐พ) = 0 div(๐‘“ โ‹… rot ๐พ) = grad ๐‘“ โ‹… rot ๐พ

3.6 Additional Wisdom ๏€ญ

๐‘‘

๐‘“(๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก)) = ๐‘‘๐‘“(๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก)) โ‹… ( ๐‘‘๐‘ก

๐‘ฅ โ€ฒ (๐‘ก) ๐œ•๐‘“ ๐œ•๐‘“ โ€ฒ โ€ฒ โ€ฒ ( )) = ๐œ•๐‘ฅ (๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก)) โ‹… ๐‘ฅ (๐‘ก) + ๐œ•๐‘ฆ (๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก)) โ‹… ๐‘ฆ (๐‘ก) (chain rule) ๐‘ฆ ๐‘ก

4 Integration in โ„๐‘› The Riemann integral in โ„๐‘› is constructed in an analog way to the case ๐‘› = 1 with Riemann sums over subintervals replaced with sums over โ€œsubrectanglesโ€, with ๐‘‘๐‘ฅ replaced with a ๐‘›-ddimensional volume element d๐‘ฃ๐‘œ๐‘™๐‘› which we denote either by d๐‘ฃ๐‘œ๐‘™๐‘› or ๐‘‘๐œ‡(๐‘ฅโƒ‘ ). ๐‘

๐‘‘

๐‘‘

๐‘

Fact For a rectangle ๐‘„ = [๐‘Ž, ๐‘] ร— [๐‘, ๐‘‘] โˆˆ โ„2 : โˆซ๐‘„ ๐‘“ ๐‘‘๐œ‡ = โˆซ๐‘Ž โˆซ๐‘ ๐‘“ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = โˆซ๐‘ โˆซ๐‘Ž ๐‘“ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ. Fubini โˆซ๐ฝ ๐น (๐‘ก)๐‘‘๐‘ก = โˆซ๐ฝ โˆซ๐ผ ๐‘“(๐‘ฅ, ๐‘ฆ) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ = โˆซ๐ผ โˆซ๐ฝ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ๐‘‘๐‘ฅ = โˆซ๐ผร—๐ฝ ๐‘“(๐‘ฅ, ๐‘ฆ) ๐‘‘(๐‘ฅ, ๐‘ฆ)

4.1 Substitution in โ„๐‘› Let ๐‘ข, ๐‘ฃ โˆˆ โ„๐‘› open, ฮฆ: ๐‘ข โ†’ ๐‘ฃ bijective with det ฮฆ โ‰  0 โˆ€โˆˆ ๐‘ขฬƒ. Then for ๐‘“ = ๐‘ฃ โ†’ โ„ continuous we have โˆซ๐‘ฃ ๐‘“ (๐‘ฅโƒ‘ )๐‘‘๐œ‡(๐‘ฅโƒ‘) = โˆซ๐‘ข ๐‘“(ฮฆ(๐‘ฆ))|det(๐‘‘ฮฆ(๐‘ฆ))|๐‘‘๐œ‡(๐‘ฆโƒ‘)

6/15/2014

Linus Metzler

8|9

4.2 Greenโ€™s theorem Let ฮฉ โŠ‚ โ„2 whose boundary ๐œ•ฮฉ has a ๐ถ 1 parameterization. Let ๐‘ˆ โŠ‚ ฮฉ and ๐‘“ = ๐œ•๐‘„

๐œ•๐‘„ ๐œ•๐‘ฅ

โˆ’

๐œ•๐‘ƒ ๐œ•๐‘ฆ

where ๐‘ƒ, ๐‘„ โˆˆ ๐ถ 1 (๐‘ˆ). Then

๐œ•๐‘ƒ

โˆซฮฉ โˆซ ( ๐œ•๐‘ฅ โˆ’ ๐œ•๐‘ฆ ) ๐‘‘๐œ‡ = โˆซ๐œ•ฮฉ ๐‘ƒ ๐‘‘๐‘ฅ + ๐‘„ ๐‘‘๐‘ฆ OR Let ๐‘‰ = (๐‘ƒ, ๐‘„) be a vector field then โˆซ๐œ•ฮฉ ๐‘ฃ ๐‘‘๐‘  = โˆซฮฉ โˆซ rot ๐‘ฃ ๐‘‘๐œ‡ where rot ๐‘‰ =

๐œ•๐‘„ ๐œ•๐‘ฅ

๐œ•๐‘ƒ

โˆ’ ๐œ•๐‘ฆ and the line integral is taken

round the boundary of ฮฉ in counter-clockwise direction.

6/15/2014

Linus Metzler

9|9