3-d micromachined hemispherical shell resonators ... - Semantic Scholar

Report 2 Downloads 32 Views
3-­D  MICROMACHINED  HEMISPHERICAL  SHELL  RESONATORS     WITH  INTEGRATED  CAPACITIVE  TRANSDUCERS     L.  D.  Sorenson,  X.  Gao,  and  F.  Ayazi   Georgia  Institute  of  Technology,  Atlanta,  Georgia,  USA    

ABSTRACT   We   present   a   self-­aligned   fabrication   method   developed   for   three-­dimensional   (3-­D)   microscale   hemispherical   shell   resonators   with   integrated   capacitive   transducers   and   a   center   post   for   electrical   access   to   the   shell.  The  self-­aligned  process  preserves  the  axisymmetry   for   robust,   balanced   resonators   that   can   potentially   reach   very   high-­Q   due   to   suppressed   anchor   loss.   High-­Q   operation   of   a   thin   polycrystalline   silicon   shell   resonator   is   verified   by   exciting   devices   capacitively   into   a   breathing   resonance   mode,   with   measured   Q   of   8,000   at   412   kHz   in   vacuum.   This   process   can   be   further   optimized   to   batch-­fabricate   micro-­hemispherical   resonator  gyroscopes  for  portable  inertial  navigation.  

 

INTRODUCTION   The   hemispherical   resonator   gyroscope   (HRG)   has   shown   very   high   performance   and   robustness   over   the   years   for  inertial   navigation.   However,  the   existing  HRG   has  relatively  large  size  and  very  high  manufacturing  cost,   limiting   its   use   to   demanding   air-­   and   spacecraft   navigation  and  orientation  applications  [1].   An  advantage   of  the  HRG  is   its  ability   to  operate   in   two  modes:  force-­rebalance  (or  rate)  and  whole-­angle  (or   rate-­integrating)   mode   [2].   Typically,   vibratory   MEMS   gyroscopes   produce   angular   velocity   or   rate   output   [3].   Whole-­angle   mode   gyroscopes  using   conventional  planar   silicon   micromachining   with   low   dissipation   have   recently   been   demonstrated   [4].   Alternatively,   emerging   fabrication   techniques   have   focused   on   producing   3-­D   balanced   and   isotropic   shells   for   operation   similar   to   HRG;;   these   techniques   include   wafer-­scale   glassblowing   [5±8],  and  assembly  and  micromachining  of  prefabricated   glass   spheres   [9].   Creation   of   hemispherical   shells   using   isotropically-­etched   molds   in   silicon   has   also   been   explored  as  early  as  1979,  but  for  the  purpose  of  creating   fuel   pellets   for   thermonuclear   fusion   research   [10].   Although   capacitive   transducers   situated   on   adjacent   satellite   shells   have   been   co-­fabricated   for   glass-­blown   shell   resonators   [6],   wafer-­level   control   over   the   dimension   of   the   capacitive   air   gap   has   yet   to   be   demonstrated.  Further,  no  techniques  have  been  proposed   for   self-­aligned   central   support   and   electrical   connection   to  a  micro-­hemisphere  via  a  narrow  support  stem,  to  truly   resemble  a  wineglass  HRG  microstructure.    In   this   work,   we   present   batch-­processed   micro-­ hemispherical   shell   resonators   (ȝHSRs)   which   can   potentially   be   a   cost-­effective   alternative   to   macroscale   HRGs.   A   novel   3-­D   fabrication   process   is   developed   which,   in   the   spirit   of   [10],   takes   advantage   of   isotropic   silicon   micromachining   to   produce   hemispherical   molds,   into   which   sacrificial   and   shell   layers   can   be   deposited.   Boron  doping  is  used  to   form  electrodes  surrounding  the   rim   of   the   shell,   which   are   isolated   from   the   n-­type   substrate  via  the  resulting  PN  junctions.  The  thickness  of  

978-1-4673-0325-5/12/$31.00 ©2012 IEEE

168

Figure   1:   SEM   view   of   a   batch-­fabricated   polysilicon   micro-­hemispherical   shell   resonator   (ȝHSR).   The   n-­type   silicon   substrate   was   purposefully   cleaved   to   reveal   the   embedded   shell.   P-­doped   electrodes   formed   by   boron   doping  surround  the  rim  of  the  shell,  enabling  actuation,   sensing,  and  control  for  gyroscope  application.   the  sacrificial  layer  yields  a  controllable  and  uniform  gap   size,   while   the   doped   electrodes   follow   the   curvature   of   the   shell,   enhancing   transducer   efficiency.   The   ȝHSR   presented   here   consists   of   a   thin   polysilicon   hemisphere   with   an   oxide   support   post,   backside   access   plug   for   polarization   voltage   (Vp)   connection,   and   doped   capacitive  electrodes  (Fig.  1).    

ENERGY  DISSIPATION  IN  MICRO-­HSR   The   macroscale   HRG   achieves   its   impressive   performance  due  to  ultra-­low  energy  dissipation,  which  is   demonstrated   by   quality   factors   (Q)   in   excess   of   10   million   [1].   An   understanding   of   energy   dissipation   PHFKDQLVPV LV WKHUHIRUH NH\ WR UHSOLFDWLQJ WKH +5*¶V performance  on  the   microscale,  especially  for   the   whole-­ angle   mode   where  the  Q  directly  impacts  the  decay  time   constant   and   must   be   large   to   sustain   operation   with   minimal   interruptions.   Of   the   possible   dissipation   mechanisms   enumerated   in   [11],   the   critical   dissipation   factors  in  ȝHSRs  (assuming  operation  in  high  vacuum  to   remove   air   losses)   are   expected   to   be   thermoelastic   damping   (TED),   anchor   loss   through   the   support   post,   scattering   from   imperfections   in   the   shell   (surface   roughness   and   deviation   from   a   geometrically   perfect   hemisphere),   and   intrinsic   material   loss   (which   includes   grain  boundary  scattering  in  the  case  of  polysilicon).   Of   particular   interest   to   gyroscope   operation   of   the   ȝHSR   are   the   elliptical   modes,   especially   the   m=2   ³wineglass´  mode.  Due  to  the  nature  of  the  hemispherical   shell,   in   which   the   elliptical   mode   acoustic   energy   is   concentrated  around  the   VKHOO¶V rim   far   from  the   support,   the  ȝHSR  can  be  expected  to  have  low  support  loss  even  

MEMS 2012, Paris, FRANCE, 29 January - 2 February 2012

for   finite   support   dimensions.   Mitigating   losses   from   the   shell  imperfections  is  done  by  producing  an  ultra-­smooth   mold   with   low   imperfections   and   high   symmetry.   Polysilicon   is   an   established   MEMS   material   with   well-­ known   properties;;   therefore,   deposition   of   high-­quality   polysilicon  with  uniform  grain  size  and  smooth  surface  is   easily  achievable  [12].    The  only  remaining  concern  when   using   polysilicon   as   the   shell   material   is   TED.   To   determine   the   expected   TED   losses   in   the   ȝHSR,   the   coupled   equations   of   thermoelasticity   were   formulated   and   implemented   in   COMSOL   Multiphysics,   and   predicted   QTED   of   10.3   million   was   obtained   for   a   polysilicon  shell  of  2  mm  diameter  and  500  nm  thickness   with  an  m=2  resonance  frequency  of  1  kHz,  leading  to  an   estimated   decay   time   constant   of   almost   3400   seconds.   Hence,   with   these   positive   attributes,   polysilicon   was   selected  to  create  the  first  ȝHSR  prototypes.      

   

FABRICATION  PROCESS   Devices   are   fabricated   on   500-­1000   ȝP   (depending   on  desired  shell  diameter)  low-­resistivity  antimony-­doped   n-­type   (100)   single-­crystal   silicon   (SCS)   substrates,   as   shown   in   Figure   2.   First,   2   ȝm   thermal   SiO2   (oxide)   is   patterned   to   mask   the   wafer   during   subsequent   boron   doping  and  annealing  at  1050°C,  which  creates  capacitive   actuation   and   sense   electrodes   that   are   isolated   from   the   substrate  by  PN  junctions  (Fig.  2a,b).     The   resonating   shell,   excluding   the   electrodes,   is   created  by  layer  stacking  in  a  micromachined  silicon  mold   formed  by  two  etching  steps:  the  top  hemispherical  part  of   the   mold   is   formed   by   isotropic   etching,   while   the   lower   pyramidal   part   is   anisotropically   wet-­etched   from   the   backside.  A  5  ȝm  PECVD  oxide  layer  is  patterned  to  form   the   isotropic   etch   mask   (Fig.   2c).   Sulfur   hexafluoride   (SF6)   plasma   etches   the   hemispherical   mold   (Fig.   2d),   which   gives   a   smoother   surface   and   better   hemispherical   profile   than   that   created   using   xenon   difluoride   (XeF 2)   reported  in  [13].   An   LPCVD   low-­stress   silicon   nitride   layer   is   patterned   to   mask   the   topside   and   backside   during   KOH   etching,   which   forms   the   backside   plug   mold   (Fig.   2e,f).   This  part  must  be  thoroughly  etched  to  reach  the  top  mold   to   enable   electrical   access   for   polarization   voltage.   The   oxide   sacrificial   layer,   followed   by   the   polysilicon   shell   layer,   is   conformally   coated,   allowing   simultaneous   formation   of   the   topside   shell   and   backside   plug.   While   the   shells   are   protected   by   photoresist,   the   polysilicon   layer   on   the   wafer   surface   is   removed   in   a   short   dry   etching   step   with   SF6   plasma.   The   polysilicon   is   then   doped  and  annealed  (Fig.  2g).     The   shells   are   released   in   HF   and   dried   using   supercritical  dryer  (Fig.  2h).  The  oxide  support  is  formed   by   etching   the   sacrificial   layer   during   the   HF   release,   which   forces   its   outer   edge   to   be   self-­aligned   to   the   polysilicon   shell.   As   long   as   the   oxide   support   fully   encloses  the  neck  of  the  backside  plug  within  its  diameter,   small  misalignment  between  the  top  and  bottom  molds  is   tolerable.   The   support   diameter   can   be   controlled   by   the   release  time.  

  Figure   2   (color   online):   Fabrication   process   flow   on   n-­ type  substrate:  (a)  growth  and  patterning  of  thermal  oxide   for   (b)   subsequent   boron   doping   to   form   p-­doped   electrode   regions   isolated   from   the   substrate   via   PN   junctions;;  (c)  PECVD  oxide  is  deposited  and  patterned  to   form   the   hard   mask   for   (d)   SF6   isotropic   etching   of   the   hemispherical   mold;;   (e)   deposition   and   backside   patterning   of   low-­stress   LPCVD   silicon   nitride   for   protection   of   the   hemispherical   mold   during   (f)   KOH   etching  of  the  backside  plug  mold;;  (g)  thermal  oxidation   and   subsequent   polysilicon   deposition   to   form   the   sacrificial  and  shell  layers,  respectively;;  (h)  release  of  the   sacrificial   oxide   in   HF   and   supercritical   drying   to   form   the   final   free-­standing   polysilicon   ȝHSR   structure   with   integrated  capacitive  air  gap  and  electrodes.  

 

 

169

 

(a)   (a)  

 

 

(b)  

 

 

 

           

 

(b)           Figure  4:  Least  squares  fit  to  circle  of  (a)  original  ȝHSR   SEM  (b)  overlain  to  show  high  symmetry  of  the  shell.     (c)  

 

 

 

(d)  

 

Figure   3:   SEM   views   of   ȝHSR   components:   (a)   cross-­ section   cut   of   silicon   mold   showing   top-­side   hemisphere   and   bottom   side   plug;;   (b)   tilted   view   of   exposed   ȝHSR   showing   backside   plug   opening;;   (c)   3.5   ȝP   x   3.5   ȝP   square  hole  viewed  from  the  top-­side;;  (d)  close  up  of  the   ȝHSR  rim  showing  the  2  ȝP  capacitive  air  gap.   (a)  

PROCESS  CHARACTERIZATION   Figure   3   provides   SEM   views   of   additional   details   during   the   fabrication   process.   The   cross-­section   of   the   top-­side   hemispherical   and   backside   plug   molds   shows   that  the  isotropic   SF6  etch  creates  a   nearly  hemispherical   profile   (Fig.   3a).     The   mold   is   observed   to   become   reentrant   near   the   top   rim   due   to   undercut   of   the   oxide   hard  mask.  Although  it  is  not  necessarily  harmful,  and  can   indeed  be  beneficial  by  lowering  the  resonance  frequency   of  the  shell,  this  can  be   controlled  by  increasing  the  size   of  the  hard  mask  opening  [10]  or  thinning  the  wafer  post   isotropic   etch.   The   backside   plug   is   pyramidal   in   shape,   and  is  encompassed  by  the  oxide  support  (Fig.  3b).  At  the   neck  of  the  plug,  where  the  top-­side  polysilicon  meets  the   EDFNVLGHRSHQLQJVDVVPDOODVȝP[ȝPKDYHEHHQ achieved   (Fig.   3c).   The   free-­standing   polysilicon   shell   is   surrounded   by   a   uniform   capacitive   air   gap   (Fig.   3d,   typically  2-­3  ȝP 7KHURXJKQHVVRIWKHPROGLVREVHUYHG to  be  at  least  partially  transferred  to  the  shell.  It  should  be   noted   that   the   sacrificial   oxide   layer   in   this   case   was   created   by   thermally   oxidizing   a   blanket   polysilicon   deposition  before  deposition  of  the  shell  polysilicon  layer.   Therefore,   additional   smoothing   of   the   mold   is   possible   using  a  thin  direct  thermal  oxidation,  or  via  other  methods  

170

 

 

   

(b)         Figure   5:   Circularity   characterization   of   the   polysilicon   shell   based   on   the   fit   in   Figure   4b.   (a)   raw   (red)   plus   sinusoidal  fit  (blue);;  (b)  corrected  for  possible  SEM  tilt.     such  as   hydrogen  annealing  or  a  quick  dip  in  HNA  (HF,   Nitric,   and   Acetic   acid).   The   boron-­doped   electrodes   are   ~9  ȝPLQWKLFNQHVV   For   the   whole   angle   mode,   symmetry   of   the   shell   about  a  central  axis  is  important  to  the  dynamic  operation   of   the   device,   since   it   allows   the   vibrational   energy   to   transfer  from  one  degree-­of-­freedom  (e.g,  X)  to  the  other   (e.g.,  Y)  with  the  least  loss  or  disturbance.  To  support  the  

analysis   of   fabricated   axisymmetric   shells,   a   software   program  was  developed  to  analyze  top-­view  SEM  images,   such   as   Figure   4a.   The   program   proceeds   by   performing   an  edge  detection  algorithm  on  the  raw  SEM  data,  which   is   subsequently   analyzed   using   a   least   squares   fit   to   a   circle   (Fig.   4b).   The   least   squares   fit   is   assumed   to   represent   the   ideal   circularity   of   the   shell,   and   the   mean   radius  can  be  determined.  The  deviation  of  the  true  radius   from  the  ideal  can  be  plotted  as  a  function  of  angle  about   the  axis  (Fig.  5a).  This  technique  is  promising,  but  comes   with  some  caveats.  First,  if  the  SEM  view  is  not  perfectly   aligned   with   the   axis   of   symmetr\ WKH VKHOO¶V SURMHFWLRQ would   become   slightly   ellipsoidal.   To   correct   for   this,   a   sinusoidal   fit   can   be   made   to   the   radial   deviation,   from   which  the  tilt  angle  can  be  determined.  The  data  can  then   be  corrected  (Fig.  5b).  More  accuracy  in  determining  the   tilt   angle   can   be   obtained   by   using   lithographically-­ defined   features   in   the   SEM,   such   as   the   p-­doped   electrodes   surrounding   the   shell.   The   resolution   and   contrast  of  the  SEM  also  affect  the  accuracy  of  the  result.   Image   analysis   of   the   prototype   ȝHSR   in   Figure   4a   demonstrates   that   the   final   shells   exhibit   high   symmetry   and   have   a   radial   standard   deviation   of   better   than   2   ȝP for   the   uncorrected   ~ ȝP UDGLXV VKHOO   data   (0.66%),   and   the   radial   deviation   would   be   bettHU WKDQ  ȝP (0.41%)  if  corrected  for  the  estimated  tilt  angle.  

EXPERIMENTAL  RESULTS   We   have   successfully   excited   and   sensed   early   prototypes   of   the   ȝHSR   in   vacuum   by   applying   AC   and   DC   electrical   signals   to   the   silicon   substrate,   the   polysilicon   shell,   and   the   boron-­doped   electrodes.   For   a   device   with  a  polysilicon   shell  thickness  of  only  660  nm   and  widest  diameter  of  ~1.2  mm,  a  resonance  peak  at  412   kHz   was  observed  (Fig.   6).  This  peak  displays  tunability   with  the  polarization  voltage  and  was  confirmed  to  be  the   3-­D  breathing   mode   using  COMSOL  (Fig.   7).   Tuning  of   the  mode  confirms  that  the  resonance  peak  originates  with   the   device.   A   quality   factor   of   approximately   8,000   indicates   the   potential   of   higher   Q   values   at   lower   frequency  modes,  e.g.,  elliptical  modes.    

CONCLUSION   A  self-­aligned  fabrication  method   was  developed  for   3-­D   ȝHSRs   with   integrated   capacitive   transducers   and   a   self-­aligned   center   post   for   electrical   access   to   the   shell,   preserving   the   shell   axisymmetry   for   robust,   balanced   resonators.   High-­Q   operation   of   a   thin   polysilicon   shell   resonator   was   verified   by   exciting   devices   capacitively   into   a   breathing   resonance   mode,   with   measured   Q   of   8,000  at  412kHz.  This  process  can  be  further  optimized  to   batch-­fabricate  ȝHRGs  for  portable  inertial  navigation.  

ACKNOWLEDGMENTS   This   work   was   supported   by   the   DARPA   Microsystems   Technology   Office,   Microscale   Rate   Integrating   Gyroscope   (MRIG)   program   under   contract   #HR0011-­00-­C-­0032   led   by   Northrop   Grumman.   The   authors  would  like  to  thank  the  cleanroom  staff  at  Georgia   7HFK¶V 1Dnoelectronics   Research   Center   for   fabrication   support.  

171

 

Figure   6:   Frequency   response   of   a   1.2   mm   diameter   ȝHSR  at  a  polarization  voltage  of  2V.    

 

 

Figure   7:   (left)   Finite   element   simulation   of   breathing   mode   shape   for   1.2   mm   diameter   ȝHSR.   (right)   Tuning   characteristic   of   the   412   kHz   breathing   mode   with   polarization  voltage.  The  mode  tunes  from  412.17  kHz  at   VP   =  2  V  to  412.10  kHz  at  VP  =  8  V,  a  downward  shift  of   159.6  ppm.    

REFERENCES   [1]    D.  M.  Rozelle,  in  Proc.  19th  AAS/AIAA  Space  Flight   Mechanics  Meeting,  Feb.  2009,  pp.  1157±1178.   [2]    A.   Matthews,   IEEE   Aerospace   and   Electronic   Systems   Magazine,   vol.   7,   no.   5,   pp.   40-­46,   May   1992.   [3]    N.  Yazdi,  Proc.  IEEE,  vol.  86,  no.  8,  pp.  1640-­1659,   Aug.  1998.   [4]    A.   A.   Trusov,   IEEE   Sensors   Journal,   vol.   11,   pp.   2763-­2770,  Nov.  2011.   [5]    E.  J.  Eklund,  J.  Microelectromech.  Syst.,  vol.  16,  pp.   232-­239,  Apr.  2007.   [6]    I.  P.  Prikhodko,   J.  Microelectromech.  Syst.,  vol.   20,   pp.  691-­701,  Jun.  2011.   [7]    D.   Senkal,   in   Technologies   for   Future   Micro-­Nano   Manufacturing,  Napa,  California,  USA,  Aug.  2011.   [8]    B.   Sarac,   J.   Microelectromech.   Syst.,   vol.   20,   no.  1,   pp.  28-­36,  Feb.  2011.   [9]    K.  Visvanathan,  in  IEEE  MEMS  2011,  Jan.  2011,  pp.   45-­48.   [10]    K.   D.   Wise,   J.   Vac.   Sci.   Technol.,   vol.   16,   p.   936,   May  1979.   [11]    F.   Ayazi,   in   Micro-­   and   Nanotechnology   Sensors,   Systems,   and   Applications   III,   Orlando,   Florida,   USA,  May  2011,  vol.  8031,  pp.  803119-­13.   [12]    R.   Abdolvand,   J.   Microelectromech.   Syst.,   vol.   15,   no.  3,  pp.  471-­478,  2006.   [13]    L.  C.  Fegely,  in   75$16'8&(56¶,  Jun.  2011,  pp.   2295-­2298.  

CONTACT   *L  D.  Sorenson,  tel:  +1-­404-­385-­6691;;  [email protected]