3dd Silica

Report 10 Downloads 413 Views
Undergraduate/Graduate Category:  Engineering  and  Technology Degree  Level:  Bachelor  of  Science Abstract  ID#  1202

Aminopolymer  Impregnated  MCM-­‐36  and  3dd  Silica Katherine  Conner,  Christopher  Cogswell,  Madeline  Finkenaur,  David  Urick, Rachel  Vozikis  and  Sunho  Choi

Method

Abstract Porous  solid  adsorbents  are  currently  being  studied  for  their  potential  use  as   an  effective  way  to  capture  carbon  dioxide.  These  absorbents  are  known  to   have  high  surface  areas  and  low  heats  of  adsorption,  making  them  ideal  for   capturing  carbon  dioxide.  The  perfect  adsorbent  would  possess  high  amine   loading  abilities  and  high  adsorption  capacity.  A  2-­‐dimensional  pillared  porous   silicate  material,  MCM-­‐36,  was  impregnated  with  polymers  containing  amines.   The  large  pore  interlayer  space  was  the  main  factor  in  determining  MCM-­‐36   as  the  ideal  material  to  study.  The  large  pores  prevent  the  amines  from   becoming  stuck  within  the  channels  and  allowing  space  for  CO2  to  be   captured.  The  capability  for  this  material  to  absorb  CO2  was  then  investigated.   The  material  was  then  loaded  with  polyethylenimine  (PEI)  first  to  fill  these   large  pores.  Experimentation  showed  that  the  capture  capacity  will  increase   slightly  for  low  PEI  loadings,  but  will  decrease  a  significant  amount  with  high   loadings.  There  are  many  indicators  showing  this  is  due  to  the  blockage  of   large  pore  space  when  high  polymer  loading  occurs.  To  sidestep  this  issue,  the   impregnation  of  a  smaller  polymer  into  the  small  pore  space  was  then   performed.  Preliminary  results  show  that  this  material  possesses  significantly   increased  capacity,  showing  that  the  pore  space  can  be  preferentially  loaded   with  amine.  Furthermore,  this  work  suggests  a  method  for  pore-­‐amine   optimization  on  hybrid  sorbents  where  the  various  pore  morphologies  and   sizes  are  used  for  specific  amine  impregnation  schemes.

The  synthesis  of  both  MCM-­‐36  and  3dd  silica  can  be  found  in   previous  literature. • The  MCM-­‐36  samples  were  impregnated  with  PEI  to  form   a  supported-­‐amine  adsorbent.  Each  sample  was   impregnated  with  varying  amounts  of  PEI  to  see  if  there   was  a  difference  in  capture  capacity. • The  3dd  silica  is  loaded  with  polyethylenimine  (PEI)  to  fill   in  the  large  mesopore  space • The  small  micropore  space  is  loaded  with  tetraethylene   Pentamine(TEPA) • Both  materials  were  examined  using  x-­‐ray  diffraction  and   thermogravimetric  analysis  to  measure  CO2  capture • Nitrogen  adsorption/desorption  was  analyzed  to   determine  BET  surface  area  and  BJH  pore  volume  of  the   materials.

Figure  3-­‐MCM-­‐36  vs  3dd  Silica

Introduction

Goal

Adsorption   Capacity

good

good

Fast  sorption   kinetics

good

Stability  in   humid   conditions

good

Low-­‐energy   regeneration

bad

Long-­‐term   stability

bad

good bad

good

MCM-­‐36: • The  addition  of  amines  to  the  MCM-­‐36  shows  a  significant  decrease  in  the  surface  area  and  pore  volume  of  the  metal.  For  samples  loaded  with  a  low  percent   weight  of  PEI,  the  surface  area  will  initially  increase  but  will  eventually  hit  a  maximum  and  drop  back  down  to  the  minimum  value.   • This  is  also  observed  when  comparing  carbon  dioxide  capture  capacity  with  the  PEI  weight  percent  loaded  on  the  MCM-­‐36.  The  addition  of  PEI  leads  to  a   decrease  in  the  ability  for  carbon  dioxide  to  diffuse  into  the  pore  space.   • This  makes  2-­‐D  solids  an  unlikely  material  to  use  for  optimum  carbon  dioxide  capture.   3dd  Silica: • The  x-­‐ray  diffraction  results  show  that  loading  the  silica  with  amines  does  not  change  the  pore  structure  of  3dd  as  shown  in  the graph  below.  Pore  volume  does   not  decrease  significantly  as  well. • The  addition  of  PEI  to  the  silica  leads  shows  a  plateau  of  the  capture  capacity  as  the  amine  weight  percent  increases  as  opposed to  MCM-­‐36  which  significantly   decreases 3dd-m Silica

500

3dd-m TEPA loaded

450

3dd-m PEI loaded

400

Volume of Adsorbate (cc/g)

4 3.5 3 2.5 2

good bad

good bad

TEPA 3dd

350 300 250 200 150

0 0

Sample  Name 3dd  Silica 3dd  +  PEI 3dd  +  TEPA

0.5

good

PEI 3dd

50

1

Metal  Organic   Frameworks

Bare 3dd

100

5

10

15 20 Degrees 2 Theta

25

30

100

200

300

BET  Surface  Area  (m^2/g) 746 69.2 77.186

400 500 Pressure (Torr)

600

700

800

900

BJH  Pore  Radius   (Angstroms) 79.7 79.1 78.913

BJH  Pore  Volume  (cc/g) 0.364 0.259 0.227

• The  amine  efficiency  does  slow  down,  but  the  graph  below  shows  it  slows  at  a  much  higher  value  compared  to  MCM-­‐36.  The  max  efficiency  is  50%  or  2  moles  of   amine  for  every  1  mole  of  CO2  to  react 1.2

3dd  +  PEI MCM  +  PEI

1.2

Amine  Efficiency

Capture  Capcity  (mmol/g)

1.4 1 0.8 0.6 0.4 0.2 0 0

5

10 15 Amine  weight%

MCM  +  PEI 3dd  +  PEI

1 0.8 0.6 0.4 0.2 0

20

0

5

10 Amine  Weight%

15

20

• The  amount  of  CO2  captured  in  around  the  first  10  minutes  or  less  of  the  capture  appears  to  be  relatively  constant  for  3dd+PEI  compared  to  MCM-­‐36  which   varies.     120

Conclusion

MCM  +  PEI 3dd  +  PEI

100 80 60 40 20 0 0

good

Figure  3-­‐3dd  silica  after  amine  loading

Results

%  of  equillibrium capacity   achieved

Zeolites

Figure  2-­‐3dd  silica  before  amine  loading

1.5

• The  overall  goal  of  this  research  is  to  determine  the   most  efficient  way  to  find  a  material  which  contains   both  high  amine  loading  and  adsorption  capacity  so  it   can  be  used  as  a  carbon  dioxide  capture  system.   • There  is  little  to  no  research  on  the  relationship   between  amine  loading  and  adsorption  capacity  as  well   as  amine  loading  and  adsorption  kinetics.   • The  diffusion  and  kinetic  characteristics  of  MCM-­‐36  was   studied  in  in  order  to  help  achieve  this  goal,  which   showed  the  addition  of  aminopolymers  into  the  pore   space  of  MCM-­‐36  will  not  regain  or  overtake  the  capture   capacity  that  bare  MCM-­‐36  achieves  because  CO2   cannot  flow  freely  in  all  dimensions. Liquid  Amines,   e.g. MEA

Figure  1-­‐3dd  silica  before  amine  loading

Intensity (a.u.)

• Carbon  dioxide  capture  is  becoming  increasingly  popular   with  climate  change  on  the  rise  due  to  an  increase  in   carbon  dioxide  in  the  environment • This  research  is  focused  around  zeolites,  specifically  a  2D   porous  metal  MCM-­‐36  and  a  3dd  silica.   • Porous  solid  adsorbents  which  posses  high  surface  area   and  low  heat  of  adsorption. • The  high  surface  area  and  porosity  should  theoretically   create  the  best  conditions  for  carbon  dioxide  gas  to  be   captured  within  the  metal.  These  solids  must  be  able  to   reach  a  high  selectivity  for  carbon  dioxide  over  other   gases  in  order  for  it  to  be  an  effective  means  of   capturing  the  gas.   • Currently,  aqueous  amine  absorbents  are  the  main   process  used  as  a  capture  system,  but  this  is  not  the   most  ideal  due  to  poor  energy  regeneration  and   stability. • This  is  why  using  porous  solids  containing  amine  groups   by  impregnation  is  being  investigated  as  a  potential   capture  system.

5

10 Amine  Weight%

References

15

20

1. Cogswell,  Christopher  F.,  et  al.  "Effect  of  Pore  Structure  on  CO2  Adsorption  Characteristics  of   Aminopolymer  Impregnated  MCM-­‐36." Langmuir 31.15  (2015):  4534-­‐4541.

• The  results  show  the  addition  of  aminopolymers  into  the  pore  space  of   MCM-­‐36  will  not  regain  or  overtake  the  capture  capacity • High  weight  percentages  of  amines  will  lead  to  a  degradation  in  the   capture  and  kinetic  characteristics  likely  due  to  the  inability  of  carbon   dioxide  to  diffuse  through  the  pore  channels.   • 3dd  silica  showed  more  results  because  the  ability  to  absorb  carbon   dioxide  does  not  decrease  after  amine  loadings.  The  amine  efficiency  does   decrease  as  it  is  loaded  with  more  amine,  but  at  a  higher  efficiency  than   MCM-­‐36. • This  shows  that  for  the  3dd  silica  the  pores  stay  open  and  amines  can  be   accessed  even  after  achieving  maximum  amine  loadings. • The  3dd  silica  suggests  that  3D  pore  systems  it  can  still  retain  its  ability  to   capture  carbon  dioxide  while  filling  the  pores  with  PEI  while  2D  cannot.