A compositional approach to the stochastic dynamics of gene networks

Report 0 Downloads 109 Views
A compositional approach to the stochastic dynamics of gene networks

Ralf Blossey (IRI, Lille)

Luca Cardelli, Andrew Phillips (Microsoft Research, Cambridge UK) 0-0

The menu:

• Motivation • Gene networks as gene circuits in stochastic π -calculus • Examples, from simple to less simple

• Outlook

0-1

...finding structures in complexity...

0-2

...modules and motifs...

0-3

...but watch out for anthropomorphisms...

0-4

...with better resolution...

...what you see might not be there!

0-5

... engineered modules: a useful paradigm?

0-6

...let’s try to build gene networks as gene circuits... a) A gene gate which transcribes constitutively:

null(b) = τε .(tr(b)|null(b)) tr(b) =!b.tr(b) + τδ .0

0-7

b) an inhibitory gate:

neg(a, b) =?a.τη .neg(a, b) + τε .(tr(b)|neg(a, b))

0-8

c) an excitatory gate:

pos(a, b) =?a.τη .(tr(b)|pos(a, b)) + τε .(tr(b)|pos(a, b))

0-9

Examples: very simple 1

0-10

Examples: very simple 2

0-11

Examples: very simple 3

0-12

Examples: simple

0-13

Examples: less simple 1

0-14

Examples: less simple 2

0-15

Example: The Repressilator

neg(c, a)|neg(a, b)|neg(b, c)

0-16

...the real system: three bacterial genes (+ GFP)

M. B. Elowitz, S. Leibler, Nature (2000) 0-17

...ODE modeling...

dmi α = −mi + + α0 n dt 1 + pj dpi = −β(pi − mi ) dt

i = (lacI, tetR, cI) , j = (cI, lacI, tetR)

... compare with

neg(c, a)|neg(a, b)|neg(b, c) 0-18

...the ODE results...and Gillespie...

0-19

...to be compared with...

0-20

... and more parameter play...

0-21

More complex example: combinatorial gene circuits

C. C. Guet, M. B. Elowitz, W. Hsing, S. Leibler, Science (2002)

0-22

A specific case study: D038

0-23

D038 in π -gate modelling

0-24

D038: Experimental results

0-25

A second example: D052

0-26

A second example

0-27

D038 in π -gate modelling: ...more complex gates needed...

negp(a, (ε, η), p) =?a.τη .negp(a, (ε, η), p)+τε .(p()|negp(a, (ε, η), p))

0-28

...repressible transcription factors...

rtr(b, r) =!b.rtr(b, r)+!r.0 + τδ .0 rep(r) =?r.rep(r) 0-29

D038: Boolean analysis

no repressors: GFP = 0 → lcI = 1 → LacI = 0 → TetR = 1; self-loop: TetR = 1 → TetR = 0 → GFP = 0.5.

0-30

D038

0-31

A final example: D016

0-32

A final example: D016

0-33

A final example: D016

0-34

Outlook: chromatin, the nucleosome

0-35

Outlook: chromatin, histone tail modifications

0-36

Outlook: chromatin, stochastic π -network

0-37

Organisational outlook: next meeting Aci VicAnne

´ Modelisation et Cancer Institut de Biologie de Lille

17/18 mai 2006

0-38