A Formula for Solving General Quintics: A Foundation for Solving ...

Report 10 Downloads 153 Views
Open Science Repository Mathematics, Online(open-access), e23050495. doi:10.7392/openaccess.23050495

A FORMULA FOR SOLVING GENERAL QUINTICS; A FOUNDATION FOR SOLVING GENERAL POLYNOMIALS OF HIGHER DEGREES ABSTRACT I explore possible methods of solving general quintics and higher degree polynomials. In this paper I will attempt to show that each quintic has an auxiliary cubic equation. I will therefore attempt to bring a method of deriving a general quintic and its possible auxiliary cubic equation forms. I propose the same method to be used to generate higher degree polynomials. AUTHORS NAME: SAMUEL BONAYA BUYA KEY WORDS: Radical Solution of general quintics and other higher degree polynomials, Disproof of Abelโ€™s impossibility theorem; formula solutions of irreducible quintics. METHOD Consider the simple cubic equation: ๐‘ฅ 3 = ๐‘ฅ + 2 ------------ 1 Squaring both sides of the above equation we obtain the equation: ๐‘ฅ 6 = (๐‘ฅ + 2)2 = ๐‘ฅ 2 + 4๐‘ฅ + 4 -------------- 2 Multiplying both sides of equation 1 by ๐‘ฅ 3 we obtain the equation: ๐‘ฅ 6 = ๐‘ฅ + 2 ๐‘ฅ 3 = ๐‘ฅ 4 + 2๐‘ฅ 3 ------------- 3 Subtracting equation 2 from 1 and rearranging we obtain the equation: ๐‘ฅ 4 + 2๐‘ฅ 3 โˆ’ ๐‘ฅ 2 โˆ’ 4๐‘ฅ โˆ’ 4 = 0 --------------- 4 Rearranging equation 1: ๐‘ฅ 3 โˆ’ ๐‘ฅ โˆ’ 2 = 0 ----------------- 5 The cubic equation 5 is an auxiliary equation of the quartic equation 4 since: ๐‘ฅ 4 + 2๐‘ฅ 3 โˆ’ ๐‘ฅ 2 โˆ’ 4๐‘ฅ โˆ’ 4 = ๐‘ฅ 3 โˆ’ ๐‘ฅ โˆ’ 2 ๐‘ฅ โˆ’ 2 = 0 ------------ 6 This analysis projects the idea that each polynomial equation possesses auxiliary lower degree polynomial. I will use this concept to come up with a method that can be used to solve any general quintic. Consider the cubic equation: ๐‘ฅ 3 = (๐‘ฅ + ๐‘Ž)2 + ๐‘๐‘ฅ + ๐‘ = ๐‘ฅ 2 + ๐‘ฅ ๐‘ + 2๐‘Ž + ๐‘Ž2 + ๐‘ -------------- 7

Again consider the cubic equation: ๐‘ฅ 3 = ๐‘ฅ 2 + ๐‘‘๐‘ฅ + ๐‘’ --------------- 8 Multiplying equation 8 by 7 we obtain the equation: ๐‘ฅ 6 = ๐‘ฅ 4 + ๐‘ฅ 3 ๐‘ + 2๐‘Ž + ๐‘‘ + ๐‘ฅ 2 ๐‘Ž2 + ๐‘ + ๐‘’ + ๐‘๐‘‘ + 2๐‘Ž๐‘‘ + ๐‘ฅ ๐‘‘๐‘ + ๐‘๐‘’ + 2๐‘Ž๐‘’ + ๐‘Ž2 ๐‘‘ + ๐‘๐‘’ -----------9 Multiplying both sides of equation 7 by ๐‘ฅ 3 we obtain the equation: ๐‘ฅ 6 = ๐‘ฅ 5 + ๐‘ฅ 4 ๐‘ + 2๐‘Ž + ๐‘ฅ 3 (๐‘Ž2 + ๐‘) --------------------- 10 Multiplying both sides of equation 8 by ๐‘ฅ 3 we obtain the equation: ๐‘ฅ 6 = ๐‘ฅ 5 + ๐‘ฅ 4 ๐‘‘ + ๐‘ฅ 3 ๐‘’ ----------- 11 Taking equation 10 subtracting equation 9 and rearranging: ๐‘ฅ 5 + ๐‘ฅ 4 ๐‘ + 2๐‘Ž โˆ’ 1 + ๐‘ฅ 3 ๐‘Ž2 + ๐‘ โˆ’ ๐‘ โˆ’ 2๐‘Ž โˆ’ ๐‘‘ โˆ’ ๐‘ฅ 2 ๐‘Ž2 + ๐‘ + ๐‘’ + ๐‘๐‘‘ + 2๐‘Ž๐‘‘ โˆ’ ๐‘ฅ ๐‘‘๐‘ + ๐‘๐‘’ + 2๐‘Ž๐‘’ + ๐‘Ž2 ๐‘‘ โˆ’ ๐‘๐‘’ = 0 -------- 13

I will call equation 13 an extended quintic equation. Rewriting the cubic equations 7 and 8: ๐‘ฅ 3 โˆ’ ๐‘ฅ 2 โˆ’ ๐‘ฅ ๐‘ + 2๐‘Ž โˆ’ ๐‘Ž2 โˆ’ ๐‘ = 0 --------- 14 ๐‘ฅ 3 โˆ’ ๐‘ฅ 2 โˆ’ ๐‘‘๐‘ฅ โˆ’ ๐‘’ = 0 ----------- 15 The product of equation 7 and 8 is given by: [๐‘ฅ 3 โˆ’

๐‘ฅ+๐‘Ž

2

+ ๐‘๐‘ฅ + ๐‘ [๐‘ฅ 3 โˆ’ ๐‘ฅ 2 โˆ’ ๐‘‘๐‘ฅ โˆ’ ๐‘’] = 0 ------------- 16

Equation 10 can be rewritten as: ๐‘ฅ3 + ๐‘ฅ + ๐‘Ž

2

+ ๐‘๐‘ฅ + ๐‘ ๐‘ฅ 3 โˆ’ ๐‘ฅ 6 =

๐‘ฅ+๐‘Ž

2

+ ๐‘๐‘ฅ + ๐‘ ๐‘ฅ 3 = 0 ------------- 17

Adding equation 16 to 17 and simplifying we get the equation: ๐‘ฅ 3 โˆ’๐‘ฅ 2 โˆ’ ๐‘‘๐‘ฅ โˆ’ ๐‘’ โˆ’ Or [๐‘ฅ 2 + ๐‘‘๐‘ฅ + ๐‘’][๐‘ฅ 3 โˆ’

๐‘ฅ+๐‘Ž

2

๐‘ฅ+๐‘Ž

+ ๐‘๐‘ฅ + ๐‘ โˆ’๐‘ฅ 2 โˆ’ ๐‘‘๐‘ฅ โˆ’ ๐‘’ = 0 2

+ ๐‘๐‘ฅ + ๐‘ ] = 0 -------------- 18

The expansion of equation 18 is given by ๐‘ฅ 5 + ๐‘ฅ 4 ๐‘‘ โˆ’ 1 + ๐‘ฅ 3 ๐‘ โˆ’ 2๐‘Ž โˆ’ ๐‘‘ + ๐‘’ + ๐‘ฅ 2 ๐‘ โˆ’ ๐‘Ž2 + ๐‘‘ ๐‘ + 2๐‘Ž โˆ’ ๐‘’ + ๐‘ฅ[๐‘‘ ๐‘ โˆ’ ๐‘Ž2 + ๐‘’ ๐‘ โˆ’ 2๐‘Ž + ๐‘’(๐‘ โˆ’ ๐‘Ž2 ) = 0 ------ 19 Equation 19 is a second extended general quintic whose factorized form is equation 18.

The second extended general quintic can be used to obtain a general quintic formula since ๐‘Ž4 = ๐‘‘ โˆ’ 1 -------1 ------------ 19 ๐‘Ž3 = ๐‘ โˆ’ 2๐‘Ž โˆ’ ๐‘‘ + ๐‘’ ---------- 20 ๐‘Ž2 = ๐‘ โˆ’ ๐‘Ž2 + ๐‘‘ ๐‘ + 2๐‘Ž โˆ’ ๐‘’ ------------- 21 ๐‘Ž1 = ๐‘‘ ๐‘ โˆ’ ๐‘Ž2 + ๐‘’(๐‘ โˆ’ 2๐‘Ž) ------------ 22 ๐‘Ž0 = ๐‘’(๐‘ โˆ’ ๐‘Ž2 ) ------------- 23 By equation 19: ๐‘‘ = ๐‘Ž4 + 1 -------------- 24 Let ๐‘ = ๐‘ โˆ’ ๐‘Ž2 ----------- 25 Let also ๐‘ž = (๐‘ โˆ’ 2๐‘Ž) ---------- 26 Then ๐‘Ž3 = ๐‘ โˆ’ ๐‘Ž4 + 1 + ๐‘’ ------------- 27 ๐‘Ž2 = ๐‘ + ๐‘Ž4 + 1 ๐‘ž โˆ’ ๐‘’ -------------- 28 ๐‘Ž1 = ๐‘(๐‘Ž4 + 1) + ๐‘’๐‘ž------------ 29 Equation 23 can be written as: ๐‘Ž0 = โˆ’๐‘’๐‘ ------------ 30 Substituting 30 into 26 and simplifying: ๐‘2 โˆ’ ๐‘ ๐‘Ž4 + ๐‘Ž3 + 1 + ๐‘Ž0 = 0 ---------------- 31 ๐‘=

๐‘Ž 4 +๐‘Ž 3 +1 ยฑ

๐‘Ž 4 +๐‘Ž 3 +1 2 โˆ’4๐‘Ž 0 2

------------- 31

By equation 30: ๐‘’=

โˆ’๐‘Ž 0 ๐‘

--------------- 33

By equation 28: ๐‘ž=

๐‘Ž 2 +๐‘’โˆ’๐‘ ๐‘Ž 4 +1

--------- 34

To determine b and c, choose a and then calculate b and c using the equations 25 and 26 Example 1 Solve ๐‘ฅ 5 โˆ’ ๐‘ฅ + 1 = 0

Solution ๐‘Ž4 = 0 โ‡’ ๐‘‘ = 1 ๐‘=

1ยฑ 1โˆ’4 2

Take ๐‘ =

=

1ยฑ๐‘– 3 2

1+๐‘– 3 2

2

๐‘’ = 1+๐‘–

3 3โˆ’๐‘– 3 3

๐‘ž = ๐‘’ โˆ’ ๐‘ = 1+๐‘–

Take a =1; ๐‘ = ๐‘ + 1 =

3+๐‘– 3 2

5+๐‘– 3 3

๐‘ = ๐‘ž + 2 = 1+๐‘–

The auxiliary equations of the quintic are: ๐‘ฅ2 + ๐‘ฅ +

2 1+๐‘– 3

=0

3โˆ’๐‘– 3 ๐‘ฅ 3

๐‘ฅ 3 โˆ’ ๐‘ฅ 2 + 1+๐‘–

+

1+๐‘– 3 2

=0

The above two quadratic and cubic equations can be solved by their respective formulae. The roots of the auxiliary quadratic equation are: ๐‘ฅ1,2 =

โˆ’1 2

ยฑ

โˆ’7+๐‘– 3 4(1+๐‘– 3

One of the roots of the auxiliary cubic equation is: 3

๐‘ฅ3 =

4 27

+

16 729

1

โˆ’3+๐‘– 3 3 ) 3)

+ 27 (3(1+๐‘–

3

โˆ’

4 27

+

16 729

1

โˆ’3+๐‘– 3 2 ) 3)

+ 27 (3(1+๐‘–

1

+3

CONCLUSION A general formula for solving quintics is achievable. Irreducible quintics can be solved by the formula method proposed. Given ๐‘Ž0 , ๐‘Ž1 , ๐‘Ž2 , ๐‘Ž3 and ๐‘Ž4 one can determine a, b, c, d, e and hence solve the quintic equation.

REFERENCES 1. Buya S. B. (2013). A calculator for polynomial equations of degree five and above. Open science repository mathematics, Online (open access), e23050424. doi: 10.7392/openaccess.23050424 2. Buya S. B. (2013).Disproof Of Abelโ€™s impossibility theorem. Open science repository mathematics, Online (open access), 23050460.doi; 10.7392/openaccess.230504