A Model Predictive Control Approach to Microgrid ... - ARSControl

Report 7 Downloads 60 Views
Università del Sannio Department of Engineering The GRACE Group Benevento, Italy

A Model Predictive Control Approach to Microgrid Operation Optimization Luigi Glielmo, Alessandra Parisio* Università del Sannio * Currently at KTH, Stockholm

October 31st, 2012  

Smart  Power  Grid   Provide  a  sustainable  way  to  meet  the  growing  energy  demand   through   •  high  penetra6on  of  renewable  energy  sources  (RES)   •  storage  u6liza6on   •  distributed  local  genera6on   •  energy  efficiency   New  energy  management  systems  are  needed  for  op6mally       •  managing  the  distributed  units     •  applying  demand  response  policies   •  interac6ng  with  the  u6lity  grid  (bidirec6onal  power  flow)  

2

Opera6on  Op6miza6on  in  Energy  Systems  

 

Goal:  design  an  energy  management  system  for  distributed   genera6on       Approach:   •  Consider  subsystems  of  the  distribu6on  grid   •  Build  a  model  of  the  subsystem  which  is  as  simple  as  possible   •  Formulate  a  tractable  opera6on  op6miza6on  problem   •  Cope  with  uncertainty                              Two  promising  paradigms  for  these  energy  subsystems:       microgrids  and  energy  hubs  

3

Microgrid  Opera6on  Op6miza6on    

1.  MICROGRID  CONCEPT  AND  OPERATION   OPTIMIZATION   2.  MODELING  AND  PROBLEM  FORMULATION   3.  MICROGRID  CONTROL  STRATEGY   4.  MICROGRID  EMISSION  REDUCTION  

Microgrid  Concept   The   microgrid   concept   assumes   a   cluster   of   loads   and   distributed   generators  (DGs)  opera6ng  as  a  single  controllable  system  that  provides   both  electricity  and  heat  to  its  local  area.         Microgrid  components:     •     Distributed  Generators  (DGs)   •     Loads     •     Storage  equipment  (baWeries,          capacitors,  flywheels)   •     Microgrid  Controller   •     Point  of  Common  Coupling  (PCC)  to  the            u6lity  grid     1

Microgrid  Opera6on  Op6miza6on   Objec6ve:   •  Op6mize  microgrid  opera6ons  over  a  planning  horizon  to  fulfill  a  6me-­‐varying   demand  subject  to  opera6onal  constraints  while  minimizing  a  cost  func6on   The  Microgrid  Opera6on  Op6miza6on  includes     •   Unit  Commitment  (UC)     •   Economic  Dispatch  (ED)     •   Op6mal  scheduling  of  storage  opera6ons   •   Demand  side  policies  (curtailment  op6ons)   •   When  and  how  much  energy  should  be  purchased/sold  from/to  the  u6lity  grid  

Main  Contribu6ons    Microgrid  modeling  needs  both  con6nuous  and  discrete  decision  variables      resul6ng  opera6on  op6miza6on  problem  is  very  difficult  to  solve.  

   

                                                                                                                                 Contribu6ons                                      Provide  a  microgrid  model  adop6ng  a  formalized  modeling  approach   The  problem  is  stated  as  a  Mixed   Integer  Linear  Problem  

It  can  be  solved  efficiently                        (cplex  solver)  

Problem  formula6on  suitable  for  online  control  scheme  (Model  Predic6ve  Control)   •   Parisio  A.  and  Glielmo  L.,  “Energy  Efficient  Microgrid  Management  using  Model  Predic6ve  Control”,  CDC  2011   •   Parisio  A.  and  Glielmo  L.,  “A  Mixed  Integer  Linear  Formula6on  for  Microgrid  Economic  Scheduling”,  SmartGridComm   2011   •   Parisio  A.  and  Glielmo  L.,  ”A  Model  Predic6ve  Control  Approach  to  Microgrid  Opera6on  Op6miza6on”,  submiWed  to   Control  Systems  Technology  

Problem  Formula6on   It  has  to  be  pointed  out  that     •     voltage  stability,  power  quality,  and  frequency  are  supposed  to  be  controlled          automa6cally  at  the  lower  control  level    

Minimize  operaAng  costs   subject  to:  

•   Storage  dynamics  (charging/discharging  mode)   •   Power  balance   •   Energy  import/export  from/to  the  uAlity  grid   •   OperaAonal  and  capacity  constraints  

Opera6ng  Costs   T −1 N g

∑∑ ⎡⎣Ci k =0 i =1

where:  

DG

Nc

g

( Pi (k )) + OM iδ i (k ) + SU i (k ) + SDi (k ) ⎤⎦ + C (k ) + ρρc ∑ β h (k ) Dhc (k ) h =1

Power  genera6on  costs  

fuel  consump6on  costs  for  unit  i    at  6me  k  

curtailment  penal6es     at  6me  k

Ci DG ( Pi (k )) = a + b ⋅ Pi (k ) + c ⋅ Pi 2 (k ) start  up  and  shut  down  costs  for  unit  i    at  6me  k  

SU i (k ), SDi (k )

Nc

ρc ∑ βh (k ) Dhc (k ) h =1

maintenance  costs  for  unit  i    at  6me  k  

OM iδ i (k ) energy  purchase/sale  at  6me  k  

C g (k )

Costs  on  power  exchanged  with  storage   are  also  included    

Storage  Dynamics  (1/2)   Discrete-­‐6me  model  of  a  storage  unit   xb (k + 1) = xb (k ) + η Pb (k ) − x sb !# ! c , if P b ( k ) > 0 (charging mode) !=" d #$ 1/ ! , otherwise (discharging mode) with 0 < ! c ,! d < 1

Incorporate  storage  switching  dynamics  into  the  op6miza6on  problem   [1]:  

       1.  Introduce  a  binary  variable:   Pb (k ) > 0 ⇔ δ b (k ) = 1      2.  Introduce  an  auxiliary  variable:   z b (k ) = δ b (k ) ⋅ Pb (k ) [1]  A.  Bemporad  and  M.  Morari,  “Control  of  systems  integra6ng  logic,  dynamics,  and  constraints,”   Automa;ca,  vol.  35,  no.  3,  1999.  

Storage  Dynamics  (2/2)        3.  Express  the  ‘if  .  .  .  then’  condi6ons  as  mixed  integer  linear  inequali6es  

⎧⎪P b > m(1 − δ b ) P > 0 ⇔ δ = 1 is  true  if  and  only  if   ⎨ ⎪⎩P b ≤ Mδ b ⎧ z b ≥ mδ b ⎪ b b b b z = δ ⋅ P is  equivalent  to   ⎪ z ≤ Mδ b ⎨ b b b ⎪ z ≤ P − m(1 − δ ) ⎪ z b ≥ P b − M (1 − δ b ) ⎩ b

b

     4.  Collect  the  inequali6es  and  rewrite  the  storage  dynamics  and  the                corresponding  constraints  in  the  following  compact  form:

(

)

x b ( k +1) = x b ( k ) + ! c !1/ ! d z b ( k ) + (1/ ! d ) P b ( k ) ! x sb b bb b b b ⋅ P ( k ) + E subject to E1bδ⋅ δb (b k(k) )++EEb2b2z⋅b z(kb ()k≤) ≤EE P ( k ) + E 3 3 4 4

Power  Balance   Balance  between  power  genera6on  and  demand   Ng

Nt

Nc

i =1

j =1

h =1

P b (k ) = ∑ Pi (k ) + P res (k ) + P g (k ) −∑ D j (k ) − ∑ [1 − β h (k )]Dhc (k )      Define:              δ      (    k    )    :  binary  variables  storing  the  on/off  state  for  the  DG  units  at  6me  k  

(k )) = [P ' (k ) δ' (k ) P g (k ) β' (k )] ' uu(k (k) = [P res (k ) D' (k ) Dc' (k )] ' ww(k

Decision  variables   Disturbances  

Pb (k ) = F ' (k ) ⋅ u(k ) + f '⋅w(k )

Energy  Import/Export  from/to  the  U6lity  Grid   How  to  model  the  possibility  to  purchase/sell  energy  from/to  the  u6lity   grid?        1.  Introduce  a  binary  variable:  

P g (k ) > 0 ⇔ δ g (k ) = 1 g

     2.  Introduce  an  auxiliary  variable:   C (k ) P g g ⎧ c ( k ) P ( k ), if δ (k ) = 1 g C (k ) = ⎨ S g c ( k ) P (k ), otherwise ⎩

     3.  Express  the  ‘if  .  .  .  then’  condi6ons  as  mixed  integer  linear  inequali6es  [1]        4.  Collect  the  inequali6es  and  rewrite  constraints  in  the  following  compact  form: g g gg g g g g g E11g δ⋅ δ (g k(k) )++EE2 2C ⋅ C(k ()k≤) E ≤ 3E(3kg )⋅ P g (k ) + E 4g4

Opera6onal  Constraints    For  each  DG  unit    i    at  6me  k      ,  the  following  constraints  must  be  sa6sfied   Opera6onal  constraints  (minimum  up/down  6mes)   down δ i (k − 1) − δ i (k ) ≤ 1 − δ i (τ ), τ = k + 1,…, min(k + Ti − 1, k + T − 1) δ i (k ) − δ i (k − 1) ≤ δ i (τ ), τ = k + 1,…, min(k + Ti up − 1, k + T − 1)

Start  up  and  shut  down  costs  

SU i (k ) ≥ ciSU (k )[δ i (k ) − δ i (k − 1)], SDi (k ) ≥ ciSD (k )[δ i (k − 1) − δ i (k )], SU i (k ) ≥ 0, SDi (k ) ≥ 0.

Capacity  Constraints   Physical  bounds  on  the  storage  device   b b   b xmin ≤ x   (k ) ≤ xmax   b Pb (k ) ≤ Cmax     Power  flow  limits  of  the  DG  units   Pi ,minδ i ( k ) ≤ Pi (     k ) ≤ Pi ,maxδ i ( k )   Bounds  on  controllable  loads  curtailments     β h ,min (k ) ≤ β h (   k ) ≤ β h ,max ( k )   Ramp  up  and  ramp  down  rates  

Pi (k + 1) − Pi (k ) ≤ Ri ,max

The  Receding  Horizon  Approach  

Microgrid  Control  Strategy   Now,  we  incorporate  feedback  and  predicAons  into  control  acAon  on  the  basis  of   opAmizaAon                                                                                                          MODEL  PREDICTIVE  CONTROL  

 

 k    th        hour  demand  

k    t    h      hour  RES  generaAon,  price,  

load  and  RES  predicAons  

    Microgrid operation   optimization problem     Apply first control input

Measurements

Microgrid Decisions/ control actions

An  Example        The  proposed  scheduling  strategy  is  inves6gated  on  an  example  of  microgrid       •   with  4  DG  units,  1  storage,  1  photovoltaic  plant,  cri6cal  and  controllable  loads   •   with  1  hour  sampling  6me,  24  hours  planning  horizon   PV unit

DG unit 3

DG unit 4

Utility grid MV/LV Transformer DG unit 1 Storage unit

DG unit 2

Critical and controllable loads

A  Heuris6c  Algorithm  for  Microgrid  Management   •  No  prac6cal  approaches  to  microgrid  economic  management  have  been  proposed   or  adopted  so  as  to  have  a  prac6cal  benchmark   •  Usually  the  main  aim  is  balancing  of  supplied  and  demanded  powers     The  proposed  heurisAc  algorithm  is  based  on  the  following  assumpAons:     •  no  storage  is  available;   •  power  surplus  sold  to  the  u6lity  grid;   •  the  power  generated  from  the  renewable  energy  sources  is  then  always  u6lized  to   sa6sfy  the  demand;   •  depending  on  the  minimum  cost  among  the  DG  unit  genera6ng  costs  and  the   energy  prices,  the  power  deficit  will  be  sa6sfied  by  either  DG  units  or  the  u6lity   grid;   •  the  DG  units  are  turned  on  from  the  cheapest  to  the  most  expensive  one  un6l  the   demand  deficit  is  covered;   •  the  DG  units  are  run  at  their  maximum  power  capacity.  

Simula6on  Results  (1/3)    InteracAon  with  the  uAlity  grid  

MPC-­‐MILP  

HeurisAc  algorithm  

Simula6on  Results  (2/3)    Unit  commitment  and  dispatch  

MPC-­‐MILP  

HeurisAc  algorithm  

Simula6on  Results  (3/3)   We  compare  the  following  strategies:     MPC-­‐MILP:  feedback  control  law     MILP: open loop solution

Benchmark:  the  24h  horizon  plan  with  no  errors  in  forecasts    

Computa6onal  Burden   Computa6onal  6mes  needed  for  solving  the  MILPs  as  the  predic6on  horizon  grows  

The  solu6on  to  the  op6miza6on   problem  takes  a  much  shorter  6me   than  the  one  hour  sampling  6me.  

Proposed  scheduling  strategy  is   suitable  for  online  applica6ons  

Experimental  Results   Experiments  of  6  hours  were  run  at  Center  for  Renewable  Energy  Sources  and  Saving   (CRES),  Pikermi-­‐Athens,  Greece.   •  grid-­‐connected  microgrid  3-­‐phase  power  line  to  the  public  grid   •  15  minutes  sampling  6me  

Experiment  1:  without  high-­‐level  control;  total  cost  of  27.43€   Experiment  2:  MPC-­‐MILP  with  6-­‐hours  predic6on  horizon;19.6  €  (28.5%  saving)   Experiment  3:  MPC-­‐MILP  with  18-­‐hours  predic6on  horizon;17.9  €  (34.7  %  saving)  

Microgrid  Emission  Reduc6on        Goal:  include  emissions  and  solve  a  mul6-­‐objec6ve  op6miza6on  problem        Emission  func6on  for  a  DG  unit:   E ( P) = α + βP(k ) + γP 2 (k ) + ζeλP ( k )      Approach:   •  Approximate  E(P)  as  a  piecewise  affine  func6on                the  problem  stays  a   MILP   •  Apply  a  weighted  sum  method:  

ωJ r + (1 − ω )σJ e

total  emissions  

total  running  costs   weight  factor  

1  

Preliminary  Results     •  Computa6onal  6mes:  3  s  on   average     •  7.8%  of  increase  in  running  costs  if   emission  reduc6on  is  the  most   important  objec6ve   •  Significant  increase  in  emissions  if   running  costs  are  the  preferred   objec6ve  

Pareto  curve  

1

E-Gotham: A European Artemis Project

27

Thanks  for  your  aWen6on!!