A PTAS for Computing the Supremum of Gaussian Processes

Report 1 Downloads 38 Views
A PTAS for Computing the Supremum of Gaussian Processes Raghu Meka (Microsoft Research)

Gaussian Processes (GPs) Multivariate Gaussian Distribution

Supremum of Gaussian Processes (GPs) Given ((​𝑋↓𝑖 )) want to study

•  Supremum is natural: eg., balls and bins

Supremum of Gaussian Processes (GPs) Given ​𝑣↓1 ,…,  ​𝑣↓𝑛 ∈​𝑅↑𝑑 ,  want to study

•  Union bound: √⁠​log⁠𝑛  .

​𝑣↓2 

​𝑣↓1 

When is the supremum smaller?

Cover times of Graphs

Aldous-Fill 94: Compute cover time Fundamental graph parameter deterministically?

Eg: 𝑐𝑜𝑣𝑒𝑟(​𝐾↓𝑛 )=Θ(𝑛​log⁠𝑛)  •  KKLV00: 𝑂(​(log⁠​log⁠𝑛)𝑐𝑜𝑣𝑒𝑟(𝐺𝑟𝑖𝑑)  ↑2 )   approximation =Θ(𝑛​​ •  Feige-Zeitouni’09: FPTAS log↑2for  ⁠𝑛)trees  

Cover Times and GPs Thm (Ding, Lee, Peres 10): O(1) det. poly. time approximation for cover time.

•  Transfer to GPs Thm (DLP10): Winkler-Zuckerman “blanket-time” conjectures.

•  Compute supremum of GP

Computing the Supremum Question (Lee10, Ding11): PTAS for computing the supremum of GPs?

•  Ding, Lee, Peres 10: 𝑂(1) approximation –  Fernique-Talagrand majorizing measures

Main Result Thm:Given A PTAS computing supremum of Thm: 𝑉⊆for ​𝑅↑𝑑  , a ​𝑑↑𝑂(1) ​the |𝑉|↑​ 𝑂↓𝜖 (1)  det. processes.

algorithm Gaussian to compute (1+𝜖) approx. to

Ding 12: PTAS for computing cover time of bounded degree graphs.

Outline of Algorithm 1. Dimension reduction –  Slepian’s Lemma, Johnson-Lindenstrauss

2. Optimal eps-nets in Gaussian space –  Kanter’s lemma, univariate to multivariate

Dimension Reduction Idea: JL projection, solve in projected space Use deterministic JL – EIO02, S02. V W

•  𝑉⊆​𝑅↑𝑑  •  𝑊=𝑃𝑟𝑜𝑗(𝑉)⊆​𝑅↑𝑘 , 𝑘=𝑂​(log  ⁠|𝑉|/​𝜖↑2 ) .

Analysis: Slepian’s Lemma 𝑊=𝑃𝑟𝑜𝑗(𝑉)

Analysis: Slepian’s Lemma 𝑊=𝑃𝑟𝑜𝑗(𝑉)

•  Enough to solve for W •  Enough to be exp. in dimension

Outline of Algorithm 1. Dimension reduction –  Slepian’s Lemma, Johnson-Lindenstrauss

2. Optimal eps-nets in Gaussian space –  Kanter’s lemma, univariate to multivariate

Epsilon Nets •  Discrete approximations •  Applications: integration, comp. geometry, …

Epsilon Nets for Gaussians Discrete approximations of Gaussian Explicit

Nets in Gaussian space Thm: Explicit 𝜀-net of size (1/​𝜀)↑𝑂(𝑘) .

•  Optimal: Matching lower bound •  Naïve bound: ​(√𝑘/𝜀)↑𝑘  •  Dadush-Vempala’12: ​((log⁠​𝑘)/𝜀)↑𝑘  

Construction of Net

17

Construction of 𝜀-net Simplest possible: univariate to multivariate 𝑘  

1. How fine a net?

𝑘.

2. Naïve: How big1/√ a net?

𝑘

Construction of 𝜀-net Simplest possible: univariate to multivariate 𝑘  

Lem: Granularity 𝛿~𝑓(𝜀) enough.

𝑘

Construction of 𝜀-net This talk: Analyze ‘step-wise’ approximator Even out mass in interval [−𝛿,  𝛿].

−4𝛿−3𝛿−2𝛿 -𝛿 𝛿 ​𝛾↓ℓ𝓁 

2𝛿 3𝛿 4𝛿

Construction of 𝜀-net Take univariate net and lift to multivariate 𝑘  

𝛾

−4−3 𝛿 −2 𝛿 𝛿-​𝛾𝛿↓𝛿 ℓ𝓁 2𝛿3𝛿4𝛿

Lem: Granularity 𝛿~𝑓(𝜖) enough.

𝑘

Dimension Free Error Bounds Thm: For 𝛿~  ​𝜖↑1.5 , 𝜑 a norm,





•  Proof by “sandwiching” •  Exploit convexity critically 𝛾

−4−3 𝛿 −2 𝛿 𝛿-​𝛾𝛿↓𝛿 ℓ𝓁 2𝛿3𝛿4𝛿

Analysis of Error Def: Sym. p,  q. p≼𝑞 (less peaked), if ∀ sym. convex sets K,   𝑝(𝐾)≤𝑞(𝐾).

•  Why interesting? For any norm,

Analysis for Univarate Case Fact: ​𝛾↓ℓ𝓁 ≼𝛾. Spreading away from origin!

Proof:

−4𝛿−3𝛿−2𝛿 -𝛿

𝛿

2𝛿 3𝛿 4𝛿

Analysis for Univariate Case Def: down ​𝛾↓ℓ𝓁 . Fact:​𝛾↓𝑢  𝛾≼=  scaled ​𝛾↓𝑢 . 𝑋←​𝛾For ↓ℓ𝓁 ,𝛿𝑌≪ =𝜖(1− 𝜖)𝑋, ​𝛾push ↓𝑢 =  pdf of 𝑌. Proof: ,  inward compensates earlier spreading.

​𝛾↓𝑢 

Push mass towards origin.

Analysis for Univariate Case Combining upper and lower:

​𝛾↓ℓ𝓁 

​𝛾↓   

​𝛾↓𝑢 ↓   

Lifting to Multivariate Case 𝑘  

𝑘  

​𝛾↓ℓ𝓁 

​𝛾↓   

𝑘  

​𝛾↓𝑢 ↓   

Kanter’s and unimodal,

Key Lemma(77): for univariate: “peakedness”

Dimension free!

Lifting to Multivariate Case 𝑘  

𝑘  

​𝛾↓ℓ𝓁 

​𝛾↓   

Dimension free: key point that beats union bound!

𝑘  

​𝛾↓𝑢 ↓   

Summary of Net Construction 1.  Granularity ​𝜀↑1.5  enough 2.  Cut points outside √⁠𝑘 -ball

Optimal 𝜀-net

Summary of Algorithm 1. Dimension reduction –  Slepian’s Lemma

2. Optimal eps-nets for Gaussians –  Kanter’s lemma

PTAS for Supremum

Open Problems Q: Lee, Peres): Conjecture (Ding, Asymptotically tight connection between GFF and cover time? •  Implies a PTAS for cover time on all graphs.

Open Problems Slepian’s lemma for graphs? Graphs G, H on same set of vertices.

𝐻𝑖𝑡𝑇𝑖𝑚​𝑒↓𝐺 (𝑢,𝑣)≤𝐻𝑖𝑡𝑇𝑖𝑚​𝑒↓𝐻 (𝑢,𝑣),  ∀𝑢,𝑣

⟹𝐶𝑜𝑣𝑒𝑟𝑇𝑖𝑚𝑒(𝐺)≤𝐶𝑜𝑣𝑒𝑟𝑇𝑖𝑚𝑒(𝐻)?

Ding, Lee, Peres 10:

𝐶𝑜𝑣𝑒𝑟𝑇𝑖𝑚𝑒(𝐺)=𝑂(𝐶𝑜𝑣𝑒𝑟𝑇𝑖𝑚𝑒(𝐻)).

Thank you