A revisionary list of formulae for Mechanics of Solids

Report 0 Downloads 42 Views
A revisionary list of formulae for Mechanics of Solids

Formula

Formula symbols

Units

Stress =

applied force cross-sectionalarea

σ=

F A

Strain =

change in length original length

ε=

x L

E=

σ ε

Pa

k=

F δ

N/m

G=

τ γ

Pa

Young’s modulus of elasticity = Stiffness =

stress strain

force extension

Modulus of rigidity =

shear stress shear strain

Thermal strain = coefficient of linear expansion  × temperature rise

ε = αT

Thermal stress in compound bar

σ1 =

Ultimate tensile strength =

(α1 − α 2 ) E1 E 2 A2 T ( A1 E1 + A2 E 2 )

maximum load original cross-sectional area

Moment = force × perpendicular distance

Pa

Pa Pa

M = Fd

stress stress bendingbending momentmoment σ M E = = = = distancedistance from neutral of area of areay fromaxis neutralsecond axis moment second moment I R ,s modulus Young ,sYoung modulus = = radius ofradius curvature of curvature

Nm N/m3

Torque = force × perpendicular distance

T = Fd

Nm

Power = torque × angular velocity

P = Tω = 2πnT

W

Horsepower

1 hp = 745.7 W

Torque = moment of inertia × angular acceleration

T = Iα

Nm

shear stress torque = radius polar second moment of area (rigidity)(angle of twist) = length

τ T Gθ = = r J L

N/m3

Average velocity = Acceleration =

distance travelled time taken

change in velocity time taken

v=

s t

m/s

a=

v−u t

m/s2

Mechanics of Solids, Second Edition © 2016 C. Ross, J. Bird and A. Little. Published by Taylor & Francis. All rights reserved.

Formula

Formula symbols

Units

Linear velocity

v = ω r

m/s

Angular velocity

ω=

Linear acceleration

a = rα

θ = 2πn t

rad/s m/s2 m/s

Relationships between initial velocity u, final velocity v, displacement s, time t and constant acceleration a

 v 2 = v1 + at   1 s = ut + at 2 2  2 2  v = u + 2as 

rad/s

Relationships between initial angular velocity ω1, final angular velocity ω2, angle θ, time t and angular acceleration α

 ω 2 = ω1 + αt  1 2  θ = ω 1t + α t 2   ω 12 = ω 22 + 2αθ

m (m/s)2

rad (rad/s)2

Momentum = mass × velocity

kg m/s

Impulse = applied force × time = change in momentum

kg m/s

Force = mass × acceleration

F = ma

N

Weight = mass × gravitational field

W = mg

N

Centripetal acceleration

a=

v2 r

m/s2

Centripetal force

F=

mv 2 r

N

mass Density = volume

ρ=

m V

kg/m3

Work done = force × distance moved

W = Fs

Efficiency = Power =

J

useful output energy input energy

energy used (or work done) = force × velocity time taken

P=

E = Fv t

W

Potential energy = weight × change in height 1 kinetic energy = × mass × (speed)2 2

Ep = mgh 1 Ek = mv2 2

J

kinetic energy of rotation 1 = × moment of inertia × (angular velocity)2 2

Ek =

1 2 Iω  2

J

Mechanics of Solids, Second Edition © 2016 C. Ross, J. Bird and A. Little. Published by Taylor & Francis. All rights reserved.

J

Formula

Formula symbols

Units

Frictional force = coefficient of friction × normal force

F = μN

N

Angle of repose, θ, on an inclined plane

tan θ = μ

Efficiency of screw jack

η=

tan θ tan(λ + θ )

displacement acceleration

T = 2π

y a

s

mass stiffness

T= 2π

m k

s

 simple pendulum

T = 2π

L g

s

compound pendulum

T = 2π

(k G2 + h 2 ) gh

s

SHM periodic time T = 2 π T = 2π

Force ratio =

load effort

Movement ratio = Efficiency =

distance moved by effort distance moved by load

force ratio movement ratio

Kelvin temperature = degrees Celsius + 273 Quantity of heat energy = mass × specific heat capacity × change in temperature  New length = original length + expansion

Q = mc(t2 – t1)

J

L2 = L1 [1 + α (t2 – t1)]

m

New surface area = o riginal surface area + increase in area

A2 = A1 [1 + β (t2 – t1)]

m2

New volume = original volume + increase in volume

V2 = V1 [1 + γ  (t2 – t1)]

m3

force area = density × gravitational acceleration × height

Pressure =

F A p = ρgh 1 bar = 105 Pa

p=

Absolute pressure = gauge pressure + atmospheric  pressure

Mechanics of Solids, Second Edition © 2016 C. Ross, J. Bird and A. Little. Published by Taylor & Francis. All rights reserved.

Pa

Circular segment In Figure F1, shaded area =

R2 (α − sin α ) 2

Figure F1

Summary of standard results of the second moments of areas of regular sections Shape

Position of axis

Second moment of area, I

(1) Coinciding with B

BD 3 3 DB 3 3

Rectangle length D breadth B

(2) Coinciding with D (3) Through centroid, parallel to B

BD 3 12

(4) Through centroid, parallel to D

DB 3 12

Triangle Perpendicular height H base B

(1) Coinciding with B (2) Through centroid, parallel to base (3) Through vertex, parallel to base

BH 3 4

(1) Through centre perpendicular to plane (i.e. polar axis)

π D4 π R4 or 32 2

Circle radius R diameter D

(2) Coinciding with diameter

π D4 π R4 or 64 4

(3) About a tangent

5π D 4 5π R 4 or 64 4

Coinciding with diameter

π R4 8

Semicircle radius R

BH 3 12 BH 3 36

Mechanics of Solids, Second Edition © 2016 C. Ross, J. Bird and A. Little. Published by Taylor & Francis. All rights reserved.

Bending stresses in beams σ M E = = y I R



I

M σ = Z y

Z=



Beam deflections due to bending M = E I

d2 y dx 2

Torsion τ T Gθ = = r J l



) (

(

)

)

σθ =

1 1 σ + σ y + σ x − σ y cos 2θ + τ xy sin 2θ 2 x 2

τθ =

1 σ − σ y sin 2θ – τ xy cos 2θ 2 x tan 2θ =





2τ xy x

−σy

)

=

)

(



1 1 σx + σ y + 2 2

x

−σy

)

−σy

)

2

+ 4 τ xy 2

σ 2 = minimum principal stress =



)

(

1 1 σx + σ y − 2 2



y

− σx



tan 2θ =



1 σ − σx τ = ± 4 y

2 τ xy

(

x

2

)



)

τ =



σ1 =



σ2 =

τ = ±

16  M− πd 3  16 πd 3

)

ε2 =

1 1 ε + εy − 2 x 2



σx =



σy =



σx =



σy =



τ xy = G γ xy

E

(1 − ν 2 E

(1 − ν 2



x

− εy

)

− εy

)

(ε ε + vε ) )( ε + vε ) )(

x

x

y

y

x

2

2

+ γ xy 2 + γ xy 2

E  1 − ν ε + νε  x y 1 + ν 1 − 2ν 

(

)(

)

(

)

E  1 − ν ε + νε  y x 1 + ν 1 − 2ν 

(

σH =



)(

)

(

)

+ τ xy

2

( M 2 + T 2 )  ( M 2 + T 2 ) 

PR ηL t

σL =

PR 2 ηc t

σ =

RP 2η t

Energy methods + 4 τ xy 2

∂U e



∂P

=u

( )

UT =

∂U e ∂R



σ2 × volume of rod 2E

WD = d U b =

M 2 +T 2

(



2 16  M+ πd 3 

)

1 1 ε + εy + 2 x 2

(σ1 − σ 2 )



(

)

ε1 =

Ue = 2

− εy

x

Membrane theory for thin-walled circular cylinders and spheres

σ 1 = maximum principal stress



γ xy



P=Tω

Complex stress and strain

(

tan 2θ =



M2 × dx 2E I

τ2 T 2 × dx Us = × volume 2G 2G × J

Theories of elastic failure

σ 1 = σ yp

σ 3 = σ ypc

) σ 3 − v (σ 1 + σ 2 ) = σ ypc (

σ 1 − v σ 2 + σ 3 = σ yp

Mechanics of Solids, Second Edition © 2016 C. Ross, J. Bird and A. Little. Published by Taylor & Francis. All rights reserved.

(σ12 + σ 22 + σ 32 ) − 2v (σ1σ 2 + σ1σ 3 + σ 2σ 3 ) = σ yp2



I xy = A h k

σ 1 – σ 3 = σ yp



tan 2θ =



(σ1 − σ 2 ) + (σ1 − σ 3 ) + (σ 2 − σ 3 ) 2

2

2

= 2 σ yp

2

Thick cylinders and spheres σr = A −



σ=

B

σθ = A +



r2

 ρω 2 r 2  2 B B σ = A+ A+ − + 1 3 v  8  θ 3 r2   2r 3

(

)

The buckling of struts P= PR =

σ yc × A

l2

2

σc =

L  a 0  +1  k 

P Δ P Pe y + A P −P I e

(

Effective lengths of struts (L0) Type of strut

l

Euler

BS449

L0 = l

L0 = l

L0 = l

l

L0 = 0.5l L0 = 0.7l L0 = 2l

(

)

M cos α y I xx

+

(

) ( ) − 12 ( I

) ) sec 2θ

1 1 I + I y + I x − I y sec 2θ 2 x 2



IV



σ=



 I tan θ  β = tan −1  − UU  IVV  

)



+ Iy

x

x

− Iy

M cos θ v M sin θ u + IUU IVV

0.85l

)

M sin α x I yy

F bI

τ=



y dA τ =

(

)

F B − Z y I

Composites           

ε1   S11   ε 2   S12   ε 3   S13  = ε4   0 ε5   0   ε 6   0

S12

S12

0

0

S22

S23

0

0

S23

S33

0

0

0

0

S44

0

0

0

0

S55

0

0

0

0

0   0   0   0  0   S66  

 1/ E 0 −υ 21 / E2 1  1 / E2 0 S =  −υ12 / E1  0 0 1 / G12 

( )

0.7l

2l

Unsymmetrical bending of beams σ=

)

IU =





− Ix

Shear stresses in bending and shear deflections

π 2 EI



( 1 = (I 2

y



B r2

(I

2 I xy



 1  1 =  EE G S  1 − υ12 υ 21  1 2 12



 1 0 0 R = 0 1 0   0 0 2

(

( )

)

( Q * = (T

(Q ) = ( S )

−1



Mechanics of Solids, Second Edition © 2016 C. Ross, J. Bird and A. Little. Published by Taylor & Francis. All rights reserved.

)

   

)−1 (Q ) ( R ) (T ) ( R )−1

 N   A B   εo    M  = B D      κ 

σ1   σ2   σ3   σ4  σ5   σ 6 

    

The Deviatoric strain energy (Tsai-Hill) ­failure criterion σ 12 F12



+

σ 22 F22

+

τ 122



F122

σ1 σ 2 F12

The Interactive tensor polynomial (Tsai-Wu) failure criterion f1σ 1 + f2σ 2 + f11σ 12 + f22σ 22 + f66 τ 122 + 2 f12σ 1σ 22 = 1

=1

The matrix displacement method

( ) k0

      

  AE  = l   

Yi Mi Yj Mj

u10

v10

u20

C2

CS

−C 2

CS

S2

− CS

−C 2

−CS

C2

− CS

−S 2

CS

  12 / l 3    2  = EI  −6 / l  −12 / l 3     −6 / l 2 

−6 / l 2 4/l 6 / l2 2/l

v20

f1 =

1 1 − F1T F1C

f11 =

1 F1T F1C



f2 =

1 1 − F2 T F2 C

f22 =

1 F2 T F2 C

u10

− CS   −S 2   CS  S 2 

−12 / l 3 6 / l2 12 / l 3 6 / l2



1

v10



u20

f66 =

v2 0 −6 / l 2 2/l 6 / l2 4/l

       

1 F122

f12



2 1 1 =−   2  F1T F1C F2 T F2 C 

vi   θi   vj   θj  

The finite element method

(ko )

    1  =∫  4Δ 2     

b1

0

b2

0

b3

0

0

c1

0

c2

0

c3

c1   c2    1 c3   1 E  μ b1    0 b2   b3 

 μ 0  b1 b2  1 0  0 0  0 γ   c c  1 2

b3

0

0

c1 c2

c3

b1 b2

Mechanics of Solids, Second Edition © 2016 C. Ross, J. Bird and A. Little. Published by Taylor & Francis. All rights reserved.

0

0   c3  t dA  b3 