ABSTRACT RESULTS CONCLUSIONS INTRODUCTION

Report 2 Downloads 37 Views
Graduate   Category:  Physical  and  Life  Sciences   Degree  Level:  Ph.D.  Candidate   Abstract  ID#676

 

 PredicAon  and  VerificaAon  of  the  Extended  AcAve  Site  in  E.coli  DNA  Polymerase  III     Timothy  A.  Coulther,  Ramya  Parasuram,  Mary  Jo  Ondrechen,  Penny  J.  Beuning   Department  of  Chemistry  &  Chemical  Biology  

ABSTRACT  

           Polymerases  catalyze  the  synthesis  of  DNA  efficiently  and  with  high  fidelity  in   order   to   preserve   the   genomic   informaAon.   Pol   III,   a   replicaAve   polymerase   in   E.coli,  is  able  to  insert  the  correct  nucleoAde  with  an  error  rate  of  only  1  in  ~105.   In   order   to   understand   the   basis   for   Pol   III   catalysis,   selecAvity,   and   fidelity,   computaAonal   methods   were   used   to   predict   the   funcAonal   residues   in   alpha,   the   catalyAc   subunit   of   Pol   III.   Computed   electrostaAc   and   phylogeneAc   data   about   each   amino   acid   residue   in   Pol   III   are   then   uAlized   by   ParAal   Order   OpAmum   Likelihood   (POOL),   a   machine   learning   methodology   developed   at   Northeastern,   to   predict   the   acAve   site   residues   that   parAcipate   in   the   biochemical  funcAon  of  Pol  III.              POOL  predicts  an  extended  acAve  site  for  alpha,  where  residues  outside  the   immediate   vicinity   of   the   substrate   contribute   to   catalysis.   Enzyme   variants   with   mutaAons   at   the   POOL-­‐predicted   residues   were   assayed   for   their   ability   to   catalyze  DNA  synthesis.  Many  of  the  variants  show  diminished  or  complete  loss   of   acAvity,   indicaAng   their   importance   in   Pol   III   funcAon.   Work   is   ongoing   to   determine   kineAc   parameters   of   the   variants   with   diminished   catalyAc   ability   relaAve   to   the   wild-­‐type   enzyme.   The   melAng   temperatures   for   alpha   and   its   variants  are  not  significantly  different,  indicaAng  the  loss  of  acAvity  is  in  fact  due   to   local   effects   rather   than   loss   of   structural   stability.   POOL   has   allowed   us   to   idenAfy   and   characterize   residues   in   the   extended   acAve   site   of   alpha,   contribuAng  to  our  understanding  of  how  this  polymerase  funcAons.  

                                   

 Images

Shell   First   First   Second   First   Second   First   Second   First   First   Second   Remote   First   Second   First   Second  

*Known  catalyAc  residues   Distal  residues  are  in  red  

Variant   -­‐-­‐-­‐   -­‐-­‐-­‐   Y340F   Y340S   -­‐-­‐-­‐   D405N   R390A   Y686F   Y686A   R709A   K553A   K758L   D630N   D630A   R362A   R362K   E547Q   E547A   H760L   E688Q  

AcBvity   -­‐-­‐-­‐   -­‐-­‐-­‐   Less  acAve   Less  acAve   -­‐-­‐-­‐   InacAve   Less  acAve   AcAve   InacAve   Less  acAve   InacAve   Less  acAve   Less  acAve   AcAve   InacAve   Less  acAve   AcAve   AcAve   InacAve   InacAve  

    •  Natural  acAve  sites  can  be  built  in  layers  so  that  they  are  spaAally  extended  

Verified  AcAve  Site  

•  AcAve  site  residues  can  be  predicted  accurately  by  POOL  from  a  3-­‐D  structure   •  DNA  Polymerase  III  is  predicted  to  have  a  spaAally  extended  acAve  site   •  Mutagenesis   and   acAvity   assays   confirm   the   importance   of   many   predicted   residues  

WT Y340F R390A R709A

Time  

Primer  extension  assays8  

Top   15   POOL   predicted   residues8.   Known   catalyAc   aspartates   are   colored   red.   First   shell   residues   are   colored   purple.   Distal   residues   are   colored  green.  The  incoming  dNTP  is  also  shown.    

CONCLUSIONS  

  •   3  of  the  top  predicted  residues  are   known  to  be  essenAal  for  catalysis   •   6  of  the  12  studied  residues   showed  complete  loss  of  acAvity   upon  a  mutaAon   • 11  of  the  12  studied  residue  showed   some  acAvity  loss  upon  a  mutaAon  

Time  

INTRODUCTION      

       Alpha  is  the  catalyAc  core  of  E.  coli  DNA  polymerase   III,   responsible   for   replicaAve   DNA   synthesis   and   a   member   of   the   C-­‐family   polymerases.   While   the   three   catalyAc  aspartate  residues  are  known,  not  much  else  is   known  about  the  acAve  site  since  this  family  shares  lille   homology  with  the  other  polymerase  families.             To   understand   the   acAve   site   more   fully,   the   funcAonal   residue   predictor   ParAal   Order   OpAmum   Likelihood1,  developed  here  at  Northeastern  University,   was  uAlized.  It  is  a  machine  learning  method  that  uAlizes   inputs   from   three   different   programs   to   generate   a   complete  rank  ordered  list  of  funcAonal  residues2,3,4.             In   many   cases,   including   here,   POOL   predicts   an   extended   acAve   site,   where   residues   distal   to   the   substrate   sAll   play   funcAonal   roles5,6,7.   Since   these   cannot   be   readily   recognized,   computaAonal   programs   like  POOL  are  necessary  for  idenAficaAon.  Experimental   verificaAon   through   site-­‐directed   mutagenesis   was   performed  to  confirm  the  computaAonal  predicAons.    

RESULTS  

Extension  

    Residue     Asp403*     Asp401*       Tyr340     Asp555*       Asp405     Arg390     Tyr686       Arg709   Lys553     Lys758       Asp630     Arg362       Glu547       His760       Glu688  

 

Kinetic  Parameters  for  Alpha  and  Variants Catalytic  Efficiency   -­‐1 Fold  Change kcat  (min ) KM  (µM) -­‐1 -­‐1 (min µM ) 47  ±  11 116  ±  29 0.40  ±  0.14 -­‐ 25  ±  4.6 125  ±  19 0.20  ±  0.05 2 14  ±  8   877  ±  188 0.016  ±  0.011 26 59  ±  22 102  ±  10 0.58  ±  0.22 0.69

Ÿ13  of  the  17  variants  assay  showed  decreased  or  complete  loss  of  acAvity   •  Three  of  the  alpha  variants  with  some  acAvity  have  been  fully  characterized  

REFERENCES  

    1.W.  Tong,  Y.  Wei,  L.  F.  Murga,  M.  J.  Ondrechen  and  R.  J.  Williams,  PLoS  Comput  Biol  2009,  5.   2.  M.  J.  Ondrechen,  J.  G.  Cli`on  and  D.  Ringe,  Proc  Natl  Acad  Sci  U  S  A  2001,  98.   3.  J.  A.  Capra,  R.  A.  Laskowski,  J.  M.  Thornton,  M.  Singh  and  T.  A.  Funkhouser,  PLoS  Comput  Biol  2009,  5.   4.  S.  Sankararaman  and  K.  Sjolander,  Bioinforma