Adiabatic preparation of a Heisenberg antiferromagnet using an ...

Adiabatic preparation of a Heisenberg antiferromagnet using an optical superlattice Michael Lubasch, Valentin Murg, Ulrich Schneider, J. Ignacio Cirac and Mari-Carmen Bañuls Max Planck Institute of Quantum Optics, Garching, Germany University of Vienna, Austria Ludwig-Maximilians-University Munich, Germany

Main ideas

Experimental proposal Adiabaticity conditions for the total lattice for a sublattice

Effect of holes and harmonic trap

Motivation

Motivation recent experimental realization of fermionic Hubbard model in optical lattice [Schneider et al., Science’08; Jördens et al., Nature’08]

U

ˆ = H

x

t

t

X

hl,mi,

x † (cl,

x cm, +

† cm,

x cl, ) + U

x X l

n ˆ l," n ˆ l,#

Motivation

limit of strong interactions U

x ˆ = H

t

X

hl,mi,

t † (˜ cl,

t : t-J model

x

x c˜m, +

c˜†m,

c˜l, ) + J

x

2

J := 4t /U

J

X

hl,mi

x

~l · S ~m (S

n ˆln ˆm ) 4

Motivation experimental realization of various phases:

ˆ +V H

X l

taken from [Schneider et al., Science’08]

(l

l0 ) 2 n ˆl

Experimental proposal

Experimental proposal 1.

|BI> V1

2. | >

| >

| >

| >

| > V2

3.

|AFM> V2

Experimental proposal 1.

|BI> V1

2. | >

| >

| >

| >

| > V2

3.

|AFM> V2

1. band insulating ground state |BI> [Schneider et al., Science'08]

Experimental proposal 1.

|BI> V1

2. | >

| >

| >

| >

| > V2

3.

|AFM> V2

2. dimerized ground state [Trotzky et al., PRL'10]

Experimental proposal 1.

|BI> V1

2. | >

| >

| >

| >

| > V2

3.

|AFM> V2

3. quantum Heisenberg antiferromagnet |AF M i

Experimental proposal 1.

|BI> V1

2. | >

| >

| >

| >

| > V2

3.

|AFM> V2

Experimental proposal 1.

|BI> V1

2. | >

| >

| >

| >

| > V2

3.

|AFM> V2

Advantage over direct preparation of Mott insulator: Band insulator has less entropy!

Adiabaticity conditions for the total lattice

Adiabaticity on total lattice experimental observable: squared staggered magnetization 2 Mstag

1 = 2 N

1

N X

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM

1D

m

2

0,8 N=22 N=42 N=62

0,6 0,4 0

10

20

1D

30

40

ramping time T

50

Adiabaticity on total lattice 1D

experimental observable: squared staggered magnetization 1 = 2 N

1

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM

T(m =0.85)

2 Mstag

N X

1D

m

2

0,8

0,4 0

10

20

30

40

ramping time T

2

N=22 N=42 N=62

0,6

50

Landau-Zener formula: T / 1/

50 40 40 20 30 0 2000 20 2 N 10 0 10 20 30

40

lattice size N

2

1D: gap closes at end of protocol [Matsumoto et al., PRB’01]

/ 1/N

50

!

T /N

2

60

Adiabaticity on total lattice experimental observable: squared staggered magnetization

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM 1 0,8 0,6 0,4 0,2

2D

m

1 = 2 N

2

2 Mstag

N X

2D

N=4x4 N=6x6 N=10x10 2

4

6

ramping time T

8

Adiabaticity on total lattice experimental observable: squared staggered magnetization 1 = 2 N

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM 1 0,8 0,6 0,4 0,2

2D

m

2

2 Mstag

N X

2D

N=4x4 N=6x6 N=10x10 2

4

6

ramping time T

8

high magnetization in short ramping time

Adiabaticity conditions for a sublattice

Adiabaticity on sublattice 1D

experimental observable: squared staggered magnetization L X 1 2 ~l · S ~m i : m2 (T ) := M 2 (T )/M 2 Mstag = 2 ( 1)l+m hS stag stag,AFM L l,m=1

1

m

2

0,8 L=22 L=42 L=62

0,6 0,4 0

10

20

30

40

ramping time T

50

Adiabaticity on sublattice 1D

experimental observable: squared staggered magnetization L X 1 2 ~l · S ~m i : m2 (T ) := M 2 (T )/M 2 Mstag = 2 ( 1)l+m hS stag stag,AFM L l,m=1

T(m =0.85)

1

m

2

0,8

0,4 0

10

20

30

40

ramping time T

effective local gap:

2

L=22 L=42 L=62

0,6

50

/ 1/L

50 40 40 20 30 0 20 10 0 10

2000

L 20

2

30

40

sublattice size L

!

T / L2

50

Adiabaticity on sublattice 1D

experimental observable: squared staggered magnetization L X 1 2 ~l · S ~m i : m2 (T ) := M 2 (T )/M 2 Mstag = 2 ( 1)l+m hS stag stag,AFM L l,m=1

T(m =0.85)

1

m

2

0,8

0,4 0

10

20

30

40

ramping time T

effective local gap:

2

L=22 L=42 L=62

0,6

50

/ 1/L

50 40 40 20 30 0 20 10 0 10

2000

L 20

2

30

40

sublattice size L

!

T / L2

high magnetization in short ramping time on small part

50

Effect of holes

Effect of holes † (˜ cl,

c˜m, +

† c˜m,

ˆ spin c˜l, ) + H

=2

=1

=0

hl,mi,

=3

t

=4

ˆ = H

X

1 0,5 0 0,1

one hole one particle

0 0,08 0,04 0 0,16 0,08 0 0,08 0,04

lattice site l

1D

Effect of holes t

† (˜ cl,

c˜m, +

† c˜m,

ˆ spin c˜l, ) + H

=3

=2

=1

=0

hl,mi,

=4

ˆ = H

X

1 0,5 0 0,1

one hole one particle

0 0,08 0,04 0 0,16 0,08 0 0,08 0,04

lattice site l

hole spreads as free particle: velocity v = 2t

1D

Effect of holes ˆ = H

t

X

† (˜ cl,

c˜m, +

† c˜m,

ˆ spin c˜l, ) + H

hl,mi, -16

energy increase:

Espin

-16,5

~l · S ~l+1 i| Espin ⇡ |hS

-17 -17,5 -18

0

2

4

6

8

10

6

8

10

time 0,09

M

2

0,08 0,07 0,06 0,05

0

2

4

time

1D

Effect of holes ˆ = H

t

X

† (˜ cl,

c˜m, +

† c˜m,

hl,mi,

J

Espin

~l · S ~l+1 i| Espin ⇡ |hS

-17 -17,5 0

2

4

6

8

10

6

8

10

time 0,09 0,08

M

2

~l · S ~m S

energy increase:

-16,5

0,07 0,06 0,05

X

hl,mi

-16

-18

ˆ spin c˜l, ) + H

0

2

4

time

a)

b)

1D

Effect of holes ˆ = H

t

X

† (˜ cl,

c˜m, +

† c˜m,

hl,mi,

J

~l · S ~m S

energy increase:

-16,5

Espin

X

hl,mi

-16

~l · S ~l+1 i| Espin ⇡ |hS

-17 -17,5 -18

ˆ spin c˜l, ) + H

0

2

4

6

8

10

a)

b)

time 0,09

M

2

0,08

drastic magnetization reduction

0,07 0,06 0,05

0

2

4

time

6

8

10

1D

Effect of holes experimental observable: squared staggered magnetization 1 = 2 N

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM

0,8 0,6 0,4

2

m (L=42)

2 Mstag

N X

0,2 0

1D

2 holes on 84 sites 4 holes on 86 sites 10 20 30 40 50

ramping time T

Effect of holes 1D

experimental observable: squared staggered magnetization

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM

0,8 0,6

2

0,4 0,2 0

20

T(m =0.85)

1 = 2 N

2

m (L=42)

2 Mstag

N X

2 holes on 84 sites 4 holes on 86 sites 10 20 30 40 50

ramping time T

hole arrival

15 10 5 0

10

15

20

25

sublattice size L

30

Effect of holes 1D

experimental observable: squared staggered magnetization

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM 20

0,8 0,6

2

0,4 0,2 0

T(m =0.85)

1 = 2 N

2

m (L=42)

2 Mstag

N X

2 holes on 84 sites 4 holes on 86 sites 10 20 30 40 50

ramping time T

hole arrival

15 10 5 0

10

15

20

25

sublattice size L

drastic magnetization reduction

30

Harmonic trap

Harmonic trap ˆ =H ˆ kin + H ˆ spin + V H

X

(l

2

l0 ) n ˆl

l

=2

=1

=0

=3 =4 =5 =6 =7 =8

0 0,1

=9

=6 =7

0 0,1

=10

0 0,1

=8

0 0,2

0 0,1

=10

=1 =2 =3 =4

0 0,2

=9

=5

0 0,2

0 0,1

1 0,5 0 0,4 0,2 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1

=0

1 0,5 0 0,4 0,2 0 0,2

lattice site l

lattice site l

no trap

weak trap

1D

Harmonic trap ˆ =H ˆ kin + H ˆ spin + V H

X

(l

2

l0 ) n ˆl

l

=2

=1

=0

=3 =4 =5 =6 =7 =8

0 0,1

=9

=6 =7

0 0,1

=10

0 0,1

=8

0 0,2

0 0,1

=10

=1 =2 =3 =4

0 0,2

=9

=5

0 0,2

0 0,1

1 0,5 0 0,4 0,2 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1

=0

1 0,5 0 0,4 0,2 0 0,2

lattice site l

lattice site l

no trap

weak trap

1D

Harmonic trap ˆ =H ˆ kin + H ˆ spin + V H

X

(l

2

l0 ) n ˆl

l

=2

=1

=0

=3 =4 =5 =6 =7 =8

0 0,1

=9

=6 =7

0 0,1

=10

0 0,1

=8

0 0,2

0 0,1

=10

=1 =2 =3 =4

0 0,2

=9

=5

0 0,2

0 0,1

1 0,5 0 0,4 0,2 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1 0 0,2 0,1

=0

1 0,5 0 0,4 0,2 0 0,2

lattice site l

lattice site l

no trap

weak trap

1D

Harmonic trap experimental observable: squared staggered magnetization

2

m (L=82)

2 Mstag

1 = 2 N

N X

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM

0,6 0,4 0,2 0

10

20

1D

V=0.004J V=0.006J V=0.02J 30 40 50

ramping time T

Harmonic trap 1D

experimental observable: squared staggered magnetization 2 Mstag

1 = 2 N

N X

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM

0,4 0,2 0

10

20

V=0.004J V=0.006J V=0.02J 30 40 50

ramping time T

2

0,6

T(m =0.85)

2

m (L=82)

50 40 30 20 10 0

10

20

30

40

sublattice size L

50

Harmonic trap 1D

experimental observable: squared staggered magnetization 2 Mstag

1 = 2 N

N X

l,m=1

~l · S ~m i : m2 (T ) := M 2 (T )/M 2 ( 1)l+m hS stag stag,AFM

0,4 0,2 0

10

20

V=0.004J V=0.006J V=0.02J 30 40 50

nl(T=50)

ramping time T

2

0,6

T(m =0.85)

2

m (L=82)

50 40 30 20 10 0

10

20

30

40

sublattice size L

50

1 0,5

strong trap: hole-free case lattice site l

Conclusions

Conclusions

feasible timescales

1.

|BI> V1

2. | >

| >

| >

| >

| > V2

3.

|AFM> V2

Conclusions

feasible timescales sublattice adiabaticity: governed only by its size

1.

|BI> V1

2. | >

| >

| >

| >

| > V2

3.

|AFM> V2

Conclusions

feasible timescales sublattice adiabaticity: governed only by its size

1.

|BI> V1

2. | >

| >

| >

| >

| > V2

destructive effect of holes: controlled by harmonic trap

3.

|AFM> V2

Conclusions

feasible timescales sublattice adiabaticity: governed only by its size

1.

|BI> V1

2. | >

| >

| >

| >

| > V2

destructive effect of holes: controlled by harmonic trap

3.

|AFM>

details: [M. Lubasch, V. Murg, U. Schneider, J. I. Cirac, M.-C. Bañuls, PRL 107, 165301 (2011)]

V2