Microbial
electrosynthesis
and
anaerobic
fermentation: An economic evaluation for acetic acid production from CO2 and CO Xenia Christodoulouβ and Sharon B. Velasquez-Ortaβ * β
School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture
and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom * Corresponding author: Phone: +44 (0) 191 222 7278; e-mail: sharon.velasquez-orta@ ncl.ac.uk Table of content: Table SI- 1: Selectivity and conversion rates...................................................................................... 2 Table SI- 2: Variables details of chemical processes; methanol carbonylation and ethane direct oxidation, and biological processes; MES and AF ............................................................................. 3 Table SI- 3: Energy costs per MWh from different technologies and acetic acid production costs (Β£/kg) of the Integrated process ........................................................................................................... 4 Table SI- 4: Purchased equipment costs for acetic acid production for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). ................................................................................................................................................. 5 Table SI- 5: Investment operating costs and production costs for acetic acid production. Total and detailed variable costs are also shown for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). ........................ 6 Table SI- 6: Acetic acid production cost of integrated process at different production rates ............. 7 Table SI- 7: Purchased equipment costs for acetic acid production for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). ................................................................................................................................................. 8 Table SI- 8: Investment operating costs and production costs for acetic acid production. Total and detailed variable costs are also shown for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). ...................... 10 Table SI- 9: Acetic acid production cost of integrated process at different production rates ........... 11
1
S1: Materials costs To calculate the reactants flowrate and obtain final reactants quantities the values in Table S1 were used. Table SI- 1: Selectivity and conversion rates Methanol Carbonylation Selectivity (%) πΆπ»3 ππ»= 99.5 πΆπ= 94 Conversion rate to πΆπ»3 ππ»= 90.5 yield (%) πΆπ= 88.35
Ethane Oxidation πΆπ»3 πΆπ»3=99 π2=94 πΆπ»3 πΆπ»3=90 π2=88
2
AF πΆπ= 94 π»2 π=99 πΆπ= 99 π»2 π=90
MES πΆπ2=94 π»2 π=99 πΆπ2=58.5 π»2 π=90
S2: Operating costs variables The variables for calculating the operating costs of methanol carbonylation, ethane direct oxidation, anaerobic fermentation and microbial electrosynthesis are listed in Table S2.
Table SI- 2: Variables details of chemical processes; methanol carbonylation and ethane direct oxidation, and biological processes; MES and AF Maintenance (labour & materials) Operating labour Fixed cost
Laboratory costs Supervision Plant overheads Capital charges Rates (taxes) Insurance Licence fees
Variable cost
Miscellaneous materials Raw materials (Inc. catalyst) Utilities
Shipping & packaging
Chemical Processes 3% of fixed capital cost
Biological Processes 5% of fixed capital cost 20 men of Β£25,000 per year 2 man of Β£30,000 per each year (small plants thus one man plus one extra man allowed on days) 20% of operating labour 20% of operating labour 4 people of Β£50,000 per year No supervision will be each needed 50% of operating labour 50% of operating labour 6% of fixed capital cost 10% of fixed capital cost 2% of fixed capital cost 2% of fixed capital cost 1% of fixed capital cost 1% of fixed capital cost 1% of fixed capital cost 1% of fixed capital cost 10% of maintenance cost 5% of maintenance cost Dependent of the process Dependent of the process Dependent of the process Dependent of the process (only electricity) Negligible Negligible
S3: Energy and acetic acid production costs
3
Table SI- 3: Energy costs per MWh from different technologies and acetic acid production costs (Β£/kg) of the Integrated process Energy sources
Cost (Β£/MWh)
Acetic acid price from Integrated (Β£/kg)
Onshore wind
80
0.23
Gas
130
0.24
Nuclear
105
0.238
Coal
128-184
0.24-0.28
Offshore wind
147
0.25
Solar photovoltaics 171
0.26
4
process
S4: Values reported in the main manuscript in British pounds are here shown in Euros with an exchange rate of 1.17 obtained on 11/08/2016. Table SI- 4: Purchased equipment costs for acetic acid production for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). Methanol Carbonylation (Smejkal et al., 2005) Main process major equipment Compressor Pre-Heater Reactor Cooler Mixing tank Tank Distillation column Catalyst separator Gas separator Recycle Electrodes Total (β¬/year): Total (β¬/ton):
Cost (β¬) Ethane direct oxidation (Smejkal et al., 2005)
2575615 132647.6 497434.9
6123996 88430.94 154755.9
-
353730.8 -
1547579 1346476
93928.77 2099656
9868394
-
66302.73 16029000
55252.08 8892000
80.14
44.46
5
AF
MES
Integrate d process
20196.5 4 8916.57
20196.54
15503.6 7 2337.66
16170.5 7 17833.1 4 15503.6 7 2337.66
1989 48943.4 4 489.43
1989 351 54185.0 4 541.85
2340 16170.57 351 83649.15
25202.97 15503.67 2337.66
418.23
Table SI- 5: Investment operating costs and production costs for acetic acid production. Total and detailed variable costs are also shown for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y).
Investment cost (β¬/t): Operating cost (β¬/t): Detailed variable cost: Raw material (β¬/t) Electricity (β¬/t) (Bio)catalyst (β¬/t) Total variable cost (β¬/t):
Methanol Carbonylation (Smejkal et al., 2005) 305.37
Costs (β¬) Ethane direct AF oxidation (Smejkal et al., 2005) 302.44 1869.66
MES
Integrated process
2070.9
1598.22
312.39
134.55
4851.99
1692.99
2783.43
148.59
73.71
3424.59
196.56
1809.99
0.78 119.34
2.81 15.22
249.32 3.86
283.14 4.09
265.59 3.97
268.71
91.75
3677.77
483.79
2079.55
43.67
42.79
445.30
1209.19
703.87
Acetic acid production cost (β¬/kg):
6
Table SI- 6: Acetic acid production cost of integrated process at different production rates Integrated process
Plant capacity Total investment costs (β¬/year) Operating costs (β¬/year) Production costs (β¬/Kg) Production AF rates per batch MES (moles per day) Batch (tonnes)
200 t/y 319702
2000 t/y 1247454
200 kt/y 19770660
Methanol Ethane carbonylation Direct Oxidation 200 kt/y 200 kt/y 20904135 14588418
521024
4047849
391000000
29820960
14809860
0.25
2.01
1.94
0.30
0.12
4550
45500
75956
9726048
9726048
4550
45500
75956
1
10
1000
Continuous
Continuous
7
S5: Values reported in the main manuscript in British pounds are here shown in US Dollars with an exchange rate of 1.30 obtained on 11/08/2016. Table SI- 7: Purchased equipment costs for acetic acid production for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y).
Main process major equipment Compressor Pre-Heater Reactor Cooler Mixing tank Tank Distillation column Catalyst separator Gas separator Recycle Electrodes Total ($/year): Total ($/ton):
Methanol Carbonylation (Smejkal et al., 2005)
Costs ($) Ethane direct oxidation (Smejkal et al., 2005)
2861794 147386.2 552705.4 -
6804441 98256.6 171951 393034.2 -
22440.6 17967.3 9907.3 19814.6
22440.6 28003.3
1719532 1496084
104365.3 2332951
17226.3 17226.3
17226.3
10964883
-
2597.4
2597.4
2597.4
73669.7
61391.2
2210
2210
2600
17810000
9880000
89.05
49.4
8
AF
MES
Integrated process
390 54381.6 60205.6
17967.3 390 92943.5
543.81
464.71
602.05
9
Table SI- 8: Investment operating costs and production costs for acetic acid production. Total and detailed variable costs are also shown for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). Methanol Carbonylation (Smejkal et al., 2005) Investment cost ($/t): Operating cost ($/t): Detailed variable cost: Raw material ($/t) Electricity ($/t) (Bio)catalyst ($/t) Total variable cost ($/t): Fixed cost ($/t): Acetic acid production cost ($/kg):
Costs ($) Ethane direct AF oxidation (Smejkal et al., 2005)
MES
Integrated process
339.3
336.05
2077.4
2301
1775.8
347.1
149.5
5391.1
1881.1
3092.7
165.1
81.9
3805.1
218.4
2011.1
0.87 132.6
3.13 16.91
277.03 4.29
314.6 4.55
295.1 4.42
298.57
101.94
4086.42
537.55
2310.62
48.52
47.55
494.78
1343.55
782.08
0.33
0.143
5.38
1.87
0.31
10
Table SI- 9: Acetic acid production cost of integrated process at different production rates Integrated process
Plant capacity Total investment costs ($/year) Operating costs ($/year) Production costs ($/Kg) Production AF rates per batch MES (moles per day) Batch (tonnes)
Methanol Ethane carbonylation Direct Oxidation 200 kt/y 200 kt/y 23226817 16209353
200 t/y 2000 t/y 355225 1386060
200 kt/y 21967400
578916
4497610
434000000
33134400
16455400
0.28
2.23
2.15
0.33
0.14
4550
45500
75956
4550
45500
75956
1
10
1000
11
9726048
9726048
Continuous
Continuous