An economic evaluation for acetic acid production from CO2 and CO

Microbial

electrosynthesis

and

anaerobic

fermentation: An economic evaluation for acetic acid production from CO2 and CO Xenia Christodoulou† and Sharon B. Velasquez-Orta†* †

School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture

and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom * Corresponding author: Phone: +44 (0) 191 222 7278; e-mail: sharon.velasquez-orta@ ncl.ac.uk Table of content: Table SI- 1: Selectivity and conversion rates...................................................................................... 2 Table SI- 2: Variables details of chemical processes; methanol carbonylation and ethane direct oxidation, and biological processes; MES and AF ............................................................................. 3 Table SI- 3: Energy costs per MWh from different technologies and acetic acid production costs (Β£/kg) of the Integrated process ........................................................................................................... 4 Table SI- 4: Purchased equipment costs for acetic acid production for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). ................................................................................................................................................. 5 Table SI- 5: Investment operating costs and production costs for acetic acid production. Total and detailed variable costs are also shown for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). ........................ 6 Table SI- 6: Acetic acid production cost of integrated process at different production rates ............. 7 Table SI- 7: Purchased equipment costs for acetic acid production for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). ................................................................................................................................................. 8 Table SI- 8: Investment operating costs and production costs for acetic acid production. Total and detailed variable costs are also shown for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). ...................... 10 Table SI- 9: Acetic acid production cost of integrated process at different production rates ........... 11

1

S1: Materials costs To calculate the reactants flowrate and obtain final reactants quantities the values in Table S1 were used. Table SI- 1: Selectivity and conversion rates Methanol Carbonylation Selectivity (%) 𝐢𝐻3 𝑂𝐻= 99.5 𝐢𝑂= 94 Conversion rate to 𝐢𝐻3 𝑂𝐻= 90.5 yield (%) 𝐢𝑂= 88.35

Ethane Oxidation 𝐢𝐻3 𝐢𝐻3=99 𝑂2=94 𝐢𝐻3 𝐢𝐻3=90 𝑂2=88

2

AF 𝐢𝑂= 94 𝐻2 𝑂=99 𝐢𝑂= 99 𝐻2 𝑂=90

MES 𝐢𝑂2=94 𝐻2 𝑂=99 𝐢𝑂2=58.5 𝐻2 𝑂=90

S2: Operating costs variables The variables for calculating the operating costs of methanol carbonylation, ethane direct oxidation, anaerobic fermentation and microbial electrosynthesis are listed in Table S2.

Table SI- 2: Variables details of chemical processes; methanol carbonylation and ethane direct oxidation, and biological processes; MES and AF Maintenance (labour & materials) Operating labour Fixed cost

Laboratory costs Supervision Plant overheads Capital charges Rates (taxes) Insurance Licence fees

Variable cost

Miscellaneous materials Raw materials (Inc. catalyst) Utilities

Shipping & packaging

Chemical Processes 3% of fixed capital cost

Biological Processes 5% of fixed capital cost 20 men of Β£25,000 per year 2 man of Β£30,000 per each year (small plants thus one man plus one extra man allowed on days) 20% of operating labour 20% of operating labour 4 people of Β£50,000 per year No supervision will be each needed 50% of operating labour 50% of operating labour 6% of fixed capital cost 10% of fixed capital cost 2% of fixed capital cost 2% of fixed capital cost 1% of fixed capital cost 1% of fixed capital cost 1% of fixed capital cost 1% of fixed capital cost 10% of maintenance cost 5% of maintenance cost Dependent of the process Dependent of the process Dependent of the process Dependent of the process (only electricity) Negligible Negligible

S3: Energy and acetic acid production costs

3

Table SI- 3: Energy costs per MWh from different technologies and acetic acid production costs (Β£/kg) of the Integrated process Energy sources

Cost (Β£/MWh)

Acetic acid price from Integrated (Β£/kg)

Onshore wind

80

0.23

Gas

130

0.24

Nuclear

105

0.238

Coal

128-184

0.24-0.28

Offshore wind

147

0.25

Solar photovoltaics 171

0.26

4

process

S4: Values reported in the main manuscript in British pounds are here shown in Euros with an exchange rate of 1.17 obtained on 11/08/2016. Table SI- 4: Purchased equipment costs for acetic acid production for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). Methanol Carbonylation (Smejkal et al., 2005) Main process major equipment Compressor Pre-Heater Reactor Cooler Mixing tank Tank Distillation column Catalyst separator Gas separator Recycle Electrodes Total (€/year): Total (€/ton):

Cost (€) Ethane direct oxidation (Smejkal et al., 2005)

2575615 132647.6 497434.9

6123996 88430.94 154755.9

-

353730.8 -

1547579 1346476

93928.77 2099656

9868394

-

66302.73 16029000

55252.08 8892000

80.14

44.46

5

AF

MES

Integrate d process

20196.5 4 8916.57

20196.54

15503.6 7 2337.66

16170.5 7 17833.1 4 15503.6 7 2337.66

1989 48943.4 4 489.43

1989 351 54185.0 4 541.85

2340 16170.57 351 83649.15

25202.97 15503.67 2337.66

418.23

Table SI- 5: Investment operating costs and production costs for acetic acid production. Total and detailed variable costs are also shown for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y).

Investment cost (€/t): Operating cost (€/t): Detailed variable cost: Raw material (€/t) Electricity (€/t) (Bio)catalyst (€/t) Total variable cost (€/t):

Methanol Carbonylation (Smejkal et al., 2005) 305.37

Costs (€) Ethane direct AF oxidation (Smejkal et al., 2005) 302.44 1869.66

MES

Integrated process

2070.9

1598.22

312.39

134.55

4851.99

1692.99

2783.43

148.59

73.71

3424.59

196.56

1809.99

0.78 119.34

2.81 15.22

249.32 3.86

283.14 4.09

265.59 3.97

268.71

91.75

3677.77

483.79

2079.55

43.67

42.79

445.30

1209.19

703.87

Acetic acid production cost (€/kg):

6

Table SI- 6: Acetic acid production cost of integrated process at different production rates Integrated process

Plant capacity Total investment costs (€/year) Operating costs (€/year) Production costs (€/Kg) Production AF rates per batch MES (moles per day) Batch (tonnes)

200 t/y 319702

2000 t/y 1247454

200 kt/y 19770660

Methanol Ethane carbonylation Direct Oxidation 200 kt/y 200 kt/y 20904135 14588418

521024

4047849

391000000

29820960

14809860

0.25

2.01

1.94

0.30

0.12

4550

45500

75956

9726048

9726048

4550

45500

75956

1

10

1000

Continuous

Continuous

7

S5: Values reported in the main manuscript in British pounds are here shown in US Dollars with an exchange rate of 1.30 obtained on 11/08/2016. Table SI- 7: Purchased equipment costs for acetic acid production for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y).

Main process major equipment Compressor Pre-Heater Reactor Cooler Mixing tank Tank Distillation column Catalyst separator Gas separator Recycle Electrodes Total ($/year): Total ($/ton):

Methanol Carbonylation (Smejkal et al., 2005)

Costs ($) Ethane direct oxidation (Smejkal et al., 2005)

2861794 147386.2 552705.4 -

6804441 98256.6 171951 393034.2 -

22440.6 17967.3 9907.3 19814.6

22440.6 28003.3

1719532 1496084

104365.3 2332951

17226.3 17226.3

17226.3

10964883

-

2597.4

2597.4

2597.4

73669.7

61391.2

2210

2210

2600

17810000

9880000

89.05

49.4

8

AF

MES

Integrated process

390 54381.6 60205.6

17967.3 390 92943.5

543.81

464.71

602.05

9

Table SI- 8: Investment operating costs and production costs for acetic acid production. Total and detailed variable costs are also shown for methanol carbonylation (200 kt/y), ethane direct oxidation (200 kt/y), AF (100 t/y), MES (100 t/y) and integrated process (200 t/y). Methanol Carbonylation (Smejkal et al., 2005) Investment cost ($/t): Operating cost ($/t): Detailed variable cost: Raw material ($/t) Electricity ($/t) (Bio)catalyst ($/t) Total variable cost ($/t): Fixed cost ($/t): Acetic acid production cost ($/kg):

Costs ($) Ethane direct AF oxidation (Smejkal et al., 2005)

MES

Integrated process

339.3

336.05

2077.4

2301

1775.8

347.1

149.5

5391.1

1881.1

3092.7

165.1

81.9

3805.1

218.4

2011.1

0.87 132.6

3.13 16.91

277.03 4.29

314.6 4.55

295.1 4.42

298.57

101.94

4086.42

537.55

2310.62

48.52

47.55

494.78

1343.55

782.08

0.33

0.143

5.38

1.87

0.31

10

Table SI- 9: Acetic acid production cost of integrated process at different production rates Integrated process

Plant capacity Total investment costs ($/year) Operating costs ($/year) Production costs ($/Kg) Production AF rates per batch MES (moles per day) Batch (tonnes)

Methanol Ethane carbonylation Direct Oxidation 200 kt/y 200 kt/y 23226817 16209353

200 t/y 2000 t/y 355225 1386060

200 kt/y 21967400

578916

4497610

434000000

33134400

16455400

0.28

2.23

2.15

0.33

0.14

4550

45500

75956

4550

45500

75956

1

10

1000

11

9726048

9726048

Continuous

Continuous