An Iterative Method with Norm Convergence for a Class of

Report 0 Downloads 111 Views
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 647524, 6 pages http://dx.doi.org/10.1155/2013/647524

Research Article An Iterative Method with Norm Convergence for a Class of Generalized Equilibrium Problems Haixia Zhang1 and Fenghui Wang2 1 2

Department of Mathematics, Henan Normal University, Xinxiang 453007, China Department of Mathematics, Luoyang Normal University, Luoyang 471022, China

Correspondence should be addressed to Fenghui Wang; [email protected] Received 12 January 2013; Accepted 1 July 2013 Academic Editor: Filomena Cianciaruso Copyright Β© 2013 H. Zhang and F. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Recently, Takahashi and Takahashi proposed an iterative algorithm for solving a problem for finding common solutions of generalized equilibrium problems governed by inverse strongly monotone mappings and of fixed point problems for nonexpansive mappings. In this paper, we provide a result that allows for the removal of one condition ensuring the strong convergence of the algorithm.

1. Introduction Let H be a real Hilbert space and 𝐢 a nonempty closed convex subset. A generalized equilibrium problem is formulated as a problem of finding a point π‘₯βˆ— ∈ 𝐢 with the property 𝐹 (π‘₯βˆ— , 𝑦) + ⟨𝐴π‘₯βˆ— , 𝑦 βˆ’ π‘₯βˆ— ⟩ β‰₯ 0,

βˆ€π‘¦ ∈ 𝐢,

(1)

where 𝐹 : 𝐢 Γ— 𝐢 β†’ R is a bifunction and 𝐴 : 𝐢 β†’ H is a nonlinear mapping. In particular, if 𝐴 is the zero mapping, then problem (1) is reduced to an equilibrium problem; find a point π‘₯βˆ— ∈ 𝐢 with the property 𝐹 (π‘₯βˆ— , 𝑦) β‰₯ 0,

βˆ€π‘¦ ∈ 𝐢.

(2)

We will denote by EP(𝐹; 𝐴) and EP(𝐹) the solution set of problem (1) and problem (2), respectively. A fixed point problem (FPP) is to find a point π‘₯βˆ— with the property π‘₯βˆ— ∈ 𝐢,

𝑆π‘₯βˆ— = π‘₯βˆ— ,

(3)

where 𝑆 : 𝐢 β†’ 𝐢 is a nonlinear mapping. The set of fixed points of 𝑆 is denoted as Fix(𝑆). The problem under consideration in this paper is to find a common solution of problem (1) and of FPP (3). Namely, we seek a point π‘₯βˆ— such that π‘₯βˆ— ∈ Fix (𝑆) ∩ EP (𝐹; 𝐴) .

(4)

We consider problem (4) in the case whenever 𝐴 is a ]inverse strongly monotone mapping and 𝑆 is a nonexpansive mapping. To solve problem (4), Takahashi and Takahashi [1] introduced an algorithm which generates a sequence (π‘₯𝑛 ) by the iterative procedure 𝐹 (𝑧𝑛 , 𝑦) + ⟨𝐴π‘₯𝑛 , 𝑦 βˆ’ 𝑧𝑛 ⟩ +

1 βŸ¨π‘¦ βˆ’ 𝑧𝑛 , 𝑧𝑛 βˆ’ π‘₯𝑛 ⟩ β‰₯ 0, πœ†π‘› βˆ€π‘¦ ∈ 𝐢,

(5)

π‘₯𝑛+1 = 𝛽𝑛 π‘₯𝑛 + (1 βˆ’ 𝛽𝑛 ) 𝑆 [𝛼𝑛 𝑒 + (1 βˆ’ 𝛼𝑛 ) 𝑧𝑛 ] , where (𝛼𝑛 ) βŠ† [0, 1], (𝛽𝑛 ) βŠ† [0, 1], and (πœ† 𝑛 ) βŠ† [0, 2]] are chosen so that 0 < π‘Ž ≀ πœ† 𝑛 ≀ 𝑏 < 2], 0 < 𝑐 ≀ 𝛽𝑛 ≀ 𝑑 < 1, lim 𝛼𝑛 = 0,

π‘›β†’βˆž

∞

βˆ‘ 𝛼𝑛 = ∞,

(6)

𝑛=0

󡄨 󡄨󡄨 σ΅„¨σ΅„¨πœ† 𝑛 βˆ’ πœ† 𝑛+1 󡄨󡄨󡄨 󳨀→ 0. Under these conditions, they proved that the sequence (π‘₯𝑛 ) generated by (5) can be strongly convergent to a solution of problem (4). It is the aim of this paper to continue the study of algorithm (5). We will show that problem (4) is in fact

2

Journal of Applied Mathematics

a special fixed point problem for a nonexpansive mapping (a composition of a nonexpansive mapping and an averaged mapping). Our approach mainly uses the properties of averaged mappings, which is different from the existing methods invented by Takahashi and Takahashi. Moreover, we shall prove that condition |πœ† 𝑛 βˆ’ πœ† 𝑛+1 | β†’ 0 sufficient to guarantee the convergence of algorithm (5) is superfluous.

(iii) If 𝑇 : 𝐢 β†’ H is ]-averaged, then for any 𝑧 ∈ Fix(𝑇) and for all π‘₯ ∈ 𝐢, ‖𝑇π‘₯ βˆ’ 𝑧‖2 ≀ β€–π‘₯ βˆ’ 𝑧‖2 βˆ’

1βˆ’] ‖𝑇π‘₯ βˆ’ π‘₯β€–2 . ]

From now on, we assume that 𝐹 : 𝐢 Γ— 𝐢 β†’ R is a bifunction so that

2. Preliminaries and Notations

(A1) 𝐹(π‘₯, π‘₯) = 0, for all π‘₯ ∈ 𝐢;

Notation 1. β†’ strong convergence, ⇀ weak convergence and πœ”π‘€ (π‘₯𝑛 ) the set of the weak cluster points of (π‘₯𝑛 ). Denote by 𝑃𝐢 the projection from H onto 𝐢; namely, for π‘₯ ∈ H, 𝑃𝐢π‘₯ is the unique point in 𝐢 with the property

(A2) 𝐹 is monotone; that is, 𝐹(π‘₯, 𝑦) + 𝐹(𝑦, π‘₯) 0, for all π‘₯, 𝑦 ∈ 𝐢;

σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©π‘₯ βˆ’ 𝑃𝐢π‘₯σ΅„©σ΅„©σ΅„© = min σ΅„©σ΅„©σ΅„©π‘₯ βˆ’ 𝑦󡄩󡄩󡄩 . π‘¦βˆˆπΆ

(7)

It is well known that 𝑃𝐢π‘₯ is characterized by the inequality 𝑃𝐢π‘₯ ∈ 𝐢, ⟨π‘₯ βˆ’ 𝑃𝐢π‘₯, 𝑧 βˆ’ 𝑃𝐢π‘₯⟩ ≀ 0,

βˆ€π‘§ ∈ 𝐢.

(8)

We will use the following notions on nonlinear mappings 𝑇 : 𝐢 β†’ H. (i) 𝑇 is nonexpansive if σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑇π‘₯ βˆ’ 𝑇𝑦󡄩󡄩󡄩 ≀ σ΅„©σ΅„©σ΅„©π‘₯ βˆ’ 𝑦󡄩󡄩󡄩 ,

βˆ€π‘₯, 𝑦 ∈ 𝐢.

(9)

(A3) lim𝑑↓0 𝐹(𝑑𝑧 + (1 βˆ’ 𝑑)π‘₯, 𝑦) ≀ 𝐹(π‘₯, 𝑦), for all π‘₯, 𝑦 ∈ 𝐢; (A4) for each π‘₯ ∈ 𝐢, 𝑦 󳨃→ 𝐹(π‘₯, 𝑦) is convex and lower semicontinuous. Under these assumptions, the following results hold (see [6, 7]). Lemma 3. Let 𝐹 : 𝐢×𝐢 β†’ R satisfy (A1)–(A4). Then for any πœ† > 0 and π‘₯ ∈ H, there exists 𝑧 ∈ 𝐢 so that 𝐹 (𝑧, 𝑦) +

1 βŸ¨π‘¦ βˆ’ 𝑧, 𝑧 βˆ’ π‘₯⟩ β‰₯ 0, πœ†

βˆ€π‘¦ ∈ 𝐢.

(13)

Moreover if π‘†πœ† π‘₯ = {𝑧 ∈ 𝐢 : 𝐹(𝑧, 𝑦) + 1/πœ†βŸ¨π‘¦ βˆ’ 𝑧, 𝑧 βˆ’ π‘₯⟩ β‰₯ 0, for all 𝑦 ∈ 𝐢}, then (i) π‘†πœ† is single valued and Fix(π‘†πœ† ) = EP(𝐹); (iii) EP(𝐹) is closed and convex.

βˆ€π‘₯, 𝑦 ∈ 𝐢.

(10)

(iii) 𝑇 is 𝛼-averaged if there exist a constant 𝛼 ∈ (0, 1) and a nonexpansive mapping 𝑆 such that 𝑇 = (1βˆ’π›Ό)𝐼+𝛼𝑆, where 𝐼 is the identity mapping on H. (iv) 𝑇 is ]-inverse strongly monotone if there is a constant ] > 0 such that σ΅„©2 σ΅„© βŸ¨π‘‡π‘₯ βˆ’ 𝑇𝑦, π‘₯ βˆ’ π‘¦βŸ© β‰₯ ]󡄩󡄩󡄩𝑇π‘₯ βˆ’ 𝑇𝑦󡄩󡄩󡄩 ,

≀

(ii) π‘†πœ† is firmly nonexpansive;

(ii) 𝑇 is firmly nonexpansive if σ΅„©2 σ΅„© βŸ¨π‘‡π‘₯ βˆ’ 𝑇𝑦, π‘₯ βˆ’ π‘¦βŸ© β‰₯ 󡄩󡄩󡄩𝑇π‘₯ βˆ’ 𝑇𝑦󡄩󡄩󡄩 ,

(12)

βˆ€π‘₯, 𝑦 ∈ 𝐢.

(11)

We end this section by a useful lemma (see Xu [8]). Lemma 4. Let (π‘Žπ‘› ) be a nonnegative real sequence satisfying π‘Žπ‘›+1 ≀ (1 βˆ’ 𝛼𝑛 ) π‘Žπ‘› + 𝛼𝑛 𝑏𝑛 ,

where (𝛼𝑛 ) βŠ‚ (0, 1) and (𝑏𝑛 ) are real sequences. Then π‘Žπ‘› β†’ 0 provided that (i) βˆ‘π‘› 𝛼𝑛 = ∞, lim𝑛 𝛼𝑛 = 0;

The next lemma is referred to as the demiclosedness principle for nonexpansive mappings (see [2]).

(ii) lim sup𝑛 𝑏𝑛 ≀ 0 or βˆ‘ 𝛼𝑛 |𝑏𝑛 | < ∞.

Lemma 1. Let 𝐢 be a nonempty closed convex subset of H and 𝑇 : 𝐢 β†’ H a nonexpansive mapping with Fix(𝑇) =ΜΈ 0. If (π‘₯𝑛 ) is a sequence in 𝐢 such that π‘₯𝑛 ⇀ π‘₯ and (𝐼 βˆ’ 𝑇)π‘₯𝑛 β†’ 0, then (𝐼 βˆ’ 𝑇)π‘₯ = 0; that is, π‘₯ ∈ Fix(𝑇).

3. Algorithm and Its Convergence

Averaged mappings will play important role in our convergence analysis. We therefore collect some useful properties of averaged mappings (see, e.g., [3–5]). Lemma 2. The following assertions hold. (i) 𝑇 is firmly nonexpansive if and only if 𝑇 is 1/2averaged. (ii) If 𝑇𝑖 is ]𝑖 -averaged, 𝑖 = 1, 2, then 𝑇1 𝑇2 is (]1 +]2 βˆ’]1 ]2 )averaged.

(14)

We begin with the following lemma. Lemma 5. Assume that 𝐴 : 𝐢 β†’ H is ]-inverse strongly monotone mapping for some ] > 0. Given a real number πœ† such that 0 < πœ† < 2], set π‘‡πœ† = π‘†πœ† (𝐼 βˆ’ πœ†π΄) with π‘†πœ† defined as in Lemma 3. Then the following assertions hold: (a) π‘‡πœ† is single valued and Fix(π‘‡πœ† ) = EP(𝐹; 𝐴); (b) π‘‡πœ† is (2] + πœ†)/4]-averaged; (c) given 𝑧 ∈ EP(𝐹; 𝐴), it follows that 2] βˆ’ πœ† σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©2 σ΅„©2 2 σ΅„©σ΅„©π‘‡πœ† π‘₯ βˆ’ π‘₯σ΅„©σ΅„©σ΅„© ; σ΅„©σ΅„©π‘‡πœ† π‘₯ βˆ’ 𝑧󡄩󡄩󡄩 ≀ β€–π‘₯ βˆ’ 𝑧‖ βˆ’ 2] + πœ†

(15)

Journal of Applied Mathematics

3

(d) if 0 < πœ† ≀ πœ†σΈ€  < 2], then for all π‘₯ ∈ 𝐢 σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©π‘‡πœ† π‘₯ βˆ’ π‘₯σ΅„©σ΅„©σ΅„© ≀ 2 σ΅„©σ΅„©σ΅„©π‘‡πœ†σΈ€  π‘₯ βˆ’ π‘₯σ΅„©σ΅„©σ΅„© .

(16)

Proof. (a) It is readily seen that π‘‡πœ† is single valued because π‘†πœ† is single valued. The equality follows from the definition of π‘†πœ† . (b) It follows that σ΅„©2 σ΅„©σ΅„© σ΅„©σ΅„©(𝐼 βˆ’ 2]𝐴)π‘₯ βˆ’ (𝐼 βˆ’ 2]𝐴)𝑦󡄩󡄩󡄩 σ΅„©2 σ΅„© = σ΅„©σ΅„©σ΅„©(π‘₯ βˆ’ 𝑦) βˆ’ 2](𝐴π‘₯ βˆ’ 𝐴𝑦)σ΅„©σ΅„©σ΅„© σ΅„©2 σ΅„©2 σ΅„© σ΅„© = σ΅„©σ΅„©σ΅„©π‘₯ βˆ’ 𝑦󡄩󡄩󡄩 + 4]2 󡄩󡄩󡄩𝐴π‘₯ βˆ’ 𝐴𝑦󡄩󡄩󡄩

π‘›β†’βˆž

(17)

(18)

which implies that 𝐼 βˆ’ πœ†π΄ is πœ†/2]-averaged. Consequently (b) follows from part (ii) of Lemma 2 and (c) follows from part (iii) of Lemma 2. (d) Let 𝑧1 = π‘‡πœ† π‘₯ and 𝑧2 = π‘‡πœ†σΈ€  π‘₯. By definition of π‘†πœ† , 𝐹 (𝑧1 , 𝑦) + ⟨𝐴π‘₯, 𝑦 βˆ’ 𝑧1 ⟩ +

1 βŸ¨π‘¦ βˆ’ 𝑧1 , 𝑧1 βˆ’ π‘₯⟩ β‰₯ 0, πœ†

(19)

βˆ€π‘¦ ∈ 𝐢.

(26)

𝑛=0

then the sequence (π‘₯𝑛 ) generated by (25) converges strongly to π‘₯βˆ— = 𝑃Ω 𝑒.

Lemma 7. Let the conditions in Theorem 6 be satisfied. If (π‘₯𝑛 ) and (𝑦𝑛 ) are the sequences generated by (25), then both (π‘₯𝑛 ) and (𝑦𝑛 ) are bounded. Proof. Let 𝑧 ∈ Ξ© be fixed. We have σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©π‘₯𝑛+1 βˆ’ 𝑧󡄩󡄩󡄩 ≀ σ΅„©σ΅„©σ΅„©(1 βˆ’ 𝛽𝑛 ) (𝑦𝑛 βˆ’ 𝑧) + 𝛽𝑛 (π‘₯𝑛 βˆ’ 𝑧)σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ (1 βˆ’ 𝛽𝑛 ) 󡄩󡄩󡄩𝑦𝑛 βˆ’ 𝑧󡄩󡄩󡄩 + 𝛽𝑛 σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ 𝑧󡄩󡄩󡄩 ; on the other hand, σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© 󡄩󡄩𝑦𝑛 βˆ’ 𝑧󡄩󡄩󡄩 = 󡄩󡄩󡄩𝛼𝑛 (𝑒 βˆ’ 𝑧) + (1 βˆ’ 𝛼𝑛 ) (𝑇𝑛 π‘₯𝑛 βˆ’ 𝑧)σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© ≀ (1 βˆ’ 𝛼𝑛 ) σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ 𝑧󡄩󡄩󡄩 + 𝛼𝑛 ‖𝑒 βˆ’ 𝑧‖ .

(27)

(28)

Altogether

Letting 𝑦 = 𝑧2 in (19) yields 𝐹 (𝑧1 , 𝑧2 ) + ⟨𝐴π‘₯, 𝑧2 βˆ’ 𝑧1 ⟩ +

∞

βˆ‘ 𝛼𝑛 = ∞,

Before proving the theorem, we need some lemmas.

Since 𝐴 is ]-inverse strongly monotone, 𝐼 βˆ’ 2]𝐴 is nonexpansive. Observe that πœ† πœ† )𝐼 + (𝐼 βˆ’ 2]𝐴) , 2] 2]

0 < π‘Ž ≀ πœ† 𝑛 ≀ 𝑏 < 2], 0 < 𝑐 ≀ 𝛽𝑛 ≀ 𝑑 < 1, lim 𝛼𝑛 = 0,

βˆ’ 4] ⟨π‘₯ βˆ’ 𝑦, 𝐴π‘₯ βˆ’ π΄π‘¦βŸ© .

𝐼 βˆ’ πœ†π΄ = (1 βˆ’

Theorem 6. Let 𝐹 : 𝐢 Γ— 𝐢 β†’ R be a bifunction satisfying (A1)–(A4), 𝐴 : 𝐢 β†’ H a ]-inverse strongly monotone mapping for some ] > 0, and 𝑆 : 𝐢 β†’ 𝐢 a nonexpansive mapping so that the solution set Ξ© := Fix(𝑆) ∩ EP(𝐹; 𝐴) is nonempty. If the following conditions hold:

1 βŸ¨π‘§ βˆ’ 𝑧1 , 𝑧1 βˆ’ π‘₯⟩ β‰₯ 0. (20) πœ† 2

σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©π‘₯𝑛+1 βˆ’ 𝑧󡄩󡄩󡄩 ≀ [1 βˆ’ 𝛼𝑛 (1 βˆ’ 𝛽𝑛 )] σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ 𝑧󡄩󡄩󡄩 + 𝛼𝑛 (1 βˆ’ 𝛽𝑛 ) ‖𝑒 βˆ’ 𝑧‖ .

(29)

By induction, (π‘₯𝑛 ) is bounded and so is (𝑦𝑛 ).

Similarly, 𝐹 (𝑧2 , 𝑧1 ) + ⟨𝐴π‘₯, 𝑧1 βˆ’ 𝑧2 ⟩ +

1 βŸ¨π‘§ βˆ’ 𝑧2 , 𝑧2 βˆ’ π‘₯⟩ β‰₯ 0. (21) πœ†σΈ€  1

Adding up these inequalities and using the monotonicity of 𝐹, 1 1 βŸ¨π‘§ βˆ’ 𝑧1 , 𝑧1 βˆ’ π‘₯⟩ + σΈ€  βŸ¨π‘§1 βˆ’ 𝑧2 , 𝑧2 βˆ’ π‘₯⟩ β‰₯ 0, πœ† 2 πœ†

(22)

(23)

Hence, ‖𝑧2 βˆ’ 𝑧1 β€– ≀ ‖𝑧2 βˆ’ π‘₯β€–. By the triangle inequality, σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© (24) 󡄩󡄩𝑧1 βˆ’ π‘₯σ΅„©σ΅„©σ΅„© ≀ 󡄩󡄩󡄩𝑧1 βˆ’ 𝑧2 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑧2 βˆ’ π‘₯σ΅„©σ΅„©σ΅„© ≀ 2 󡄩󡄩󡄩𝑧2 βˆ’ π‘₯σ΅„©σ΅„©σ΅„© , which is the result as desired. For every 𝑛 β‰₯ 0, if we define 𝑇𝑛 = π‘†πœ† 𝑛 (𝐼 βˆ’ πœ† 𝑛 𝐴), where π‘†πœ† 𝑛 is defined as in Lemma 3, then we can rewrite algorithm (5) as 𝑦𝑛 = 𝛼𝑛 𝑒 + (1 βˆ’ 𝛼𝑛 ) 𝑇𝑛 π‘₯𝑛 , π‘₯𝑛+1 = 𝛽𝑛 π‘₯𝑛 + (1 βˆ’ 𝛽𝑛 ) 𝑆𝑦𝑛 .

Proof. Let π‘‡π‘Ž = π‘†π‘Ž (𝐼 βˆ’ π‘Žπ΄). By part (d) of Lemma 5, σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©π‘₯𝑛 βˆ’ π‘‡π‘Ž π‘₯𝑛 σ΅„©σ΅„©σ΅„© ≀ 2 σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ 𝑇𝑛 π‘₯𝑛 σ΅„©σ΅„©σ΅„© 󳨀→ 0.

(30)

Since π‘‡π‘Ž is nonexpansive, applying the demiclosedness principle yields

or equivalently, πœ† σ΅„©2 σ΅„©σ΅„© 󡄩󡄩𝑧2 βˆ’ 𝑧1 σ΅„©σ΅„©σ΅„© ≀ (1 βˆ’ σΈ€  ) βŸ¨π‘§2 βˆ’ 𝑧1 , 𝑧2 βˆ’ π‘₯⟩ . πœ†

Lemma 8. Let the conditions in Theorem 6 be satisfied. If β€–π‘₯𝑛 βˆ’ 𝑇𝑛 π‘₯𝑛 β€– β†’ 0 and β€–π‘₯𝑛 βˆ’ 𝑆𝑦𝑛 β€– β†’ 0, then β€–π‘₯𝑛 βˆ’ 𝑦𝑛 β€– β†’ 0 and πœ”π‘€ (π‘₯𝑛 ) βŠ† Ξ©.

(25)

πœ”π‘€ (π‘₯𝑛 ) βŠ† Fix (π‘‡π‘Ž ) = EP (𝐹; 𝐴) . On the other hand, we see that σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©π‘₯𝑛 βˆ’ 𝑦𝑛 σ΅„©σ΅„©σ΅„© = 󡄩󡄩󡄩𝛼𝑛 (𝑒 βˆ’ π‘₯𝑛 ) + (1 βˆ’ 𝛼𝑛 ) (𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯𝑛 )σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ 𝛼𝑛 󡄩󡄩󡄩𝑒 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© 󳨀→ 0, which implies that σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©π‘₯𝑛 βˆ’ 𝑆π‘₯𝑛 σ΅„©σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ 𝑆𝑦𝑛 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑆𝑦𝑛 βˆ’ 𝑆π‘₯𝑛 σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ 𝑆𝑦𝑛 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑦𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© 󳨀→ 0.

(31)

(32)

(33)

Using again the demiclosedness principle gets the desired result.

4

Journal of Applied Mathematics

Proof of Theorem 6. Let π‘₯βˆ— = 𝑃Ω 𝑒. Using Lemma 5(c), we have 2] βˆ’ πœ† 𝑛 σ΅„©σ΅„© σ΅„©2 σ΅„© σ΅„©σ΅„© βˆ— σ΅„©2 βˆ— σ΅„©2 󡄩𝑇 π‘₯ βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© . 󡄩󡄩𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯ σ΅„©σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ π‘₯ σ΅„©σ΅„©σ΅„© βˆ’ 2] + πœ† 𝑛 σ΅„© 𝑛 𝑛

(34)

By the subdifferential inequality,

Case 1. Assume that {π‘ π‘›π‘˜ } is finite. Then there exists 𝑁 ∈ N so that 𝑠𝑛 > 𝑠𝑛+1 for all 𝑛 β‰₯ 𝑁, and therefore {𝑠𝑛 } must be convergent. It follows from (38) that σ΅„©2 σ΅„© σ΅„©2 σ΅„© πœ€ (󡄩󡄩󡄩𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑆𝑦𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© ) ≀ 𝑀𝛼𝑛 + (𝑠𝑛 βˆ’ 𝑠𝑛+1 ) , (39)

σ΅„©σ΅„© σ΅„© βˆ— σ΅„©2 βˆ— βˆ— σ΅„©2 󡄩󡄩𝑦𝑛 βˆ’ π‘₯ σ΅„©σ΅„©σ΅„© = 󡄩󡄩󡄩𝛼𝑛 (𝑒 βˆ’ π‘₯ ) + (1 βˆ’ 𝛼𝑛 ) (𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯ )σ΅„©σ΅„©σ΅„© σ΅„©2 σ΅„© ≀ (1 βˆ’ 𝛼𝑛 ) 󡄩󡄩󡄩𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯βˆ— σ΅„©σ΅„©σ΅„© + 2𝛼𝑛 βŸ¨π‘’ βˆ’ π‘₯βˆ— , 𝑦𝑛 βˆ’ π‘₯βˆ— ⟩ σ΅„©2 σ΅„© ≀ (1 βˆ’ 𝛼𝑛 ) σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ π‘₯βˆ— σ΅„©σ΅„©σ΅„©

developed by MaingΒ΄e [9], we next consider two possible cases on (π‘ π‘›π‘˜ ).

(35)

where 𝑀 > 0 is a sufficiently large real number. Consequently, both ‖𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯𝑛 β€– and ‖𝑆𝑦𝑛 βˆ’ π‘₯𝑛 β€– converge to zero, and by Lemma 8 we conclude that ‖𝑦𝑛 βˆ’ π‘₯𝑛 β€– β†’ 0 and πœ”π‘€ (π‘₯𝑛 ) βŠ† Ξ©. Hence, lim sup βŸ¨π‘’ βˆ’ π‘₯βˆ— , 𝑦𝑛 βˆ’ π‘₯βˆ— ⟩ = lim sup βŸ¨π‘’ βˆ’ π‘₯βˆ— , π‘₯𝑛 βˆ’ π‘₯βˆ— ⟩ π‘›β†’βˆž

+ 2𝛼𝑛 βŸ¨π‘’ βˆ’ π‘₯βˆ— , 𝑦𝑛 βˆ’ π‘₯βˆ— ⟩

π‘›β†’βˆž

= max βŸ¨π‘’ βˆ’ π‘₯βˆ— , 𝑀 βˆ’ π‘₯βˆ— ⟩ ≀ 0, π‘€βˆˆπœ”π‘€ (π‘₯𝑛 ) (40)

(1 βˆ’ 𝛼𝑛 ) (2] βˆ’ πœ† 𝑛 ) σ΅„©σ΅„© σ΅„©2 βˆ’ 󡄩󡄩𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© , 2] + πœ† 𝑛

where the inequality uses (8). It then follows from (38) that

which implies that

𝑠𝑛+1 ≀ (1 βˆ’ πœ€π›Όπ‘› ) 𝑠𝑛 + 2𝛼𝑛 (1 βˆ’ 𝛽𝑛 ) βŸ¨π‘’ βˆ’ π‘₯βˆ— , 𝑦𝑛 βˆ’ π‘₯βˆ— ⟩ . (41)

σ΅„©σ΅„© σ΅„© σ΅„© βˆ— σ΅„©2 βˆ— σ΅„©2 βˆ— σ΅„©2 σ΅„©σ΅„©π‘₯𝑛+1 βˆ’ π‘₯ σ΅„©σ΅„©σ΅„© = 𝛽𝑛 σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ π‘₯ σ΅„©σ΅„©σ΅„© + (1 βˆ’ 𝛽𝑛 ) 󡄩󡄩󡄩𝑆𝑦𝑛 βˆ’ π‘₯ σ΅„©σ΅„©σ΅„© σ΅„©2 σ΅„© βˆ’ 𝛽𝑛 (1 βˆ’ 𝛽𝑛 ) 󡄩󡄩󡄩𝑆𝑦𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© σ΅„© σ΅„©2 σ΅„©2 σ΅„© ≀ 𝛽𝑛 σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ π‘₯βˆ— σ΅„©σ΅„©σ΅„© + (1 βˆ’ 𝛽𝑛 ) 󡄩󡄩󡄩𝑦𝑛 βˆ’ π‘₯βˆ— σ΅„©σ΅„©σ΅„© σ΅„©2 σ΅„© βˆ’ 𝛽𝑛 (1 βˆ’ 𝛽𝑛 ) 󡄩󡄩󡄩𝑆𝑦𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© σ΅„© σ΅„©2 ≀ 𝛽𝑛 σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ π‘₯βˆ— σ΅„©σ΅„©σ΅„© + (1 βˆ’ 𝛽𝑛 ) σ΅„©2 σ΅„© Γ— (1 βˆ’ 𝛼𝑛 ) σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ π‘₯βˆ— σ΅„©σ΅„©σ΅„©

We therefore apply Lemma 4 to conclude that 𝑠𝑛 β†’ 0. Case 2. Assume now that {π‘ π‘›π‘˜ } is infinite. Let 𝑛 ∈ N be fixed. Then there exists π‘˜ ∈ N so that π‘›π‘˜ ≀ 𝑛 ≀ π‘›π‘˜+1 . By the choice of {π‘ π‘›π‘˜ }, we see that π‘ π‘›π‘˜ +1 is the largest one among {π‘ π‘›π‘˜ , π‘ π‘›π‘˜ +1 , . . . , π‘ π‘›π‘˜+1 }; in particular (36)

σ΅„© σ΅„©2 σ΅„© σ΅„©2 πœ€ (σ΅„©σ΅„©σ΅„©σ΅„©π‘‡π‘›π‘˜ π‘₯π‘›π‘˜ βˆ’ π‘₯π‘›π‘˜ σ΅„©σ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©σ΅„©π‘†π‘¦π‘›π‘˜ βˆ’ π‘₯π‘›π‘˜ σ΅„©σ΅„©σ΅„©σ΅„© ) ≀ π‘€π›Όπ‘›π‘˜ 󳨀→ 0.

σ΅„©2 σ΅„© Γ— 󡄩󡄩󡄩𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© + 2𝛼𝑛 (1 βˆ’ 𝛽𝑛 )

(42)

lim supβŸ¨π‘’ βˆ’ π‘₯βˆ— , π‘¦π‘›π‘˜ βˆ’ π‘₯βˆ— ⟩ ≀ 0.

σ΅„©2 σ΅„© Γ— 󡄩󡄩󡄩𝑆𝑦𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© .

π‘›β†’βˆž

By our assumption, there exists πœ€ > 0 so that for all 𝑛 β‰₯ 0, (1 βˆ’ 𝛼𝑛 ) (1 βˆ’ 𝛽𝑛 ) (2] βˆ’ πœ† 𝑛 ) β‰₯ πœ€, 2] + πœ† 𝑛

(37)

(44)

It follows again from (38) and inequality (42) that π‘ π‘›π‘˜ ≀ 2 (1 βˆ’ π›½π‘›π‘˜ ) βŸ¨π‘’ βˆ’ π‘₯βˆ— , π‘¦π‘›π‘˜ βˆ’ π‘₯βˆ— ⟩ .

(45)

Taking lim sup in (44) yields

and 1 βˆ’ 𝛽𝑛 β‰₯ 𝛽𝑛 (1 βˆ’ 𝛽𝑛 ) β‰₯ πœ€. Consequently, σ΅„©σ΅„© σ΅„© σ΅„©σ΅„©π‘₯𝑛+1 βˆ’ π‘₯ σ΅„©σ΅„© ≀ (1 βˆ’ πœ€π›Όπ‘› ) σ΅„©σ΅„©σ΅„©π‘₯𝑛 βˆ’ π‘₯ σ΅„©σ΅„© σ΅„©2 σ΅„© σ΅„©2 σ΅„© βˆ’ πœ€ (󡄩󡄩󡄩𝑇𝑛 π‘₯𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑆𝑦𝑛 βˆ’ π‘₯𝑛 σ΅„©σ΅„©σ΅„© )

lim sup π‘ π‘›π‘˜ ≀ 0 󳨐⇒ π‘ π‘›π‘˜ 󳨀→ 0. π‘˜β†’βˆž

βˆ—σ΅„© σ΅„©2

βˆ—

(43)

Applying Lemma 8 yields β€–π‘¦π‘›π‘˜ βˆ’ π‘₯π‘›π‘˜ β€– β†’ 0 and πœ”π‘€ (π‘₯π‘›π‘˜ ) βŠ† Ξ©. Similarly

Γ— βŸ¨π‘’ βˆ’ π‘₯βˆ— , 𝑦𝑛 βˆ’ π‘₯βˆ— ⟩ βˆ’ 𝛽𝑛 (1 βˆ’ 𝛽𝑛 )

(46)

Moreover, we deduce from algorithm (25) that (38)

βˆ—

+ 2𝛼𝑛 (1 βˆ’ 𝛽𝑛 ) βŸ¨π‘’ βˆ’ π‘₯ , 𝑦𝑛 βˆ’ π‘₯ ⟩ . 2

𝑠𝑛 ≀ π‘ π‘›π‘˜ +1 .

Then we deduce from (38) that

(1 βˆ’ 𝛼𝑛 ) (1 βˆ’ 𝛽𝑛 ) (2] βˆ’ πœ† 𝑛 ) βˆ’ 2] + πœ† 𝑛

βˆ—σ΅„© σ΅„©2

π‘ π‘›π‘˜ ≀ π‘ π‘›π‘˜ +1 ,

Set 𝑠𝑛 = β€–π‘₯𝑛+1 βˆ’ π‘₯βˆ— β€– , and let (π‘ π‘›π‘˜ ) be a subsequence so that it includes all elements in {𝑠𝑛 } with the property; each of them is less than or equal to the term after it. Following an idea

σ΅„©σ΅„© σ΅„©σ΅„© βˆ— βˆšπ‘ π‘›π‘˜ +1 = σ΅„©σ΅„©σ΅„©(π‘₯π‘›π‘˜ βˆ’ π‘₯ ) βˆ’ (π‘₯π‘›π‘˜ βˆ’ π‘₯π‘›π‘˜ +1 )σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© (47) σ΅„© σ΅„© ≀ βˆšπ‘ π‘›π‘˜ + σ΅„©σ΅„©σ΅„©σ΅„©π‘₯π‘›π‘˜ βˆ’ π‘₯π‘›π‘˜ +1 σ΅„©σ΅„©σ΅„©σ΅„© ≀ βˆšπ‘ π‘›π‘˜ + σ΅„©σ΅„©σ΅„©σ΅„©π‘₯π‘›π‘˜ βˆ’ π‘†π‘¦π‘›π‘˜ σ΅„©σ΅„©σ΅„©σ΅„© , which together with (43) implies that π‘ π‘›π‘˜ +1 β†’ 0. Consequently 𝑠𝑛 β†’ 0 immediately follows from (42).

Journal of Applied Mathematics

5

4. Applications In this section we present several applications. First we consider a problem for finding a common solution of equilibrium problem (2) and fixed point problem (3); namely, find π‘₯βˆ— ∈ 𝐢 so that π‘₯βˆ— ∈ EP (𝐹) ∩ Fix (𝑆) .

(48)

Taking 𝐴 = 0 in Theorem 6 and noting that zero mapping is ]-inverse strongly monotone for any positive number ], one can easily get the following. Corollary 9. Let 𝐹 : 𝐢 Γ— 𝐢 β†’ R be a bifunction satisfying (A1)–(A4) and 𝑆 : 𝐢 β†’ 𝐢 a nonexpansive mapping so that the solution set of problem (48) is nonempty. Given 𝑒 ∈ 𝐢, let (π‘₯𝑛 ) generated by the iterative algorithm: 𝐹 (𝑧𝑛 , 𝑦) +

1 βŸ¨π‘¦ βˆ’ 𝑧𝑛 , 𝑧𝑛 βˆ’ π‘₯𝑛 ⟩ β‰₯ 0, πœ†π‘›

βˆ€π‘¦ ∈ 𝐢, (49)

π‘₯𝑛+1 = 𝛽𝑛 π‘₯𝑛 + (1 βˆ’ 𝛽𝑛 ) 𝑆 [(1 βˆ’ 𝛼𝑛 ) 𝑒 + 𝛼𝑛 𝑧𝑛 ] . 0 < π‘Ž ≀ πœ† 𝑛 ≀ 𝑏 < ∞, 0 < 𝑐 ≀ 𝛽𝑛 ≀ 𝑑 < 1, lim 𝛼 π‘›β†’βˆž 𝑛

= 0,

βˆ‘ 𝛼𝑛 = ∞,

(50)

𝑛=0

A variational inequality problem (VIP) is formulated as a problem of finding a point π‘₯βˆ— with the property π‘₯ ∈ 𝐢,

βˆ—

βˆ—

⟨𝐴π‘₯ , 𝑧 βˆ’ π‘₯ ⟩ β‰₯ 0,

βˆ€π‘§ ∈ 𝐢.

(51)

We will denote the solution set of VIP (51) by VI(𝐴; 𝐢). Next we consider a problem for finding a common solution of variational inequality problem (51) and of fixed point problem (3), namely; find π‘₯βˆ— ∈ 𝐢 so that π‘₯βˆ— ∈ VI (𝐴; 𝐢) ∩ Fix (𝑆) .

𝑓 (π‘₯βˆ— ) = min𝑓 (π‘₯) , π‘₯∈𝐢

(55)

where 𝑓 : H β†’ R is a convex and differentiable function. We say that the differential βˆ‡π‘“ is 1/]-Lipschitz continuous, if σ΅„© 1σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©βˆ‡π‘“ (π‘₯) βˆ’ βˆ‡π‘“ (𝑦)σ΅„©σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©π‘₯ βˆ’ 𝑦󡄩󡄩󡄩 , ]

βˆ€π‘₯, 𝑦 ∈ H.

(56)

Denote by Argmin(𝐢; 𝑓) the solution set of problem (55). Finally we consider a problem for finding a common solution of optimization problem (55) and of fixed point problem (3), namely; find π‘₯βˆ— ∈ 𝐢 so that π‘₯βˆ— ∈ Argmin (𝐢; 𝑓) ∩ Fix (𝑆) .

βŸ¨βˆ‡π‘“ (π‘₯βˆ— ) , π‘₯βˆ— βˆ’ π‘§βŸ© β‰₯ 0,

then the sequence (π‘₯𝑛 ) converges strongly to a solution of problem (48).

βˆ—

Consider the optimization problem of finding a point π‘₯βˆ— ∈ 𝐢 with the property

(57)

By [10, Lemma 5.13], problem (55) is equivalent to the variational inequality problem

If the following conditions hold:

∞

then the sequence (π‘₯𝑛 ) converges strongly to a solution of problem (52).

(52)

βˆ€π‘§ ∈ 𝐢.

(58)

Taking 𝐴 = βˆ‡π‘“ in Corollary 10, we have the following result. Corollary 11. Let 𝑓 : H β†’ R be a convex and differentiable function so that βˆ‡π‘“ is 1/]-Lipschitz continuous. Let 𝑆 : 𝐢 β†’ 𝐢 be a nonexpansive mapping so that the solution set of problem (57) is nonempty. Given 𝑒 ∈ 𝐢, let (π‘₯𝑛 ) generated by 𝑧𝑛 = 𝑃𝐢 (π‘₯𝑛 βˆ’ πœ† 𝑛 βˆ‡π‘“ (π‘₯𝑛 )) , π‘₯𝑛+1 = 𝛽𝑛 π‘₯𝑛 + (1 βˆ’ 𝛽𝑛 ) 𝑆 [(1 βˆ’ 𝛼𝑛 ) 𝑒 + 𝛼𝑛 𝑧𝑛 ] .

(59)

If the following conditions hold: 0 < π‘Ž ≀ πœ† 𝑛 ≀ 𝑏 < 2], 0 < 𝑐 ≀ 𝛽𝑛 ≀ 𝑑 < 1, lim 𝛼𝑛 = 0,

π‘›β†’βˆž

∞

βˆ‘ 𝛼𝑛 = ∞,

(60)

𝑛=0

Taking 𝐹 = 0 in (1), we note that the generalized equilibrium problem is reduced to the variational problem (51). Thus applying Theorem 6 gets the following.

then the sequence (π‘₯𝑛 ) converges strongly to a solution of problem (57).

Corollary 10. Let 𝐴 : 𝐢 β†’ H be ]-inverse strongly monotone mapping and 𝑆 : 𝐢 β†’ 𝐢 a nonexpansive mapping so that the solution set of problem (52) is nonempty. Given 𝑒 ∈ 𝐢, let (π‘₯𝑛 ) generated by the iterative algorithm:

Proof. It suffices to note that if βˆ‡π‘“ is 1/]-Lipschitz continuous, then it is ]-inverse strongly monotone mapping (see [11, Corollary 10]). Consequently Corollary 10 applies and the result immediately follows.

𝑧𝑛 = 𝑃𝐢 (π‘₯𝑛 βˆ’ πœ† 𝑛 𝐴π‘₯𝑛 ) , π‘₯𝑛+1 = 𝛽𝑛 π‘₯𝑛 + (1 βˆ’ 𝛽𝑛 ) 𝑆 [(1 βˆ’ 𝛼𝑛 ) 𝑒 + 𝛼𝑛 𝑧𝑛 ] .

(53)

If the following conditions hold: 0 < π‘Ž ≀ πœ† 𝑛 ≀ 𝑏 < 2], 0 < 𝑐 ≀ 𝛽𝑛 ≀ 𝑑 < 1, lim 𝛼 π‘›β†’βˆž 𝑛

= 0,

∞

βˆ‘ 𝛼𝑛 = ∞,

𝑛=0

Remark 12. We can further apply the previous method to find a common solution for fixed point and split feasibility problems, as well as for fixed point and convex constrained linear inverse problems (see [12]).

Acknowledgment (54)

This work is supported by the National Natural Science Foundation of China, Tianyuan Foundation (11226227).

6

References [1] S. Takahashi and W. Takahashi, β€œStrong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space,” Nonlinear Analysis. Theory, Methods & Applications, vol. 69, no. 3, pp. 1025–1033, 2008. [2] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press, Cambridge, UK, 1990. [3] C. Byrne, β€œA unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Problems, vol. 20, no. 1, pp. 103–120, 2004. [4] P. L. Combettes, β€œSolving monotone inclusions via compositions of nonexpansive averaged operators,” Optimization, vol. 53, no. 5-6, pp. 475–504, 2004. [5] H.-K. Xu, β€œAveraged mappings and the gradient-projection algorithm,” Journal of Optimization Theory and Applications, vol. 150, no. 2, pp. 360–378, 2011. [6] E. Blum and W. Oettli, β€œFrom optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994. [7] S. D. Fl˚am and A. S. Antipin, β€œEquilibrium programming using proximal-like algorithms,” Mathematical Programming, vol. 78, no. 1, pp. 29–41, 1997. [8] H.-K. Xu, β€œIterative algorithms for nonlinear operators,” Journal of the London Mathematical Society, vol. 66, no. 1, pp. 240–256, 2002. [9] P.-E. MaingΒ΄e, β€œStrong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization,” Set-Valued Analysis, vol. 16, no. 7-8, pp. 899–912, 2008. [10] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Springer, Dordrecht, The Netherlands, 1996. [11] J.-B. Baillon and G. Haddad, β€œQuelques propriΒ΄etΒ΄es des opΒ΄erateurs angle-bornΒ΄es et n-cycliquement monotones,” Israel Journal of Mathematics, vol. 26, no. 2, pp. 137–150, 1977. [12] F. Wang and H.-K. Xu, β€œStrongly convergent iterative algorithms for solving a class of variational inequalities,” Journal of Nonlinear and Convex Analysis, vol. 11, no. 3, pp. 407–421, 2010.

Journal of Applied Mathematics

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Mathematical Problems in Engineering Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Algebra Hindawi Publishing Corporation http://www.hindawi.com

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Journal of

Hindawi Publishing Corporation http://www.hindawi.com

Stochastic Analysis

Abstract and Applied Analysis

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

International Journal of

Mathematics Volume 2014

Volume 2014

Discrete Dynamics in Nature and Society Volume 2014

Volume 2014

Journal of

Journal of

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Applied Mathematics

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Optimization Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014