Analytical and numerical treatment of Jungck-type ... - Semantic Scholar

Report 6 Downloads 47 Views
Applied Mathematics and Computation 231 (2014) 521–535

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Analytical and numerical treatment of Jungck-type iterative schemes Abdul Rahim Khan a,⇑, Vivek Kumar b, Nawab Hussain c a

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia Department of Mathematics, KLP College, Rewari, India c Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia b

a r t i c l e

i n f o

Keywords: Jungck-type iterative schemes Data dependence Convergence rate Strong convergence Stability

a b s t r a c t In this paper, we introduce a new and general Jungck-type iterative scheme for a pair of nonself mappings and study its strong convergence, stability and data dependence. It is exhibited that our iterative scheme has much better convergence rate than those of Jungck–Mann, Jungck–Ishikawa, Jungck–Noor and Jungck–CR iterative schemes. Numerical examples in support of validity and applications of our results are provided. Our results are extension, improvement and generalization of many known results in the literature of fixed point theory.  2014 Elsevier Inc. All rights reserved.

1. Introduction Fixed point theory deals with finding fixed point of mappings and proving their uniqueness and iterative convergence. Data dependence of fixed points is a related and new issue which has become an important subject for research. The data dependence of various iterative schemes has been studied by many authors; see [1–3]. These authors have studied data dependence of fixed points in the context of self operators. Inspired by the work of Takahashi et al. [17] and Khan [6], here we continue study of convergence rate, stability and data dependence of fixed points through Jungck-type iterative schemes of nonself maps. Let X be a Banach space, Y an arbitrary set and S, T : Y ? X such that T(Y) # S(Y). For an 2 ½0; 1, Singh et al. [7] defined the Jungck–Mann iterative scheme as

Sxnþ1 ¼ ð1  an ÞSxn þ an Txn :

ð1:1Þ

For an ; bn ; an 2 ½0; 1, Olatinwo defined the Jungck–Ishikawa [8] and Jungck–Noor [9] iterative schemes as

Sxnþ1 ¼ ð1  an ÞSxn þ an Tyn ; Syn ¼ ð1  bn ÞSxn þ bn Txn ;

ð1:2Þ

and

Sxnþ1 ¼ ð1  an ÞSxn þ an Tyn ; Syn ¼ ð1  bn ÞSxn þ bn Tzn ; Szn ¼ ð1  an ÞSxn þ an Txn ; ⇑ Corresponding author. E-mail addresses: [email protected] (A.R. Khan), [email protected] (V. Kumar), [email protected] (N. Hussain). 0096-3003/$ - see front matter  2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.12.150

ð1:3Þ

522

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

respectively, to approximate coincidence points (not common fixed points) of some pairs of generalized contractive-like operators with the assumption that one of each of the pairs of maps is injective. Jungck [11] used the iterative scheme Sxnþ1 ¼ Txn n = 0, 1, . . ., to approximate common fixed points of the mappings S and T satisfying the following Jungck-contraction

dðTx; TyÞ 6 adðSx; SyÞ;

0 6 a < 1:

ð1:4Þ

Olatinwo and Imoru [10], studied the generalized Zamfirescu operators for the pair (S, T), satisfying the following condition: for each pair of points x, y in Y at least one of the following is true:

ðiÞ dðTx; TyÞ 6 adðSx; SyÞ ðiiÞ dðTx; TyÞ 6 b½dðSx; TxÞ þ dðSy; TyÞ ðiiiÞ dðTx; TyÞ 6 c½dðSx; TyÞ þ dðSy; TxÞ;

ð1:5Þ

where a, b, c are nonnegative constants satisfying 0 6 a 6 1, 0 6 b, c 6 The contractive condition (1.5) implies

dðTx; TyÞ 6 2ddðSx; TxÞ þ ddðSx; SyÞ;

8x;

y 2 Y;

1 . 2

ð1:6Þ

b c where 0 6 d < 1; d = max fa; 1b ; 1c g (see [4,5]). Singh et al. [7] established some stability results for Jungck and Jungck–Mann iterative schemes for both contractive conditions (1.4) and (1.7): for some q 2 ½0; 1Þ and 0 6 L

dðTx; TyÞ 6 qdðSx; SyÞ þ LdðSx; TxÞ:

ð1:7Þ

Obviously, (1.7) is more general than (1.4)–(1.6). Recently, Hussain et al. [12] used the following more general contractive condition than (1.7) to prove stability and strong convergence results for the Jungck-type iterative schemes: there exists a real number q e [0, 1) and a monotone increasing function /: R+ ? R+ such that /(0) = 0 and " x, y e Y, we have

kTx  Tyk 6 /ðkSx  TxkÞ þ qkSx  Syk:

ð1:8Þ

Inspired by the above mentioned contributions, for an þ bn ; bn þ cn ; an 2 ½0; 1, we define Jungck–Khan iterative schemes for the pairs (T, S) and (T1, S1), respectively as follows:

Sxnþ1 ¼ ð1  an  bn ÞSxn þ an Tyn þ bn Txn ; Syn ¼ ð1  bn  cn ÞSxn þ bn Tzn þ cn Txn ; Szn ¼ ð1  an ÞSxn þ an Txn ;

ð1:9Þ

S1 unþ1 ¼ ð1  an  bn ÞS1 un þ an T 1 v n þ bn T 1 un ; S1 v n ¼ ð1  bn  cn ÞS1 un þ bn T 1 wn þ cn T 1 un ; S1 wn ¼ ð1  an ÞS1 un þ an T 1 un :

ð1:10Þ

Remark 1.1. Putting bn ¼ 0; cn ¼ 0 in Jungck–Khan iterative scheme (1.9), we get Jungck–Noor iterative scheme. Similarly, putting bn ¼ 0; cn ¼ 0; an ¼ 0 and bn ¼ 0; cn ¼ 0; an ¼ 0; bn ¼ 0; in (1.9), respectively, we get Jungck–Ishikawa and Jungck– Mann iterative schemes. Remark 1.2. If X = Y and S = Id (identity mapping), then Jungck–Noor (1.3), Jungck–Ishikawa (1.2) and the Jungck–Mann (1.1) iterative schemes become Noor [13], Ishikawa [14] and the Mann [15] iterative schemes, respectively. Definition 1.3 [16]. Let f and g be two selfmaps on X. A point x in X is called (1) a fixed point of f if f(x) = x; (2) coincidence point of a pair (f, g) if fx = gx; (3) common fixed point of a pair (f, g) if x = fx = gx. If w = fx = gx for some x in X, then w is called a point of coincidence of f and g. A pair (f, g) is said to be weakly compatible if f and g commute at their coincidence points. Definition 1.4 [7]. Let S, T : Y ! X be nonself operator for an arbitrary set Y such that T(Y) # S(Y) and p a point of coincidence of S and T. Let fSxn g1 n¼0  X, be the sequence generated by an iterative procedure

Sxnþ1 ¼ f ðT; xn Þ; n ¼ 0; 1; . . . ;

ð1:11Þ

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

523

1 where x0 2 X is the initial approximation and f is some function. Suppose fSxn g1 n¼0 converges to p. Let fSyn gn¼0  X be an arbitrary sequence and set en = d(Syn, f(T, yn)), n = 0, 1, . . . Then, the iterative procedure (1.11) is said to be (S, T)-stable or stable if and only if lim en ¼ 0 implies lim Syn = p. n!1

n!1

Definition 1.5 (5). Suppose {an} and {bn} are two real convergent sequences with limits a and b, respectively. Then {an} is said to converge faster than {bn} if

  an  a  ¼ 0: lim  n!1 bn  b

Definition 1.6 ([1,5]). Let T1, T2 be two operators defined on a normed space (X, ||.||). We say T2 is approximate operator of T1 if for all x 2 X and for a fixed e > 0, we have kT 1 x  T 2 xk 6 e. Lemma 1.7 [1]. Let fan g1 n¼0 be a nonnegative sequence for which there exist n0 2 N such that for all n P n0 , one has the following inequality:

anþ1 6 ð1  r n Þan þ rn tn ; where r n 2 (0, 1), for all n 2 N;

P1

n¼1 r n

¼ 1 and tn P 0 8n 2 N. Then, 0 6 lim sup an 6 lim sup tn . n!1

n!1

Lemma 1.8 [5]. If d is a real number such that 0 6 d < 1 and f2n g1 n¼0 is a sequence of positive numbers such that lim 2n ¼ 0, then n!1 for any sequence of positive numbers fun g1 n¼0 satisfying

unþ1 6 dun þ 2n ; n ¼ 0; 1; 2; . . . ; we have lim un ¼ 0. n!1

We establish here that Jungck–Khan scheme (1.9) introduced in this paper has much better convergence rate and it is more general as compared to Jungck–Mann, Jungck–Ishikawa and Jungck–Noor iterative schemes. As Jungck–Khan is independant of recently defined Jungck–CR scheme, so we shall discuss data dependence problem of both of these schemes. Numerical examples in support of validity and applications of our results are also provided. 2. Convergence and stability of Jungck–Khan iterative scheme Theorem 2.1. Let (X, ||.||) be an arbitrary Banach space and S, T: Y ? X be nonself operators satisfying contractive condition (1.8), on an arbitrary set Y with TðYÞ # SðYÞ, S(Y) is a complete subspace of X. Let Sz = Tz = p(say) and for x0  Y, let fSxn g1 n¼0 be the P P1 1 Jungck–Khan iterative scheme defined by (1.9) with 1 a ¼ 1 or b ¼ 1. Then the iterative scheme fSx g converges n n n n¼1 n¼1 n¼0 strongly to p. Also, p will be the unique common fixed point of S, T provided Y = X, and S and T are weakly compatible. Proof. It follows from (1.9) that

kSxnþ1  pk 6 ð1  an  bn ÞkSxn  pk þ an kTyn  pk þ bn kTxn  pk:

ð2:1Þ

Now, we have the following estimates:

kTxn  pk 6 qkSxn  pk þ /ðkSz  TzkÞ ¼ qkSxn  pk;

ð2:2Þ

kSzn  pk 6 ð1  an ÞkSxn  pk þ an kTxn  pk 6 ð1  an ð1  qÞÞkSxn  pk;

ð2:3Þ

and

kTyn  pk 6 qkSyn  pk 6 qð1  bn  cn ÞkSxn  pk þ qbn kTzn  pk þ qcn kTxn  pk 6 qð1  bn  cn ÞkSxn  pk þ bn q2 kSzn  pk þ cn q2 kSxn  pk 6 ½q  bn qð1  qÞ  cn qð1  qÞ  an bn q2 ð1  qÞkSxn  pk:

ð2:4Þ

Using estimates (2.2)–(2.4), (2.1) yields

kSxnþ1  pk 6 ½1  an ð1  qÞ  bn ð1  qÞ  an bn qð1  qÞ  an cn qð1  qÞ  an an bn q2 ð1  qÞkSxn  pk;

ð2:5Þ

6 ½1  an ð1  qÞkSxn  pk; ð1qÞ

6 e

1 X

ak

k¼0

kSx0  pk:

ð2:6Þ

524

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

Pn P1 ð1qÞ a k¼0 k ? 0 as n ? 1. Hence, it follows from (2.6) that Since 0 6 q < 1, ak e [0, 1] and lim n¼0 an ¼ 1, so e n!1 kSxnþ1  pk = 0, which implies that the iterative scheme fSxn g1 n¼0 converges strongly to p. Now, we prove p is unique common fixed point of S and T, when Y = X. Let there exists another point of coincidence say p⁄. Then, there exists z⁄ e X such that Sz⁄ = Tz⁄ = p⁄. But from (1.8) we have

0 6 kp  p k ¼ kTz  Tz k 6 qkSz  Sz k þ /ðkSz  TzkÞ ¼ qkp  p k; which implies p ¼ p as 0 6 q < 1. h Now, as S and T are weakly compatible and p = Tz = Sz, so Tp = TTz = TSz = STz and hence Tp = Sp. Therefore Tp is a point of coincidence of S, T and since the point of coincidence is unique so p = Tp. Thus Tp = Sp = p and therefore p is unique common fixed point of S and T. The main result in [10, Theorem 3.1] now becomes corollary of our Theorem 2.1 by employing the condition of weak compatibility in place of injectivity of S. Theorem 2.2. Let (X, ||.||) be a normed space and S, T: Y ? X are nonself operators on an arbitrary set Y such that TðYÞ # SðYÞ, where S(Y) is a complete subspace of X. Let p be a point of coincidence of S and T, i.e., Sz = Tz = p (say). Suppose that S and T satisfy condition (1.8). For x0 e Y, let fSxn g1 n¼0 be the Jungck–Khan iterative scheme converging to p, with 0 < a 6 an or 0 < b 6 bn , for all n. Then, the iterative scheme fSxn g1 n¼0 is (S, T)-stable. Proof. Let fSpn g1 n¼0  X be an arbitrary sequence, en ¼ kSpnþ1  ð1  an  bn ÞSpn  an Tqn  bn Tpn k, n = 0, 1, 2, 3, . . ., where Sqn ¼ ð1  bn  cn ÞSpn þ bn Tr n þ cn Tpn ; Sr n ¼ ð1  an ÞSpn þ an Tpn and let lim en ¼ 0. n!1 Then, using iterative scheme (1.9), we have

kSpnþ1  pk 6 kSpnþ1  ð1  an  bn ÞSpn  an Tqn  bn Tpn k þ kð1  an  bn ÞSpn þ an Tqn þ bn Tpn  ð1  an  bn þ bn þ an Þpk 6 en þ ð1  an  bn ÞkSpn  pk þ an kTqn  pk þ bn kTpn  pk 6 en þ ð1  an  bn ÞkSpn  pk þ an qkSqn  pk þ bn qkSpn  pk ¼ en þ ½1  an  bn ð1  qÞkSpn  pk þ an qkSqn  pk: ð2:7Þ Now, we have the following estimates:

kSqn  pk ¼ kð1  bn  cn ÞSpn þ bn Tr n þ cn Tpn  ð1  bn  cn þ bn þ cn Þpk 6 ð1  bn  cn ÞkSpn  pk þ bn kTrn  pk þ cn kTpn  pk 6 ½1  bn  cn ð1  qÞkSpn  pk þ bn qkSr n  pk;

ð2:8Þ

and

kSr n  pk ¼ kð1  an ÞSpn þ an Tpn  ð1  an þ an Þpk ¼ ½1  an ð1  qÞkSpn  pk:

ð2:9Þ

It follows from (2.7), (2.8), and (2.9) that

kSpnþ1  pk 6 ½1  an ð1  qÞ  bn ð1  qÞkSpn  pk þ en 6 1  an ð1  qÞkSpn  pk þ en :

ð2:10Þ

Using 0 < a 6 an and q 2 [0, 1) we have ½1  an ð1  qÞ < 1; 8n 2 N. Hence using Lemma (1.8), (2.10) yields lim Spnþ1 ¼ p. n!1 Conversely, let lim Spnþ1 ¼ p. Then using contractive condition (1.8) and the triangle inequality, we have n!1

en ¼ kSpnþ1  ð1  an  bn ÞSpn  an Tqn  bn Tpn k 6 kSpnþ1  pk þ kð1  an  bn ÞSpn þ an Tqn þ bn Tpn  ð1  an  bn þ bn þ an Þpk 6 kSpnþ1  pk þ kð1  an  bn Þ kSpn  pk þ an kTqn  pk þ bn kTpn  pk 6 kSpnþ1  pk þ kð1  an  bn Þ kSpn  pk þ an qkSqn  pk þ bn qkSpn  pk ¼ kSpnþ1  pk þ ½1  an ð1  qÞ  bn ð1  qÞkSpn  pkðusing ð2:7Þ and ð2:8ÞÞ ¼ ½1  an ð1  qÞkSpn  pk þ kSpnþ1  pk: ð2:11Þ and hence lim

n!1

en ¼ 0: Therefore Jungck–Khan iterative scheme (1.9) is (S, T)-stable. h

3. Direct comparison of convergence rate In computational mathematics, convergence speed of an iterative scheme plays a vital role and it has been studied by many authors [4,5,12]. For recent work in this direction, we refer the reader to [12] and references therein. Theorem 3.1. Let (X, ||.||) be an arbitrary Banach space and S, T : Y ? X be nonself operators on an arbitrary set Y satisfying contractive condition (1.8). Assume that TðYÞ # SðYÞ, S(Y) is a complete subspace of X and Sz = Tz = p (say). For x0 e Y, let Jungck– Mann (JM), Jungck–Ishikawa (JI), Jungck–Noor (JN) and Jungck–Khan (JK) iterative scheme be defined by (1.1)–(1.3), (1.9), P 1 ; lim an ¼ 0; 1 respectively, with 0 6 an < 1þq n¼0 an ¼ 1 and 0 < l 6 bn ; n 2 N. Then Jungck–Khan iterative scheme converges n!1

faster than Jungck–Mann, Jungck–Ishikawa and Jungck–Noor iteratives schemes.

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

525

Proof. For Jungck–Mann iterative scheme (1.1) we have

kSxnþ1  pk P ð1  an ÞkSxn  pk  an kTxn  pk P ð1  an ÞkSxn  pk  an qkSxn  pk ¼ ½1  an ð1 þ qÞkSxn  pk    P

n Y

½1  ai ð1 þ qÞkSx0  pk:

ð3:1Þ

i¼1

For Jungck–Ishikawa iterative scheme (1.2) we have

kSxnþ1  pk P ð1  an ÞkSxn  pk  an qkSyn  pk P ½1  an  an qð1  bn ð1  qÞkSxn  pk P ½1  an ð1 þ qÞkSxn  pk    P

n Y

½1  ai ð1 þ qÞkSx0  pk:

ð3:2Þ

i¼1

Similarly, for Jungck–Noor iterative scheme (1.3), it is easy to see that

kSxnþ1  pk P

n Y

½1  ai ð1 þ qÞkSx0  pk:

ð3:3Þ

i¼1

Also, for Jungck–Khan iterative scheme (1.9), using (2.5) we have n

kSxnþ1  pk 6 ½1  bn ð1  qÞkSxn  pk 6 ½1  lð1  qÞkSxn  pk    6 ½1  lð1  qÞ kSx0  pk:

ð3:4Þ

Using (3.3) and (3.4), we have n

kSxnþ1 ðJKÞ  pk ½1  lð1  qÞ kSx0  pk 6 n : Y kSxnþ1 ðJNÞ  pk ½1  ai ð1 þ qÞkSx0  pk i¼1 ½1lð1qÞn

Now, let pn ¼ Qn

i¼1

Then

pnþ1 pn

½1ai ð1þqÞ

.

½1lð1qÞ ¼ ½1 anþ1 ð1þqÞ. pnþ1 n!1 pn

Using lim an ¼ 0, we get lim n!1

¼ 1  lð1  qÞ < 1.

P1

kSxnþ1 ðJKÞpk lim pn ¼ 0. Hence lim kSx ¼ 0, i.e. Jungck–Khan Therefore by ratio test n¼0 pn < 1 ; which further yields nþ1 ðJNÞpk n!1 n!1 iterative scheme (1.9) converges faster than Jungck–Noor iterative scheme (1.3) to p. Similar argument can be applied to show that

lim

n!1

kSxnþ1 ðJKÞ  pk ¼ 0 and kSxnþ1 ðJIÞ  pk

lim

kSxnþ1 ðJKÞ  pk ¼ 0;  pk

n!1 kSxnþ1 ðJMÞ

which imply that the new iterative scheme (1.9) converges faster than Jungck–Ishikawa (1.2) and Jungck–Mann (1.1) iterative schemes to p.The following example shows the validity of Theorem 3.1. h Example 3.2. Let T, S: [1, 4] ? [1, 16] be defined as Tx = 2x + 3, Sx = x2. It is easy to see that (T, S) is a quasi-contractive operator pair satisfying (1.8) with point of coincidence 9. By taking initial approximation x0 = 2, /ðtÞ ¼ 2qt and 1 n an ¼ an ¼ bn ¼ pffiffiffiffiffiffiffiffi ; bn ¼ cn ¼ pffiffiffiffiffiffiffiffi ; n P 1; the obtained results are listed in Table 1, showing convergence of different 2nþ1 2 n þ1

Jungck type schemes to p = 9 = T3 = S3. Remark 3.3. Table 1 shows that Jungck–Khan iterative scheme (1.9) has much better convergence rate than Jungck–Noor, P 1 Jungck–Mann and Jungck–Ishikawa iterative schemes in the context of conditions 0 6 an < 1þq ; lim an ¼ 0; 1 n¼0 an ¼ 1 and n!1 0 < l 6 bn ; n 2 N; used in Theorem 3.1. Moreover, the iterative scheme (1.9) can have better convergence rate than the above P1 P1 mentioned iterative schemes in the context of condition n¼0 an ¼ 1 or n¼0 bn ¼ 1 used in Theorem 2.1, as shown in Tables 2–5. The following Jungck–CR iterative schemes are recently defined and studied in [12]:

Sxnþ1 ¼ ð1  an ÞSyn þ an Tyn ; Syn ¼ ð1  bn ÞTxn þ bn Tzn ; Szn ¼ ð1  an ÞSxn þ an Txn ; S1 unþ1 ¼ ð1  an ÞS1 v n þ an T 1 v n ;

ð3:5Þ

526

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

Table 1 1 n Convergence of different Jungck type iterative schemes to coincidence point p = 9 of Tx = 2x + 3 and Sx = x2. (x0 = 2, an ¼ an ¼ bn ¼ pffiffiffiffiffiffiffiffi ; n P 1). ; bn ¼ cn ¼ pffiffiffiffiffiffiffiffi 2nþ1 2 n þ1

n

1 2 3 4 5 6 7 8 9 10 11 – 199 200 201 202 203 204 205 – 226 227 228 229

Jungck–Khan iterative scheme

Jungck–Noor iterative scheme

Jungck–Ishikawa iterative scheme

Jungck–Mann iterative scheme

Jungck–CR iterative scheme

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

7 8.93074 8.99917 8.99996 9 9

4 8.79343 8.9975 8.99988 8.99999 9

2.96537 2.99958 2.99998 3 3 3







7 8.01791 8.37444 8.55903 8.67111 8.74553 8.79787 8.83624 8.86522 8.88766 8.90536 – 9 9 9 9

4 6.29486 7.22116 7.72571 8.04039 8.25277 8.40384 8.51541 8.60021 8.66612 8.71831 – 8.99999 8.99999 9 9

2.50896 2.68722 2.77952 2.83556 2.87276 2.89894 2.91812 2.93261 2.94383 2.95268 2.95977 – 3 3 3 3







7 7.78834 8.15816 8.37441 8.51562 8.68633 8.7408 8.78303 8.81643 8.84328 8.68633 – 9 9 9 9 9 9 9 – 9 9 9 9

4 5.73205 6.65165 7.22106 7.60551 8.08358 8.23921 8.36086 8.45772 8.53599 8.08358 – 8.99999 8.99999 8.99999 8.99999 8.99999 8.99999 8.99999 – 8.99999 8.99999 9 9

2.39417 2.57908 2.6872 2.75781 2.80712 2.8704 2.89152 2.90822 2.92164 2.93259 2.8704 – 3 3 3 3 3 3 3 – 3 3 3 3

2.83474 2.96628 2.99238 2.99817 2.99954 2.99988 2.99997 2.99999 3 3 3 –



2.48741 2.66946 2.76556 2.82449 2.86384 2.91207 2.92754 2.93954 2.94902 2.95663 2.91207 – 3 3 3 3 3 3 3 –

4 8.03578 8.79879 8.95435 8.98903 8.99725 8.99929 8.99981 8.99995 8.99999 9 –



4 6.1872 7.12601 7.64835 7.97774 8.36157 8.48015 8.57051 8.6409 8.69673 8.36157 – 8.99999 8.99999 8.99999 8.99999 8.99999 9 9 –

7 8.66949 8.93255 8.98476 8.99634 8.99908 8.99976 8.99994 8.99998 9 9 –



7 7.97482 8.33892 8.53113 8.64898 8.78328 8.82414 8.85509 8.87908 8.89804 8.78328 – 9 9 9 9 9 9 9 –







Table 2 1 Convergence of different Jungck type iterative schemes to coincidence point p = 9 of Tx = 2x + 3 and Sx = x2. (x0 = 1.4, an ¼ an ¼ bn ¼ pffiffiffiffiffiffiffiffi ¼ bn ¼ cn ; n P 0). 2nþ1 n

Jungck–Khan iterative scheme

Jungck–CR iterative scheme

Txn

Sxn

xn+1

0 1 – 2 6 7 8 9 – 19 20 – 28 29 30 31 – 131 132 133 134 135 – 161 162 – 210 211 212

5.9 10.3826 – 9.06366 9.00235 9.0014 9.00087 9.00057 – 9.00002 9.00002 – 9 9 9 9 –

2.1025 13.6255 – 9.192 9.00706 9.0042 9.00262 9.0017 – 9.00007 9.00005 – 9.00001 9.00001 9.00001 9 –

3.69128 3.03183 – 3.00981 3.0007 3.00044 3.00028 3.00019 – 3.00001 3.00001 – 3 3 3 3 –













5.9 8.86734 – 8.9788 8.99994 8.99998 9 9 –



2.1025 8.60642 – 8.9365 8.99983 8.99995 8.99999 9 –



Jungck–Noor iterative scheme

2.93367 2.9894 – 2.99785 2.99999 3 3 3 –



Jungck–Ishikawa iterative scheme

Jungck–Mann iterative scheme

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

5.9 8.86734 – 8.93037 8.98124 8.98506 8.98788 8.99001 – 8.99771 8.99797 – 8.99905 8.99914 8.99922 8.99929 – 9 9 9 9 9 –

2.1025 8.60642 – 8.79233 8.94381 8.95524 8.96366 8.97005 – 8.99314 8.99391 – 8.99715 8.99741 8.99765 8.99787 – 8.99999 8.99999 8.99999 9 9 –

2.93367 2.96519 – 2.97737 2.99253 2.99394 2.995 2.99583 – 2.99899 2.9991 – 2.99957 2.99961 2.99964 2.99968 – 3 3 3 3 3 –





2.1025 7.85798 – 8.3779 8.82725 8.86209 8.88783 8.90741 – 8.97865 8.98105 – 8.9911 8.99193 8.99268 8.99334 – 8.99998 8.99998 8.99998 8.99998 8.99999 – 8.99999 9 –

2.80321 2.89446 – 2.93086 2.97693 2.98125 2.98453 2.98708 – 2.99684 2.99719 – 2.99865 2.99878 2.99889 2.99899 – 3 3 3 3 3 – 3 3 –

5.9 7.85798 – 8.303 8.77562 8.81736 8.84896 8.87349 – 8.96802 8.97144 – 8.98608 8.98733 8.98845 8.98946 – 8.99997 8.99997 8.99997 8.99997 8.99997 – 8.99999 8.99999 – 9 9 9

2.1025 5.9 – 7.03044 8.33946 8.46043 8.55259 8.62447 – 8.90433 8.91453 – 8.95829 8.96204 8.96539 8.96839 – 8.9999 8.9999 8.99991 8.99991 8.99992 – 8.99997 8.99997 – 8.99999 8.99999 9

2.42899 2.6515 – 2.75673 2.90868 2.92448 2.93674 2.94646 – 2.98572 2.98721



5.9 8.60642 – 8.78892 8.94214 8.95385 8.96249 8.96906 – 8.99288 8.99368 – 8.99703 8.99731 8.99756 8.99778 – 8.99999 8.99999 8.99999 8.99999 9 – 9 9 –

2.99367 2.99423 2.99473 2.99518 – 2.99998 2.99998 2.99999 2.99999 2.99999 – 3 3 – 3 3 3

527

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

Table 3 1 Convergence of different Jungck type iterative schemes to coincidence point p⁄ = 2 of T1 x = 2x and S1 x = x2 + 1. (x0 = 1.45, an ¼ an ¼ bn ¼ pffiffiffiffiffiffiffiffi ¼ bn ¼ cn ; n P 0). 2nþ1 n

0 1 2 3 4 5 – 239 240 241 242 243 244 –

Jungck–Khan iterative scheme

Jungck–CR iterative scheme

Jungck–Noor iterative scheme

Jungck–Ishikawa iterative scheme

Jungck–Mann iterative scheme

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

2.9 2.27239 2.24124 2.22399 2.21203 2.20288 – 2.06767 2.06756 2.06746 2.06735 2.06725 2.06715 –

3.1025 2.29094 2.25579 2.23653 2.22327 2.21317 – 2.06882 2.06871 2.0686 2.06849 2.06838 2.06827 –

1.1362 1.12062 1.11199 1.10601 1.10144 1.09774 – 1.03378 1.03373 1.03368 1.03363 1.03357 1.03352 –

2.9 2.56974 2.46094 2.39454 2.34758 2.3119

3.1025 2.65089 2.51405 2.43346 2.37778 2.33622

1.28487 1.23047 1.19727 1.17379 1.15595 1.14179

2.01514 2.01508 2.01502 2.01497 2.01491 2.01485

2.0152 2.01514 2.01508 2.01502 2.01496 2.0149

1.00754 1.00751 1.00748 1.00745 1.00742 1.0074

2.9 2.56974 2.5085 2.47398 2.44982 2.43119 – 2.14368 2.14345 2.14322 2.143 2.14277 2.14254 –

3.1025 2.65089 2.57314 2.53014 2.5004 2.47768 – 2.14884 2.1486 2.14835 2.14811 2.14787 2.14762 –

1.28487 1.25425 1.23699 1.22491 1.2156 1.20802 – 1.07173 1.07161 1.0715 1.07138 1.07127 1.07116 –

2.9 2.65089 2.58363 2.54358 2.51491 2.49256 – 2.152 2.15175 2.15149 2.15124 2.15099 2.15074 –

3.1025 2.75681 2.66879 2.61744 2.58119 2.55322 – 2.15778 2.15751 2.15723 2.15696 2.15669 2.15642 –

1.32545 1.29182 1.27179 1.25745 1.24628 1.23713 – 1.07587 1.07575 1.07562 1.0755 1.07537 1.07525 –

2.9 2.75681 2.69617 2.65567 2.6249 2.59998 – 2.17362 2.1733 2.17298 2.17267 2.17236 2.17205 –

3.1025 2.9 2.81733 2.76314 2.72252 2.68998 – 2.18115 2.18081 2.18046 2.18012 2.17979 2.17945 –

1.3784 1.34808 1.32783 1.31245 1.29999 1.28951 – 1.08665 1.08649 1.08634 1.08618 1.08602 1.08587 –

S1 v n ¼ ð1  bn ÞT 1 un þ bn T 1 wn ; S1 wn ¼ ð1  an ÞS1 un þ an T 1 un ;

ð3:6Þ

where an ; bn ; an 2 ½0; 1 Remark 3.4. Putting an ¼ 0; bn ¼ 1 and an ¼ 0 in the iterative scheme (3.5), we get Jungck–S [12] and Jungck–Agarwal et al. [12] iterative schemes, respectively. Remark 3.5. It is not possible to compare directly Jungck–Khan (1.9) and Jungck–CR iterative scheme (3.5). However, Table 2 and Table 5 show that Jungck–Khan iterative scheme can have better convergence rate than Jungck–CR iterative scheme.

4. Data dependence In this section we establish data dependence of Jungck–Khan and Jungck–CR iterative schemes and deduce as corollaries certain recent data dependence results for well-known iterative schemes like Jungck–Noor, Jungck–Mann, Jungck–Ishikawa, Jungck–Agarwal et al. and Jungck–S. Theorem 4.1. Let (X, ||.||) be an arbitrary Banach space and (S, T), (S1, T1) : Y ? X be nonself operator pairs on an arbitrary set Y with (S, T) satisfying contractive condition (1.8) such that kTx  T 1 xk 6 e; kSx  S1 xk 6 e1 . Assume that TðYÞ # SðYÞ, T 1 ðYÞ # S1 ðYÞ, 1 where S(Y) and S1 ðYÞ are complete subspaces of X with Sz = Tz = p and S1z⁄ = T1 z⁄ = p⁄. Suppose that fSxn g1 n¼0 , fSun gn¼0 are ⁄ Jungck–Khan iterative schemes (1.9) and (1.10) associated with (S, T) and (S1, T1), which converge to p and p , respectively. Then we have

kp  p k 6 where

10e2 ; 1q

e2 = max {e, e1 }, provided bn 6 an ; 8n 2 N and

P1

n¼1

an ¼ 1.

Proof. It follows from (1.9) and (1.10) that

kSxnþ1  S1 unþ1 k 6 ð1  an  bn ÞkSxn  S1 un k þ an kTyn  T 1 v n k þ bn kTxn  T 1 un k:

ð4:1Þ

Now we have the following estimates:

kTyn  T 1 v n k 6 kTyn  T v n k þ kT v n  T 1 v n k 6 qkSyn  Sv n k þ /ðkSyn  Tyn kÞ þ e;

ð4:2Þ

kSyn  Sv n k 6 kSyn  S1 v n k þ kS1 v n  Sv n k 6 kSyn  S1 v n k þ e1 ;

ð4:3Þ

kSyn  S1 v n k 6 ð1  bn  cn ÞkSxn  S1 un k þ bn kTzn  T 1 wn k þ cn kTxn  T 1 un k;

ð4:4Þ

kTzn  T 1 wn k 6 kTzn  Twn k þ kTwn  T 1 wn k 6 qkSzn  Swn k þ /ðkSzn  Tzn kÞ þ e;

ð4:5Þ

kSzn  Swn k 6 kSzn  S1 wn k þ kS1 wn  Swn k ¼ kSzn  S1 wn k þ e1 ;

ð4:6Þ

528

Table 4 1 Convergence of different Jungck type iterative schemes to common fixed point p = 0.5 of Tx = 12 ð12 þ xÞ and Sx = 1  x. (x0 = 0.6, an ¼ an ¼ bn ¼ pffiffiffiffiffiffiffiffi ¼ bn ¼ cn ; n P 0). 2nþ1 n

Txn

Sxn

xn+1

0.55 0.491406 0.500002 0.5

0.4 0.517188 0.499996 0.5

0.482812 0.500004 0.5 0.5

– 0.5 0.5 0.5 – 0.5 0.5 0.5 0.5 0.5

– 0.5 0.5 0.5 – 0.5 0.5 0.5 0.5 0.5

– 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Jungck–CR iterative scheme

0.55 0.496094 0.500568 0.499892 0.500024 0.499994 0.500002 0.5 0.5

0.4 0.507813 0.498864 0.500217 0.499952 0.500012 0.499997 0.500001 0.5

0.492188 0.501136 0.499783 0.500048 0.499988 0.500003 0.499999 0.5 0.5

Jungck–Noor iterative scheme

Jungck–Ishikawa iterative scheme

Jungck–Mann iterative scheme

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

0.55 0.519531 0.509514 0.505203 0.503063 0.501901 0.501227 0.500817 0.500558 – 0.500002 0.500002 0.500001 – 0.5 0.5 0.5

0.4 0.460938 0.480972 0.489595 0.493873 0.496199 0.497546 0.498366 0.498883 – 0.499996 0.499997 0.499997 – 0.499999 0.499999 0.5

0.539063 0.519028 0.510405 0.506127 0.503801 0.502454 0.501634 0.501117 0.500779 – 0.500003 0.500003 0.500002 – 0.500001 0.5 0.5

0.55 0.521875 0.511214 0.506318 0.503795 0.502389 0.501559 0.501048 0.500721 – 0.500003 0.500002 0.500002 – 0.5 0.5 0.5 0.5 0.5

0.4 0.45625 0.477573 0.487364 0.49241 0.495222 0.496882 0.497905 0.498558 – 0.499995 0.499996 0.499996 – 0.499999 0.499999 0.499999 0.499999 0.5

0.54375 0.522427 0.512636 0.50759 0.504778 0.503118 0.502095 0.501442 0.501012 – 0.500004 0.500004 0.500003 – 0.500001 0.500001 0.500001 0.5 0.5

0.55 0.5125 0.504845 0.502276 0.501196 0.500678 0.500406 0.500254 0.500164 – 0.5 0.5 0.5 – 0.5 0.5 0.5 0.5 0.5

0.4 0.475 0.490309 0.495449 0.497608 0.498643 0.499187 0.499492 0.499672 – 0.499999 0.499999 0.5 – 0.5 0.5 0.5 0.5 0.5

0.525 0.509691 0.504551 0.502392 0.501357 0.500813 0.500508 0.500328 0.500218 – 0.500001 0.5 0.5 – 0.5 0.5 0.5 0.5 0.5

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

0 1 2 3 4 5 6 7 8 – 30 31 32 – 40 41 42 43 44

Jungck–Khan iterative scheme

Table 5 1 Convergence of different Jungck type iterative schemes to common fixed point p⁄ = 1 of T1 = 1þx and S1x = x2. (x0 = 0.6, an ¼ an ¼ bn ¼ pffiffiffiffiffiffiffiffi ¼ bn ¼ cn ; n P 0). 2 2nþ1 n

Jungck–CR iterative scheme

Jungck–Noor iterative scheme

Jungck–Ishikawa iterative scheme

Jungck–Mann iterative scheme

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

Txn

Sxn

xn+1

0.8 0.968824 0.990049 –

0.36 0.879183 0.960594 –

0.937647 0.980099 0.991652 –

0.8 0.974178 0.996068 – 0.999999 1 1

0.36 0.89938 0.984332 – 0.999997 0.999999 1

0.948356 0.992135 0.99869 – 1 1 1

– 1 1 1 – 1 1

– 0.999999 0.999999 1 – 1 1

– 1 1 1 – 1 1

0.8 0.895889 0.933565 – 0.983801 0.986873 0.989223 – 0.999473 0.999522 0.999566 – 1 1 1

0.36 0.626913 0.751914 – 0.936254 0.948183 0.957358 – 0.997891 0.998089 0.998266 – 0.999999 0.999999 1

0.791778 0.86713 0.90729 – 0.973747 0.978447 0.982111 – 0.999044 0.999132 0.999211 – 1 1 1

– –

– –

– –













0.8 0.893826 0.931824 – 0.98323 0.986401 0.988828 – 0.99945 0.999502 0.999548 – 1 1 1 1 –

0.36 0.620394 0.745889 – 0.934045 0.946342 0.955813 – 0.997803 0.998009 0.998193 – 0.999999 0.999999 0.999999 1 –

0.787651 0.863648 0.904551 – 0.972801 0.977657 0.981445 – 0.999004 0.999096 0.999178 – 1 1 1 1 –

0.8 0.880789 0.919165 – 0.977739 0.981719 0.984813 – 0.999155 0.999232 0.999301 – 1 1 1 1 – 1 1 1

0.36 0.58 0.702796 – 0.912937 0.928211 0.940176 – 0.996623 0.99693 0.997205 – 0.999999 0.999999 0.999999 0.999999 – 0.999999 0.999999 1

0.761577 0.83833 0.882776 – 0.963437 0.969627 0.974522 – 0.998464 0.998601 0.998725 – 1 1 1 1 – 1 1 1

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

0 1 2 – 7 8 9 – 33 34 35 – 174 175 176 177 – 190 191 192

Jungck–Khan iterative scheme

529

530

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

and

kSzn  S1 wn k 6 ð1  an ÞkSxn  S1 un k þ an kTxn  T 1 un k 6 ð1  an ÞkSxn  S1 un k þ an kTxn  Tun k þ an kTun  T 1 un k 6 ð1  an ÞkSxn  S1 un k þ an qkSxn  Sun k þ an /ðkSxn  Txn kÞ þ an e 6 ð1  an ÞkSxn  S1 un k þ an qkSxn  S1 un k þ an qkS1 un  Sun k þ an /ðkSxn  Txn kÞ þ an e 6 ½1  an ð1  qÞkSxn  S1 un k þ an /ðkSxn  Txn kÞ þ an qe1 þ an e:

ð4:7Þ

Using estimates (4.5)–(4.7), we find

kTzn  T 1 wn k 6 q½1  an ð1  qÞkSxn  S1 un k þ /ðkSzn  Tzn kÞ þ qan /ðkSxn  Txn kÞ þ qe1 þ e þ an q2 e1 þ an qe:

ð4:8Þ

It follows from (4.4) and (4.8) that

kSyn  S1 v n k 6 ð1  bn  cn ÞkSxn  S1 un k þ bn q½1  an ð1  qÞÞkSxn  S1 un k þ an bn q/ðkSxn  Txn kÞ þ bn /ðkSzn  Tzn kÞ þ cn kTxn  T 1 un k þ bn e þ an bn e þ an bn q2 e1 þ bn qe1 ; 6 ½1  bn ð1  qÞ  cn kSxn  S1 un k þ an bn q/ðkSxn  Txn kÞ þ bn /ðkSzn  Tzn kÞ þ cn kTxn  T 1 un k þ bn e þ an bn e þ an bn q2 e1 þ bn qe1 :

ð4:9Þ

Also, (4.2) and (4.9) together yield

kTyn  T 1 v n k 6 q½1  bn ð1  qÞ  cn kSxn  S1 un k þ an bn q2 /ðkSxn  Txn kÞ þ bn q/ðkSzn  Tzn kÞ þ qcn kTxn  T 1 un k þ /ðkSyn  Tyn kÞ þ bn qe þ bn q2 e1 þ e þ an bn qe þ an bn q3 e1 :

ð4:10Þ

Using (4.10), (4.1) yields

kSxnþ1  S1 unþ1 k 6 ð1  an  bn ÞkSxn  S1 un k þ an q½1  bn ð1  qÞ  cn kSxn  S1 un k þ an an bn q2 /ðkSxn  Txn kÞ þ an bn q/ðkSzn  Tzn kÞ þ an qcn kTxn  T 1 un k þ an bn qe þ an bn q2 e1 þ an qe1 þ an /ðkSyn  Tyn kÞ þ an e þ bn kTxn  T 1 un k þ an an bn qe þ an an bn q3 e1 6 ð1  an ð1  qÞ  an qcn  bn ÞkSxn  S1 un k þ an an bn q2 /ðkSxn  Txn kÞ þ an bn q/ðkSzn  Tzn kÞ þ an /ðkSyn  Tyn kÞ þ ðan qcn þ bn ÞkTxn  T 1 un k þ an qe1 ð1 þ bn qÞ þ an eð1 þ bn qÞ þ an an bn qe þ an an bn q3 e1 :

ð4:11Þ

Now

kSxn  Txn k 6 kSxn  pk þ kp  Txn k 6 kSxn  pk þ qkSxn  pk ¼ ð1 þ qÞkSxn  pk; which yields

lim kSxn  Txn k ¼ 0: ðusing lim Sxn ¼ pÞ

n!1

n!1

ð4:12Þ

Also,

kSyn  Tyn k 6 kSyn  pk þ kp  Tyn k 6 kSyn  pk þ qkSyn  pk ¼ ð1 þ qÞkSyn  pk; with

kSyn  pk 6 ð1  bn  cn ÞkSxn  pk þ bn kTzn  pk þ cn kTxn  pk 6 ð1  bn  cn ÞkSxn  pk þ bn qkSzn  pk þ cn qkSxn  pk 6 ð1  bn  cn ÞkSxn  pk þ þbn q½ð1  an ÞkSxn  pk þ an kTxn  pk þ cn qkSxn  pk 6 ð1  bn  cn ÞkSxn  pk þ þbn qð1  an ÞkSxn  pk þ bn an q2 kSxn  pk þ cn qkSxn  pk; implies lim kSyn  Tyn k ¼ 0: n!1

ð4:13Þ

Similarly

kSzn  Tzn k 6 kSzn  pk þ kp  Tzn k 6 kSzn  pk þ qkSzn  pk ¼ ð1 þ qÞkSzn  pk; with

kSzn  pk 6 ð1  an ÞkSxn  pk þ an qkSxn  pk ¼ ½1  an ð1  qÞkSxn  pk; implies

lim kSzn  Tzn k ¼ 0:

n!1

ð4:14Þ

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

531

Moreover,

kTxn  T 1 un k 6 kTxn  Tun k þ kTun  T 1 un k 6 qkSxn  Sun k þ /ðkSxn  Txn kÞ þ e 6 qkSxn  S1 un k þ qkS1 un  Sun k þ /ðkSxn  Txn kÞ þ e 6 qkSxn  S1 un k þ qe1 þ /ðkSxn  Txn kÞ þ e:

ð4:15Þ

Using estimate (4.15), (4.11) becomes

kSxnþ1  S1 unþ1 k 6 ½1  an ð1  qÞ  bn ð1  qÞ  an qcn ð1  an cn qÞkSxn  S1 un k þ an an bn q2 /ðkSxn  Txn kÞ þ an qcn /ðkSxn  Txn kÞ þ bn /ðkSxn  Txn kÞ þ an bn q/ðkSzn  Tzn kÞ þ an /ðkSyn  Tyn kÞ þ ðan qe1 þ an eÞð1 þ bn q þ an bn q þ cn qÞ þ qe1 bn þ bn e ¼ ð1  r n ÞkSxn  S1 un k þ rn t n ; ðusing bn 6 an Þ;

ð4:16Þ

2 a b q2 /ðkSx  Tx kÞ þ qc /ðkSx  Tx kÞ þ /ðkSx  Tx kÞ 3 n n n n n n n n n 7 6 þbn q/ðkSzn  Tzn kÞ þ /ðkSyn  Tyn kÞ 7 6 7 6 þðqe þ eÞð1 þ b q þ a b q þ c qÞ þ qe þ e 7 6 1 n n n n 1 where rn ¼ an ð1  qÞ and t n ¼ 6 7: 7 6 1q 7 6 5 4 Lemma 1.7 and estimates (4.12)–(4.14), (4.16) yield

kp  p k 6 where

10e2 ; 1q

e2 = max{e, e1 }. Hence the result. h

Corollary 4.2. Let (X, ||.||) be an arbitrary Banach space and (S, T), (S1, T1): Y ? X be nonself operator pairs on an arbitrary set Y with (S, T) satisfying contractive condition (1.8) such that kTx  T 1 xk 6 e; kSx  S1 xk 6 e1 . Assume that TðYÞ # SðYÞ, 1 T 1 ðYÞ # S1 ðYÞ, where S(Y) and S1 ðYÞ are complete subspaces of X with Sz = Tz = p and S1z⁄ = T1z⁄ = p⁄. Let fSxn g1 n¼0 , fSun gn¼0 be ⁄ the Jungck–Noor iterative schemes associated with (S, T) and (S1, T1), and converging to p and p , respectively. Then we have

kp  p k 6 where

6e2 ; 1q

e2 = max{e, e1 }, e; e1 > 0; provided

P1

n¼1

an ¼ 1.

Proof. Putting bn ¼ cn ¼ 0 in (1.9) we get the desired result. h Remark 4.3. As Jungck–Ishikawa [12] and the Jungck–Mann (1.1) iterative schemes are special cases of Jungck–Khan iterative scheme (1.9), results similar to Corollary 4.2 hold for these iterative schemes. Also putting S = Id (identity mapping), Y = X, in (1.9), data dependence results of Ishikawa iterative scheme [1, Theorem 3.2] and Noor iterative scheme [2, Theorem 3.1] can be obtained as corollaries. Now we establish data dependence result for Jungck–CR scheme. Theorem 4.4. Let (X, ||.||) be an arbitrary Banach space and (S, T), (S1, T1): Y ? X be nonself operator pairs on an arbitrary set Y with (S, T) satisfying contractive condition (1.8) such that kTx  T 1 xk 6 e; kSx  S1 xk 6 e1 . Assume that TðYÞ # SðYÞ, T 1 ðYÞ # S1 ðYÞ, where S(Y) and S1 ðYÞ are complete subspaces of X with Sz = Tz = p and S1z⁄ = T1 z⁄ = p⁄. Suppose that fSxn g1 n¼0 , ⁄ fSun g1 n¼0 are the Jungck–CR iterative schemes (3.5) and (3.6) associated with (S, T) and (S1, T1), which converge to p and p , respectively. Then we have

kp  p k 6 where

6e2 ; 1q

e2 = max{e, e1 }, provided an ð1  qÞ P 12 ; 8n 2 N and

P1

n¼1

an ¼ 1.

Proof. It follows from (3.5) and (3.6) that

kSxnþ1  S1 unþ1 k 6 ð1  an ÞkSyn  S1 v n k þ an kTyn  T 1 v n k:

ð4:17Þ

Now we have the following estimates:

kTyn  T 1 v n k 6 kTyn  T v n k þ kT v n  T 1 v n k 6 qkSyn  Sv n k þ /ðkSyn  Tyn kÞ þ e;

ð4:18Þ

532

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

kSyn  Sv n k 6 kSyn  S1 v n k þ kS1 v n  Sv n k 6 kSyn  S1 v n k þ e1 :

ð4:19Þ

Using (4.17), (4.18), and (4.19) becomes

kSxnþ1  S1 unþ1 k 6 ½1  an ð1  qÞkSyn  S1 v n k þ an /ðkSyn  Tyn kÞ þ an e þ an qe1 :

ð4:20Þ

Now we have the following estimates:

kSyn  S1 v n k 6 ð1  bn ÞkTxn  T 1 un k þ bn kTzn  T 1 wn k 6 ð1  bn ÞkTxn  Tun k þ ð1  bn ÞkTun  T 1 un k þ bn kTzn  Twn k þ bn kTwn  T 1 wn k 6 ð1  bn ÞqkSxn  Sun k þ ð1  bn Þ/ðkSxn  Txn kÞ þ ð1  bn Þe þ bn qkSzn  Swn k þ bn /ðkSzn  Tzn kÞ þ bn e ¼ ð1  bn ÞqkSxn  Sun k þ ð1  bn Þ/ðkSxn  Txn kÞ þ bn /ðkSzn  Tzn kÞ þ bn qkSzn  Swn k þ e; kSxn  Sun k 6 kSxn  S1 un k þ kS1 un  Sun k 6 kSxn  S1 un k þ e1 ;

ð4:21Þ ð4:22Þ

kSzn  Swn k 6 kSzn  S1 wn k þ kS1 wn  Swn k 6 ð1  an ÞkSxn  S1 un k þ an kTxn  T 1 un k þ e1 6 ð1  an ÞkSxn  S1 un k þ an kTxn  Tun k þ an kTun  T 1 un k þ e1 6 ð1  an ÞkSxn  S1 un k þ an qkSxn  Sun k þ an /ðkSxn  Txn kÞ þ an eþ e1 6 ½1  an ð1  qÞkSxn  S1 un k þ an /ðkSxn  Txn kÞ þ an qe1 þ an e þ e1 :

ð4:23Þ

Using estimates (4.21)–(4.23) yields

kSyn  S1 v n k 6 ð1  bn ÞqkSxn  S1 un k þ ð1  bn Þqe1 þ ð1  bn Þ/ðkSxn  Txn kÞ þ bn /ðkSzn  Tzn kÞ þ bn q½1  an ð1  qÞkSxn  S1 un k þ an bn q/ðkSxn  Txn kÞ þ an bn q2 e1 þ an bn qe þ bn qe1 þ e 6 ½ð1  bn Þq þ bn qð1  an ð1  qÞÞkSxn  S1 un k þ ð1  bn Þ/ðkSxn  Txn kÞ þ bn /ðkSzn  Tzn kÞ þ an bn q/ðkSxn  Txn kÞ þ eð an bn q þ 1Þ þ qe1 ð an bn q þ 1Þ:

ð4:24Þ

It follows from (4.20) and (4.24) that

kSxnþ1  S1 unþ1 k 6 ½1  an ð1  qÞkSxn  S1 un k þ ½1  an ð1  qÞ/ð kSxn  Txn kÞ þ ½1  an ð1  qÞ/ðkSzn  Tzn kÞ þ ½1  an ð1  qÞan bn q/ðkSxn  Txn kÞ þ ½1  an ð1  qÞðe þ qe1 Þðan bn q þ 1Þ þ an ðe þ qe1 Þ þ an /ð kSyn  Tyn kÞ:

ð4:25Þ

Now an ð1  qÞ P 12 implies1  an ð1  qÞ 6 an ð1  qÞ 6 an . Hence inequality (4.25) implies

kSxnþ1  S1 unþ1 k 6 ½1  an ð1  qÞkSxn  S1 un k þ an /ðkSxn  Txn kÞ þ an /ðkSzn  Tzn kÞ þ an an bn q/ðkSxn  Txn kÞ þ an ðe þ qe1 Þð an bn q þ 1Þ þ an ðe þ qe1 Þ þ an /ðkSyn  Tyn kÞ; ¼ ð1  r n ÞkSxn  S1 un k þ rn t n ;

ð4:26Þ

n kÞþðeþqe1 Þðan bn qþ1Þþðeþqe1 Þþ/ð kSyn Tyn kÞ ð/ðkSxn Txn kÞþ/ðkSzn Tzn kÞþan bn q/ðkSxn Tx1q Þ.

where rn = an ð1  qÞ and tn = As in Theorem 4.1, it is easy to see that lim kSzn  Tzn k ¼ lim kSxn  Txn k ¼ lim kSyn  Tyn k ¼ 0. n!1

n!1

n!1

Hence Lemma 1.7 and (4.26) yield

kp  p k 6 where

6e2 ; 1q

e2 = max{e, e1 }. Hence the result. h

As Jungck–Agarwal et al. iterative scheme [12] is a special case of Jungck–CR iterative scheme, we have the following result: Corollary 4.5. Let (X, ||.||) be an arbitrary Banach space and (S, T), (S1, T1): Y ? X be nonself operator pairs on an arbitrary set Y with (S, T) satisfying contractive condition (1.8) such that kTx  T 1 xk 6 e; kSx  S1 xk 6 e1 . Assume that TðYÞ # SðYÞ, T 1 ðYÞ # S1 ðYÞ, where S(Y) and S1 ðYÞ are complete subspaces of X with Sz = Tz = p and S1z⁄ = T1z⁄ = p⁄. Suppose that fSxn g1 n¼0 , ⁄ fSun g1 n¼0 are the Jungck–Agarwal et al. iterative schemes associated with (S, T) and (S1, T1), which converge to p and p , respectively. Then we have

kp  past k 6 where

4e2 ; 1q

e2 = max {e, e1 }, provided an ð1  qÞ P 12 ; 8n 2 N and

P1

n¼1

an ¼ 1.

533

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

Proof. Putting an ¼ 0; bn ¼ an in the iterative scheme (3.5), we get the desired result. h Remark 4.6. Set an ¼ 0; bn ¼ 1; an ¼ an in (3.5) to obtain data dependence result [3, Theorem 4] for Jungck–S iterative scheme studied in [12]. The following two examples reveal the validity of our Theorem 4.1. Example 4.7. Let T, S, T1, and S1: [1, 4] ? [1, 17] be defined as Tx = 2x + 3, Sx = x2, T1x = 2x and S1x = x2 + 1. It is easy to see that (S, T) and (S1, T1) are approximate operator pairs with (S, T) satisfying (1.8) and /ðtÞ ¼ 2qt. Also, here e = 3, e1 ¼ 1 and so 1 ffi e2 = 3. Taking initial approximation x0 = 1.45 and an ¼ bn ¼ an ¼ bn ¼ cn ¼ pffiffiffiffiffiffiffiffi ; n P 0; results obtained are listed in Table 2 2nþ1 and Table 3 which show convergence of different Jungck type schemes associated with (S, T) and (S1, T1), respectively, to p = 9 = T3 = S3 and p⁄ = 2 = T11 = S11. Example 4.8. Let T, S, T1, and S1: [0, 1] ? [0, 1] be defined by T(x) = 12 ð12 þ xÞ, S(x) = 1  x; T1x = 1þx and S1x = x2. It is easy to see 2 that (S, T) and (S1, T1) are approximate operator pairs with (S, T) satisfying (1.8) and /ðtÞ ¼ 2qt. Also, here e = 0.25, e1 ¼ 1 and 1 ; n P 0; results obtained are listed in so e2 = 1. By taking initial approximation x0 = 0.6 and an ¼ bn ¼ an ¼ bn ¼ cn ¼ pffiffiffiffiffiffiffiffi 2nþ4 Table 4 and Table 5 which show convergence of different Jungck type schemes associated to (S, T) and (S1, T1), respectively, to p = 0.5 = T 0.5 = S 0.5 and p⁄ = 1 = T11 = S11. The following example reveals the validity of Theorem 4.4. Example 4.9. Let T, S, T1, and S1: [1, 4] ? [1, 17] be defined by Tx = 2x + 3, Sx = x2, T1x = 2x and S1x = x2 + 1. It is easy to see that (S, T) and (S1, T1) are approximate operator pairs with (T, S) satisfying (1.8) and /ðtÞ ¼ 2qt. Also, here e = 3, e1 ¼ 1 and so e2 = 3. n 1 ffi ; bn ¼ an ¼ bn ¼ cn ¼ pffiffiffiffiffiffiffiffi ; n P 1; the results obtained are listed in By taking initial approximation x0 = 2 and an ¼ nþ0:2 2nþ1 Table 6 which shows convergence of Jungck–CR iterative schemes associated with (S, T) and (S1, T1), respectively, to p = 9 = T3 = S3 and p⁄ = 2 = T11 = S11. 5. Applications In this section, with the help of computer programs in C++, we apply Jungck–Khan iterative scheme (1.9) to solve various type of problems, some of which are not easy to solve by other methods. Solution of Legendre polynomial 63 x5  35 x3 þ 15 x¼0 8 4 8 To solve this polynomial we rewrite it in the form Sx = Tx, where Tx = 63x5 þ 15x and Sx ¼ 70x3 : Here the operators S, T : 1 ; n P 0; the ½0:2; 0:9 ! ½0:56; 51:03 are such that T(x) 2 SðxÞ; 8x 2 ½0:2; 0:9: Taking x0 ¼ 0:2; an ¼ bn ¼ an ¼ bn ¼ cn ¼ pffiffiffiffiffiffiffiffi 2nþ4 convergence of Jungck–Khan iterative scheme to the coincedence point 0.538471 of S and T is listed in the Table 7. Solution of equation ex ðx2 þ 5x þ 2Þ þ 1 ¼ 0

Table 6 Convergence of Jungck–CR iterative scheme to coincidence point p = 9 of Tx = 2x + 3, and Sx = x2 as well as to coincidence point p⁄ = 2 of T1 x = 2x and S1x = x2 + 1. n 1 (x0 = 2, an ¼ nþ0:2 ; bn ¼ an ¼ bn ¼ cn ¼ pffiffiffiffiffiffiffiffi ; n P 1). 2nþ1 n

Txn

Sxn

xn+1

T1xn

S1xn

xn+1

1 2 3 4 5 6 7 8 9 10 11 12 13 – 246 247 248 249 –

7 8.46082 8.8424 8.9523 8.98526 8.99538 8.99854 8.99953 8.99985 8.99995 8.99998 8.99999 9 – 9 9 9 9 –

4 7.45515 8.53341 8.85746 8.95583 8.98615 8.99562 8.9986 8.99955 8.99986 8.99995 8.99998 9 – 9 9 9 9 –

2.73041 2.9212 2.97615 2.99263 2.99769 2.99927 2.99977 2.99993 2.99998 2.99999 3 3 3 – 3 3 3 3 –

4 3.12411 2.76002 2.56778 2.45078 2.37269 2.31711 2.27565 2.24359 2.2181 2.19736 2.18017 2.1657 – 2.0082 2.00816 2.00813 2.0081 –

5 3.44001 2.90442 2.64838 2.50158 2.40741 2.34225 2.29465 2.25843 2.22999 2.2071 2.18829 2.17256 – 2.00821 2.00818 2.00815 2.00811 –

1.56205 1.38001 1.28389 1.22539 1.18634 1.15855 1.13783 1.1218 1.10905 1.09868 1.09009 1.08285 1.07667 – 1.00408 1.00407 1.00405 1.00403 –

534

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

We rewrite above equation in the form Sx = Tx, where the operators T, S: ½2; 0:5 ! ½10; 2:5 are defined by 1 ; n P 0, Tx = ex  x2  2 and Sx = 5x, respectively. With initial approximation x0 = 1 and an ¼ bn ¼ an ¼ bn ¼ cn ¼ pffiffiffiffiffiffiffiffi 2nþ4 the convergence of Jungck–Khan iterative scheme to the coincedence point 0.579167 of S and T (and solution of equation) is listed in the Table 8. Solution of quadratic equation x2  10x þ 9 ¼ 0 In order to solve this equation by Jungck–Khan iterative scheme (1.9), we write it in the form Sx = Tx, where the operators T, S: ½1; 4 ! ½10; 40 are defined by Tx = x2 þ 9 and Sx = 10x, respectively. With initial approximation x0 = 2 and an ¼ bn ¼ an ¼ bn ¼ cn ¼ n15 ; n P 1; the convergence of Jungck–Khan iterative scheme to the coincedence point 1 of S and T (and solution of quadratic equation) is listed in the Table 9. For detailed study, these programs are executed after changing the parameters and some of the observations are given below:

5.1. Observations 5.1.1. Solution of Legendre polynomial 1. Taking initial guess xo = 0.5 (near coincidence point), Jungck–Khan iterative scheme (1.9) converges in 24 iterations. 1 2. Taking an ¼ bn ¼ an ¼ bn ¼ cn ¼ p4ffiffiffiffiffiffiffiffi ; n P 0; and xo = 0.2, we observe that Jungck–Khan iterative scheme converges in 21 2nþ4 iterations. Table 7 Convergence of Jungck–Khan iterative scheme to coincidence point p = 0.538471 of Tx = 63x5 þ 15x and Sx ¼ 70x3 : 1 (x0 ¼ 0:2, an ¼ bn ¼ an ¼ bn ¼ cn ¼ pffiffiffiffiffiffiffiffi ; n P 0Þ. 2nþ4 n

Txn

Sxn

xn+1

0 1 2 3 4 5 – 23 24 25 26 27

3.02016 6.84522 8.68351 9.63872 10.1666 10.47 – 10.929 10.929 10.929 10.9291 10.9291

3.02017 6.84524 8.68353 9.63874 10.1666 10.47 – 10.929 10.929 10.9291 10.9291 10.9291

0.408546 0.476129 0.504846 0.519245 0.527105 0.531609 – 0.538469 0.53847 0.53847 0.538471 0.538471

Table 8 Convergence of Jungck–Khan iterative scheme to coincidence point p = 0.579167 of Tx = ex  x2  2 and Sx = 5x. 1 (x0 ¼ 1; an ¼ bn ¼ an ¼ bn ¼ cn ¼ pffiffiffiffiffiffiffiffi ; n P 0Þ. 2nþ4 n

Txn

Sxn

xn+1

0 1 2 3 4 5 6

3.36792 2.92951 2.89837 2.89604 2.89585 2.89583 2.89583

3.36792 2.92951 2.89837 2.89604 2.89585 2.89583 2.89583

0.629975 0.583365 0.579509 0.579196 0.579169 0.579167 0.579167

Table 9 Convergence of Jungck–Khan iterative scheme to coincidence point p = 1 of Tx = x2 þ 9 and Sx = 10x. (x0 ¼ 2; an ¼ bn ¼ an ¼ bn ¼ cn ¼ n15 ; n P 1Þ. n

Txn

Sxn

xn+1

1 2 3 4 5 6 7

13 10.0288 10.0056 10.0011 10.0002 10 10

13 10.0288 10.0056 10.0011 10.0002 10 10

1.01428 1.0028 1.00056 1.00011 1.00002 1 1

A.R. Khan et al. / Applied Mathematics and Computation 231 (2014) 521–535

535

5.1.2. Solution of equation ex ðx2 þ 5x þ 2Þ þ 1 ¼ 0 1. Taking initial guess x0 = 2 (away from coincidence point), Jungck–Khan iterative scheme converges in 7 iterations. 1 2. Taking an ¼ bn ¼ an ¼ bn ¼ cn ¼ p8ffiffiffiffiffiffiffiffi ; n P 0; and x0 = 1, we observe that Jungck–Khan iterative scheme converges in 5 2nþ4 iterations. 5.1.3. Solution of quadratic equation 1. Taking initial guess x0 = 4 (away from coincidence point), Jungck–Khan iterative scheme converges in 9 iterations. 1 2. Taking an ¼ bn ¼ an ¼ bn ¼ cn ¼ n0:1 ; n P 1 and x0 = 2, we observe that Jungck–Khan iterative scheme converges in 5 iterations. 6. Conclusions Keeping in mind the results of Sections 2-4, Tables 1–9 and observations made in Section 5, we make the following remarks:  The newly introduced Jungck-type iterative scheme is more general as well as has much better convergence rate as compared to Jungck–Mann, Jungck–Ishikawa and Jungck–Noor iterative schemes and hence has a good potential for further applications.  Data dependency of fixed points is performed for nonself operators for a more general iterative scheme with a higher convergence rate.  Many typical problems can be solved using Jungck-type iterative schemes.  The speed of iterative schemes depend on parameters an , bn etc.  For initial guess, near the solution, there is a decrease in number of iterations to converge to the solution of desired problem.

Acknowledgments The authors A.R. Khan and N. Hussain acknowledge gratefully the support of KACST, Riyad, Saudi Arabia for supporting Project J-P-11-0623. The authors would like to thank the referee for his/her valuable suggestions to improve presentation of the paper. References [1] S.M. Soltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl. 2008 (2008) 7. 242916. [2] R. Chugh, V. Kumar, Data dependence of Noor and SP iterative schemes when dealing with quasi-contractive operators, Int. J. Comput. Appl. 40 (2011) 41–46. [3] F. Gursoy, V. Karakaya, B. Rhoades, Data dependence results of new multi-step and S-iterative schemes for contractive-like operators, Fixed Point Theory Appl. 76 (2013) 12. [4] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl. 2004 (2004) 716359, http://dx.doi.org/10.1155/S1687182004311058. [5] V. Berinde, Iterative Approximation of Fixed Points, Springer, 2007. [6] A.R. Khan, On modified Noor iterations for asymptotically nonexpansive mappings, Bull. Belg. Math. Soc. Simon Stevin 17 (2010) 127–140. [7] S.L. Singh, C. Bhatnagar, S.N. Mishra, Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci. 193035–3043 (2005). [8] M.O. Olatinwo, Some stability and strong convergence results for the Jungck–Ishikawa iteration process, Creating Math. Inf. 17 (2008) 33–42. [9] M.O. Olatinwo, A generalization of some convergence results using the Jungck–Noor three-step iteration process in an arbitrary Banach space, Fasciculi Math. 40 (2008) 37–43. [10] M.O. Olatinwo, C.O. Imoru, Some convergence results for the Jungck–Mann and the Jungck–Ishikawa iteration processes in the class of generalized Zamfirescu operators, Acta Math. Univ. Comenianae LXXVII, 2 (2008) 299–304. [11] G. Jungck, Commuting mappings and fixed points, Am. Math. Monthly 83 (1976) 261–263. [12] N. Hussain, V. Kumar, M.A. Kutbi, On the rate of convergence of Jungck-type iterative schemes, Abstract Appl. Anal. 2013 (2013) 15. Article ID 132626. [13] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000) 217–229. [14] S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974) 147–150. [15] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953) 506–510. [16] G. Jungck, N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl. 325 (2007) 1003–1012. [17] W. Takahashi, S. Matsushita, Strong convergence theorems for nonexpansive nonself-mappings without boundary conditions, Nonlinear Anal. 68 (2008) 412–419.