Atomic Layer Deposition and In-situ Characterization of Ultraclean ...

Report 11 Downloads 124 Views
Atomic Layer Deposition and In-situ Characterization of Ultraclean Lithium Oxide and Lithium Hydroxide Alexander C. Kozen*,1,2, Alexander J. Pearse1,2, Chuan-Fu Lin1,2, Marshall A. Schroeder1,2, Malachi Noked2,3, Sang Bok Lee3, Gary W. Rubloff1,2 1: Department of Materials Science & Engineering, University of Maryland, College Park, MD, USA 2: Institute for Systems Research, University of Maryland, College Park, MD, USA 3: Department of Chemistry, University of Maryland, College Park, MD, USA

1

Intensity (arb. units)

O 1s

1200

O KLL

Li 1s

C 1s

1000

800

600 B.E. (eV)

400

200

0

Figure A1. In-situ XPS survey spectra of as-deposited ALD Li2O at 250˚C demonstrating ultraclean carbon-free nature of the as-deposited films. Carbon content is < .1% as determined by the signal to noise ratio of the data.

2

Figure A2. Real time, in-situ spectroscopic ellipsometric data during the ALD Li2O process at 250˚C. Inset: Close-up of the data showing 6 full ALD Li2O cycles. Note the large thickness increase after the LiOtBu pulse, and then the removal of the tertbutanol ligands during the H2O pulse.

3

Li 1s

225C Thermal 240C Thermal 265C Thermal 300C Thermal 225C Plasma 300C Plasma O 1s

225C Thermal 240C Thermal 265C Thermal 300C Thermal 225C Plasma 300C Plasma C 1s

Li 1s Li2O Frac. %

Li 1s Li2CO3 Position (eV)

Li 1s Total Atomic %

Li 1s Li2O Position (eV)

46.2

53.70

4.00

54.71

96.0

n/a

0

65.5

53.70

100

n/a

0

n/a

0

62

53.71

100

n/a

0

n/a

0

62.8

53.68

100

n/a

0

n/a

0

39.7

53.69

42.4

n/a

0

55.31

57.6

36.3

53.68

32.7

n/a

0

55.30

67.3

O 1s Total Atomic %

O 1s Li2O Position (eV)

53.5

528.50

3.2

531.11

96.8

n/a

0

34.5

528.50

85.8

531.20

14.2

n/a

0

37.9

528.50

84.2

531.19

15.8

n/a

0

37.2

528.50

84.7

531.23

15.3

n/a

0

47.3

528.50

20.1

n/a

0

531.86

80.0

48.9

528.50

14.7

n/a

0

531.86

85.3

O 1s Li2O Frac. %

Li 1s LiOH Position (eV)

O 1s LiOH Position (eV)

Li 1s LiOH Frac. %

O 1s LiOH Frac. %

O 1s Li2CO3 Position (eV)

Li 1s Li2O3 Frac. %

O 1s Li2O3 Frac. %

C 1s Total Atomic % C 1s Position (eV) 225C Thermal < 0.5 Too small to determine 240C Thermal < 0.5 Too small to determine 265C Thermal < 0.5 Too small to determine 300C Thermal < 0.5 Too small to determine 225C Plasma 13.0 290.11 300C Plasma 14.8 290.02 Thermal Process Stoichiometry Li:O Ratio (Total Atomic % Li:O Ratio (Total Li to O Li:O Ratio (Total Li to O Values) LiOH Component) Li2O Component) 225C Thermal 0.86 0.89 n/a 240C Thermal 1.90 n/a 2.21 265C Thermal 1.63 n/a 1.94 300C Thermal 1.69 n/a 1.99

Table A3. Table containing all XPS photoelectron peak assignments from this work.

4

Figure A4. Tapping mode AFM topographic map of air-exposed Li2O deposited using LiOtBu and H2O at 250˚C. Film texture is likely due to the reaction of Li2O to form Li2CO3.

5

Figure A5. SEM images of air-exposed Li2O deposited using LiOtBu and H2O at 250˚C. Film texture is due to unavoidable electron beam-induced damage in the SEM.

6

Figure A6. (a, b, c) TEM images of ALD Li2O deposited using LiOtBu and H2O at 250˚C on to a MWCNT substrate demonstrating ability to conformally coat high aspect ratio nanostructures; (d) electron diffraction image of one Li2O crystal showing the plane.

7

C 1s Intensity (arb. units)

Li2CO3

294 292 290 288 286 284 282 B.E. (eV)

Figure A7. XPS C1s photoelectron peak of LiOtBu powder loaded from an Ar glovebox without air exposure.

8