ATSSA HFTS 2013 Frank Julian

Report 6 Downloads 16 Views
High Friction Surface Treatments Frank Julian Federal Highway Administration

Overview • What are High Friction Surface Treatments? • RwD Crash Reduction Strategy using HFST? – Pavement Friction Demand and location selections for HFST • Why HFST?

What is a High Friction Surface Treatment? • High Friction Surface Treatments (HFST) are  pavement surfacing systems with exceptional skid‐ resistant properties that are not typically acquired  by conventional materials • Generally proprietary resin‐based products and  processes • Guidelines from the British Board of Agrément (BBA)“…defined as having a minimum skid resistance value  (SRV) of 65 measured using the portable Skid‐Resistance  Tester as defined in TRL Report 176: Appendix E.”

HFST Aggregates – Generally calcined bauxite or slags with high PSV, but  flint, granite, and other  materials have also been used – Generally 3‐4 mm maximum size Bauxite

Flint

Granite

HFST Binder Materials • Binder system (proprietary blends) – Bitumen‐extended epoxy resins – Epoxy‐resin – Polyester‐resin – Polyurethane‐resin – Acrylic‐resin

HFST Installation • Manually – Manual mixing of epoxy material – Manual application of epoxy with squeegee – Hand broadcast and distribution of aggregate – Production rates:  200‐500+ SY/hr.

HFST Installation • Automated (machine‐aided) – Machine mixing and application of epoxy (limited  hand/squeegee work) – Machine broadcast/application of aggregate – Production rates up to 2,300 SY/hr. 

HFST Finished Product

Overview • What are High Friction Surface Treatments? • RwD Crash Reduction Strategy using HFST? – Pavement Friction Demand and location selections for HFST • Why HFST?

Roadway Departure Risk Strategy  Keep Vehicles on Roadway  Reduce Likelihood of Crashes  Minimize Severity

Roadway Departure Crashes 2010 Nationwide  Fatal Crashes 30,196  Fatal  Crashes 15,786  Roadway  Departures Source: NHTSA  FARS

Roadway Departure Crash (RwD) - A non-intersection crash in which a vehicle crosses an edge line, a centerline, or otherwise leaves the traveled way.

FHWA Roadway Departure Strategic Plan RwD Fatalities by Most Harmful Event (FARS 2007-2009) 4,156

Overturn Opposite Direction Trees, Shrubs

18,530 Signs, utility poles, traffic signals

3,694

Other Fixed Object Barriers

11,452 14,374

Embankments, Ditches, Boulder, Snowbank Other

Roadway Departure Fatalities Most Harmful Event (FARS 2007-2009) Nearly ¾ of Roadway  Departure Fatalities are  from 3 crash types.

31% Overturn Opposite Direction Trees, Shrubs

19% 24%

Roadway Departure Fatalities Most Harmful Event (FARS 2007-2009)

45% in HC Overturn Opposite Direction Trees, Shrubs

48% in HC 36% in HC

Fatal Horizontal Curve Crashes

72%

Horizontal Curves and Safety 6.7 7

Average crash rates for horizontal curves is about 3 times that of tangent segments

6

Crashes/km

5 4 3

2.21

2 1 0

Tangent  Segments

Curves and  Transitions

Source: Glennon, et al, 1985 study for FHWA

Strategies for Reducing Crashes (Where Can HFST Benefit Safety?) 1. Horizontal curves 2. Approach to intersections 3. Grades When the pavement has:   

Marginal friction effected by weather Low friction Friction values not compatible with approach  speeds and geometrics (friction demand) 

Skid related crashes are determined by many roadway factors:  Weather Conditions  Friction Demand  Road Geometry  Vehicle Speeds  Traffic Characteristics  Driver Actions Source NCHRP 108

Conceptual Relationship Between Friction Demand, Speed and Friction Availability

Source NCHRP 108

AASHTO Horizontal Curve Design Model a

a

e = superelevation f = side friction factor V = design speed (mph) R = radius of curve (ft)

e+f = V2/15 R

Side Friction Demand, g Relationship between curve speed and side friction demand for two radii

Source TRR 2075

What about Friction Demand? In an existing curve the following is known:  • superelevation, • radius • curve approach speed

Solve for friction demand: Fs =  V2 ‐ e 15R

Basis for AASHTO Curve Design Model Is Driver Comfort Although the curve design policy stems from the laws of mechanics, the values used in design depend on practical limits and factors determined empirically over the range of variables involved.

Improving Friction to Keep Vehicles on the Roadway AASHTO Design assumes vehicles:   do not exceed the design speed  traverse the curve following a constant radius.

Likelihood of skidding increases when these  assumptions are violated. Several studies have shown that under real world  conditions both of these assumption are violated. Source NCHRP 500 Volume 7

Speeding- Related Crash Typology When crash types were examined for these drivers  excessively speeding, researchers found that speeding  was the leading cause of single‐driver right or left  roadside departure with traction loss and the third  leading cause of head‐on crashes. …primarily on curves, at night, on local or collector  roadways, and during clear weather.

Truck Operations on Curves  Skidding trucks may lead to overturn  Friction demand varies per tire  Trucks on downgrade curves generate greater lateral friction demand  Margin of safety for ‘f’ is lower for trucks  Trucks with high centers of gravity may overturn before losing control due to skidding Source NCHRP 505

“Where practical, the maximum side friction factors used in  design should be conservative for dry pavements and should  provide an ample margin of safety against skidding on  pavements that are wet as well as ice or snow covered. The  need to provide skid‐resistant pavement surfacing for these  conditions cannot be overemphasized because superimposed on  the frictional demands resulting from roadway geometry are  those that result from driving maneuvers such as braking,  sudden lane changes, and minor changes in direction within a  lane. In these short‐term maneuvers, high friction demand can  exist but the discomfort threshold may not be perceived in time  for the driver to take corrective action.”

2011 AASHTO Greenbook

Overview • What are High Friction Surface Treatments? • RwD Crash Reduction Strategy using HFST? – Pavement Friction Demand and location selections for HFST • Why HFST?

Kentucky Results

High Friction Surfaces • 32 sites selected and installed in 2009, 2010 and 2011 • Preliminary evaluation of 26 projects shows a 69% reduction in crashes