Bayesian Nonlinear Regression Models with Scale ... - Semantic Scholar

Report 2 Downloads 195 Views
Bayesian Nonlinear Regression Models with Scale Mixtures of Skew Normal Distributions: Estimation and Case Influence Diagnostics Vicente G. Cancho (ICMC-USP), Victor H. Lachos (IMECC-UNICAMP) and Marinho Andrade (ICMC-USP)

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 1 / 35

Motivation

Motivation The routine use of the normality in nonlinear models (N-NLM) has been recently questioned by many authors (see Cysneiros & Vanegas, 2008; Cordeiro et al., 2009, among others).

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 2 / 35

Motivation

Motivation The routine use of the normality in nonlinear models (N-NLM) has been recently questioned by many authors (see Cysneiros & Vanegas, 2008; Cordeiro et al., 2009, among others). Thus, it is of practical interest to develop statistical model with considerable flexibility in the distributional assumptions of the random error term in NLM.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 2 / 35

Motivation

Motivation The routine use of the normality in nonlinear models (N-NLM) has been recently questioned by many authors (see Cysneiros & Vanegas, 2008; Cordeiro et al., 2009, among others). Thus, it is of practical interest to develop statistical model with considerable flexibility in the distributional assumptions of the random error term in NLM. Cancho et al. (2009) and Xie et al. (2009b,a) has shown the advantage of using the skew-normal distribution in the context of nonlinear regression models (SN-NLM).

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 2 / 35

Motivation

Motivation The routine use of the normality in nonlinear models (N-NLM) has been recently questioned by many authors (see Cysneiros & Vanegas, 2008; Cordeiro et al., 2009, among others). Thus, it is of practical interest to develop statistical model with considerable flexibility in the distributional assumptions of the random error term in NLM. Cancho et al. (2009) and Xie et al. (2009b,a) has shown the advantage of using the skew-normal distribution in the context of nonlinear regression models (SN-NLM). We extend the SN-NLM by assuming that the model errors follow scale mixtures of skew-normal distributions (SMSN, Branco and Dey, 2001). (skew-normal,skew-t, skew-slash, skew-contaminated normal). Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 2 / 35

SMSN Distributions

The Skew-Normal distribution

Z ∼ SN(µ, σ 2 , λ) , with pdf 2

f (z) = 2φ(z; µ, σ )Φ



λ(z − µ) σ

 , (Azzalini, 1985)

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 3 / 35

SMSN Distributions

The Skew-Normal distribution

Z ∼ SN(µ, σ 2 , λ) , with pdf 2



f (z) = 2φ(z; µ, σ )Φ

λ(z − µ) σ

 , (Azzalini, 1985)

Marginal stochastic representation: Z = µ + ∆|T0 | + Γ1/2 T1 , where ∆ = σδ, δ =

√ λ , 1+λ2

Γ = (1 − δ 2 )σ 2 , T0 and T1 are

independent standard normal random variables.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 3 / 35

SMSN Distributions

Scale Mixtures of Skew-Normal distributions(SMSN) Y = µ + κ1/2 (U)Z ,

Z ∼ SN(0, σ 2 , λ) U is a positive random variable with cdf H(·; ν) (pdf h(·; ν)) κ(.) is weight function, this paper we restrict κ(u) = 1/u The pdf of Y is given by: Z f (y ) = 2



φ(y ; µ, u

−1 2

σ )Φ

0

u 1/2 λ(y − µ) σ

! dH(u; ν),

Notation: Y ∼ SMSN(µ, σ 2 , λ; H) Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 4 / 35

SMSN Distributions

Examples of SMSN distributions The skew–t: Y ∼ ST (µ, σ 2 , λ; ν), U ∼ Gamma(ν/2, ν/2). ! r   ν+1 ) Γ( ν+1 d − 2 v +1 2 f (y ) = ν √ 1+ A; ν + 1 , y ∈ R, T ν d +ν Γ( 2 ) πνσ

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 5 / 35

SMSN Distributions

Examples of SMSN distributions The skew–t: Y ∼ ST (µ, σ 2 , λ; ν), U ∼ Gamma(ν/2, ν/2). ! r   ν+1 ) Γ( ν+1 d − 2 v +1 2 f (y ) = ν √ 1+ A; ν + 1 , y ∈ R, T ν d +ν Γ( 2 ) πνσ The skew–slash:Y ∼ SSL(µ, σ 2 , λ; ν),U ∼ Beta(ν, 1). Z f (y ) = 2ν

1

u ν−1 φ(y ; µ, u −1 σ 2 )Φ(u 1/2 A)du, y ∈ R,

0

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 5 / 35

SMSN Distributions

Examples of SMSN distributions The skew–t: Y ∼ ST (µ, σ 2 , λ; ν), U ∼ Gamma(ν/2, ν/2). ! r   ν+1 ) Γ( ν+1 d − 2 v +1 2 f (y ) = ν √ 1+ A; ν + 1 , y ∈ R, T ν d +ν Γ( 2 ) πνσ The skew–slash:Y ∼ SSL(µ, σ 2 , λ; ν),U ∼ Beta(ν, 1). Z f (y ) = 2ν

1

u ν−1 φ(y ; µ, u −1 σ 2 )Φ(u 1/2 A)du, y ∈ R,

0

Applications of the skew–slash distribution can be found in Wang & Genton (2006).

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 5 / 35

SMSN Distributions

Examples of SMSN distributions

The skew contaminated normal:Y ∼ SCN(µ, σ 2 , λ; ν, γ). The pdf of U is given by h(u|ν) = νI(u=γ) + (1 − ν)I(u=1) , 0 < ν < 1, 0 < γ ≤ 1,

f (y ) = 2{νφ(y ; µ, γ −1 σ 2 )Φ(γ 1/2 A) + (1 − ν)φ(y ; µ, σ 2 )Φ(A)}.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 6 / 35

The SMSN nonlinear regression model

The SMSN nonlinear regression model

Yi = η(β, xi ) + εi , i = 1, . . . , n,

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 7 / 35

The SMSN nonlinear regression model

The SMSN nonlinear regression model

Yi = η(β, xi ) + εi , i = 1, . . . , n,

η(.) is injective and twice continuously differentiable,

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 7 / 35

The SMSN nonlinear regression model

The SMSN nonlinear regression model

Yi = η(β, xi ) + εi , i = 1, . . . , n,

η(.) is injective and twice continuously differentiable, q εi ∼ SMSN(− π2 k1 ∆, σ 2 , λ; H) where kr = E [U r |y ],

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 7 / 35

The SMSN nonlinear regression model

The SMSN nonlinear regression model

Yi = η(β, xi ) + εi , i = 1, . . . , n,

η(.) is injective and twice continuously differentiable, q εi ∼ SMSN(− π2 k1 ∆, σ 2 , λ; H) where kr = E [U r |y ], q Yi ∼ SMSN(η(β, xi ) + b∆, σ 2 , λ; H), with b = − π2 k1 ,

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 7 / 35

The SMSN nonlinear regression model

The SMSN nonlinear regression model

Yi = η(β, xi ) + εi , i = 1, . . . , n,

η(.) is injective and twice continuously differentiable, q εi ∼ SMSN(− π2 k1 ∆, σ 2 , λ; H) where kr = E [U r |y ], q Yi ∼ SMSN(η(β, xi ) + b∆, σ 2 , λ; H), with b = − π2 k1 , E [Yi ] = η( β, xi ), Var [Yi ] = k2 σ 2 − b 2 ∆2 .

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 7 / 35

Bayesian inference

Bayesian inference

The hierarchical representation: Yi |Ti = ti ∼ N1 (η(β, xi ) + ∆ti , Ui−1 Γ) Ti |Ui ∼ TN1 (b, ui−1 )I (b, ∞) Ui ∼ H(.; ν), where i = 1, . . . , n Γ = (1 − δ 2 )σ 2 , and ∆ = σδ.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 8 / 35

Bayesian inference

Bayesian inference

Let y = (y1 , . . . , yn )> , x = (x1 , . . . , xn )> , t = (t1 , . . . , tn )> and u = (u1 , . . . , un )> . It follows that the complete likelihood function of θ associated with (y, x, t, u) is given by n Y Lc (θ|y, x, t, u) ∝ [φ1 (yi ; η(β, xi )+∆ti , ui−1 τ )φ1 (ti ; b, ui−1 )I(b,∞) h(ui |ν)]. i=1

(1)

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of Skew mar¸ (ICMC-USP) coNormal - 2010Distributions: 9 / 35

Bayesian inference

Prior distribution

βj = N(µβj , σβ2j ), j = 1, . . . , p, 2 ) and ∆ ∼ N1 (µ∆ , σ∆ ρ % τ −1 ∼ Gamma( , ). 2 2

ς For the skew-t model: ν ∼ exp( )I(2,∞) , 2 For the skew-slash model: ν ∼ Gamma(a, b) (b  a), For the skew-contaminated normal model: ν ∼ U(0, 1) and γ Beta(a, b) (ν ⊥ γ).

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 10 / 35

Bayesian inference

The posterior distribution

The joint posterior density of all unobservable is is given by π(θ, t, u|y, x) ∝

Qn

i=1 [φ1 (yi ; η(β, xi )

+ ∆ti , ui−1 τ )

(2)

φ1 (ti ; b, ui−1 )I(b,∞) h(ui |ν)]π(θ). Distribution (2) is not tractable analytically but MCMC methods such as the Gibbs sampler, can be used to draw samples, from which features of marginal posterior distributions of interest can be inferred.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 11 / 35

Bayesian inference

The full conditional distributions

Ti |β, ∆, τ, ν, y, u ∼ TN1 (µTi + b, ui−1 MT2 )I (b, ∞), i = 1, . . . , n; ∆ τ , µ Ti = 2 (yi − η(β, xi ) − ∆b), +τ ∆ +τ  2 2 +τ Bσ∆ + τ µ∆ Aσ∆ ∆|β, τ, ν, y, u, t ∼ N1 , , 2 +τ 2 Aσ∆ τ σ∆ P P where A = ni=1 ui ti and B = ni=1 ui ti (yi − η(β, xi )),

where MT2 =

∆2

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 12 / 35

Bayesian inference

The full conditional distributions

n

X 1 1 ui (yi − η(β, xi ) − ∆ti )2 )); τ −1 |β, ∆, ν, y, u, t ∼ Gamma( (ρ + n), (% + 2 2 i=1

β|∆, τ ν, y, u, t ∝ φp (β; µβ , D)

n Y

φ1 (η(β, xi ); (yi − ∆ti ), ui−1 τ ),

i=1

where µβ = (µβ1 , . . . , µβp )> , D = diagonal(σβ21 , . . . , σβ2p ).

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 13 / 35

Bayesian inference

The full conditional distributions

For each element of u, the density is: 

1 ui (yi − η(β, xi ) − ∆ti )2 (3) 2τ  1 2 − ui (ti − b) h(ui |ν), 2

π(ui |β, ∆, τ, ν, y, x, t) ∝ ui exp −

for i = 1, . . . , n. For ν, the density is: π(ν|β, ∆, τ, y, u, t) ∝ π(ν)

n Y

h(ui |ν).

(4)

i=1

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 14 / 35

Bayesian inference

The full conditional distributions

(i) Skew-t. The density of the conditional posterior distribution in (3) takes the form: ui |θ(−ν) , y, t ∼ Gamma(2; ν/2 + Ci /2), where Ci = τ1 (yi − η(β, xi ) − ∆ti )2 + (ti − b)2 and the full conditional posterior density of ν is π(ν|θ(−ν) , y, t, u) ∝ π1 (ν) × Gamma(

1X nν − 1, (ui − log ui ))I(2,∞) , 2 2

where π1 (ν) = (2ν/2 Γ(ν/2))−n .

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 15 / 35

Bayesian inference

The full conditional distributions

• Skew-slash. In this case, the fully conditional posterior density of each ui is: ui |θ(−ν) , y, t ∼ Gamma((nu + 1)/2; Ci /2)I(0,1) . Further, the conditional posterior density of ν is ν|θ(−ν) , y, b, u, t ∼ Gamma(n + a, b −

X

log ui ).

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 16 / 35

Bayesian inference

The full conditional distributions • Skew-contaminated normal distribution The full conditional posterior density of the proportion of outliers ν is: P P   ui − nγ n − ui ν|θ(−ν) , y, b, u, t ∼ Beta a + ;b + . 1−γ 1−γ The conditional posterior density of γ is: P P n − ui ui − nγ ) ) ( 1 − γ 1 −γ π(γ|θ(−γ) , y, b, u, t) ∝ ν × (1 − ν) . (

An interesting Metropolis–Hastings method to update from γ is described in Rosa et al. (2003). Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 17 / 35

Bayesian case influence diagnostics

Bayesian case influence diagnostics

Let K (P, P(−i) ) denote the Kullback-Leibler (K–L) divergence between P and P(−i) , where P denotes the posterior distribution of θ for full data, and P(−i) denotes the posterior distribution of θ without the ith case. Specifically, "

Z K (P, P(−i) ) =

π(θ|D) log

π(θ|D) π(θ|D (−i) )

# dθ.

(5)

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 18 / 35

Bayesian case influence diagnostics

Bayesian case influence diagnostics

As pointed by Peng & Dey (1995) and Cho et al. (2009), calibration of K (P, P(−i) ) can be done by solving for pi the equation     K (P, P(−i) ) = K B(0.5), B(pi ) = − log 4pi (1 − pi ) /2, where B(p) denotes the Bernoulli distribution with success probability p. After some algebra it can be shown that q  o 1n pi = 1 + 1 − exp − 2K (P, P(−i) ) . 2 This equation implies that 0.5 ≤ pi ≤ 1.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 19 / 35

Bayesian case influence diagnostics

Bayesian case influence diagnostics

For our model in (7) it can be shown that (5) can be expressed as a posterior expectation  K (P, P(−i) ) = log Eθ|D [g (yi |θ)]−1 + Eθ|D {log [g (yi |θ)]}

(6)

= − log(CPOi ) + Eθ|D {log [g (yi |θ)]} , where Eθ|D (·) denotes the expectation with respect to the joint posterior π(θ|D).

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 20 / 35

Bayesian case influence diagnostics

Bayesian case influence diagnostics

Thus (6) can be computed by sampling from the posterior distribution of θ via MCMC methods. Let θ1 , . . . , θQ be a sample of size Q of π(θ|D). Then, a Monte Carlo estimate of K (P, P(−i) ) is given by Q X \ [i) + 1 K (P, P(−i) ) = − log(CPO log [g (yi |θq )] . Q

(7)

q=1

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 21 / 35

Applications

Simulated data

Influence of outlying observations We consider the following logistic model: Yi =

β1 + εi , i = 1, · · · , 50, 1 + β2 exp(−β3 xi )

(8)

p where εi ∼ SN(− 2/π∆, σ 2 , λ), the variable xi ranging from 1 to 50 and we fixed the parameter values at: β1 = 30, β2 = 5, β3 = .7, σ 2 = 2 and λ = −3. We selected cases 4, 13 and 45 for perturbation. To create influential observation in the dataset, we choose one, two or tree of these selected cases and perturbed the response variable as follows y˜i = yi + 4Sy , i = 4, 13 and 45, where Sy is the standard deviations of the yi0 s. Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 22 / 35

Applications

Simulated data

Simulated data

1

The following independent priors were adopted in the Bayesian computations. βk ∼ log − N1 (0, 103 ), k = 1, 2, 3, ∆ ∼ N1 (0, 103 ), and 1/τ ∼ Gamma(1, 0.01).

2

we generated two parallel independent runs of the Gibbs sampler with size 60000 for each parameter, disregarding the first 10000 iterations to eliminate the effect of the initial values and, to avoid correlation problems, we considered a spacing of size 20, obtaining a sample of size 2500.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 23 / 35

Applications

Simulated data

Influence of outlying observations

Table: Simulated SN data. Posterior means and standard deviations of the parameters from fitting a SN-NLM. Data

Perturbed

β1 = 30

β2 = 5

β3 = 0.7

σ2 = 2

λ = −3

names

case

Mean

SD

Mean

SD

Mean

SD

Mean

SD

Mean

SD

a

None

29.86

0.17

5.05

0.74

0.69

0.05

2.59

0.84

-2.81

1.67 1.18

b

4

30.24

0.35

10.56

6.93

0.99

0.21

10.65

3.07

1.14

c

13

30.48

0.32

5.91

2.74

0.73

0.12

11.04

2.55

3.60

1.11

d

45

30.51

0.32

6.13

3.11

0.74

0.12

11.20

2.67

3.59

1.06

e

{4,45}

30.93

0.43

10.06

7.25

0.94

0.21

19.60

4.33

4.41

1.34

f

{4,13,45}

31.55

0.50

10.68

8.74

0.93

0.24

30.18

6.86

5.07

1.41

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 24 / 35

Applications

Simulated data

Simulated SN data. Index plots of K (P, P(−i) ) from fitting a SN-NLM.

6

(c)

6

(b)

6

(a)

5

5

5

4

30

40

50

4 3 0

1

2

K−L divergence

4 3 1 0

20

0

10

20

30

40

50

0

10

(f)

5 4

45

40

50

1

13

0

1 0 30

Index

50

3

45

2

K−L divergence

5 4 3

4

2

K−L divergence

5 4 3 2 1 0

20

40

6

Index

(e)

4

10

30

Index

(d) 45

0

20

Index

6

10

6

0

K−L divergence

2

K−L divergence

4 3 2 0

1

K−L divergence

13

0

10

20

30

Index

40

50

0

10

20

30

40

50

Index

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 25 / 35

Applications

Simulated data

Influence of outlying observations

Table: Simulated SN data. Posterior means and standard deviations of the parameters from fitting a ST–NLM. Data

β1

β2

σ2

β3

λ

ν

names

Mean

SD

Mean

SD

Mean

SD

Mean

SD

Mean

SD

Mean

SD

a

29.87

0.17

5.03

0.76

0.69

0.05

1.88

0.76

-2.26

1.36

12.31

8.95

b

29.89

0.24

5.43

1.41

0.72

0.09

1.07

0.42

-0.55

0.96

2.88

0.79

c

29.92

0.23

5.090

0.85

0.69

0.05

0.99

0.43

-0.77

0.98

2.87

0.80

d

29.92

0.23

5.06

0.84

0.69

0.05

0.99

0.42

-0.77

0.98

2.87

0.80

e

30.05

0.26

5.31

1.29

0.71

0.08

1.01

0.47

0.04

0.78

2.43

0.42

f

30.22

0.28

5.19

1.32

0.70

0.08

1.17

0.58

0.47

0.72

2.31

0.31

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 26 / 35

Applications

Simulated data

Simulated SN data. Index plots of K (P, P(−i) ) from fitting a ST-NLM.

30

40

50

6 10

20

30

40

50

0

10

20

30

(f)

Index

40

50

5 4 3 1

4

45

13

45

0

4

0 30

50

2

K−L divergence

5 4 3 2 1

K−L divergence

5 4 3 2 1

20

40

6

Index

(e)

6

Index

(d)

0

10

4

5 0

Index

45

0

3 1 0

1 0 20

13

2

K−L divergence

5 4 3 4

2

K−L divergence

5 4 3 2

K−L divergence

1 0

10

6

0

K−L divergence

(c)

6

(b)

6

(a)

0

10

20

30

Index

40

50

0

10

20

30

40

50

Index

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 27 / 35

Applications

Simulated data

Influence of outlying observations

Table: Simulated data. Comparison between SN–NLM and ST–NLM fitting by using different Bayesian criteria. Data

SN–NLM

ST–NLM

names

B

DIC

EAIC

EBIC

B

DIC

EAIC

EBIC

a

-76,802

153.338

157.928

167.4881

-77.141

153.949

159.539

171.011

b

-116.794

218.119

223.519

233.079

-93.142

176.988

182.389

193.861

c

-112.506

216.516

221.35

230.910

-90.133

176.508

182.578

194.050 194.296

d

-113.861

216.51

221.594

231.154

-90.766

176.834

182.824

e

-126.484

240.758

245.334

254.894

-99.465

195.338

201.348

212.820

f

-134.148

259.939

264.85

274.4101

-106.483

210.077

215.897

227.369

where B =

n P

[ i ). log(CPO

i=1

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 28 / 35

Applications

The oil palm dataset

The oil palm dataset

We consider a Bayesian analysis of the data set presented in Foong (1999) that describe the oil palm yield. Assuming a nonlinear growth-curve model, we fit a NLM to the data as specified by Cancho et al. (2009) Yi =

β1 + εi , 1 + β2 exp(−β3 xi )

(9)

q where εi ∼ SMSN(− π2 k1 ∆, σ 2 , λ, H), for i = 1, . . . , 19. In our analysis iid

we assume SN-NLM, ST-NLM, SCN-NLM and SSL-NLM from the SMSN class for comparative purposes.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 29 / 35

Applications

The oil palm dataset

The oil palm dataset

Table: Oil palm yield data set. Summary results from the posterior distribution, mean and standard deviation (SD) for parameter under SMSN distributions. SN-NLM

ST-NLM

SSL-NLM

SCN-NLM

Parameter

Mean

SD

Mean

SD

Mean

SD

Mean

SD

β1

37.251

0.491

37.565

0.469

37.461

0.538

37.421

0.478

β2

42.025

14.538

40.343

10.739

40.144

12.407

40.328

12.284

β3

0.730

0.065

0.717

0.050

0.712

0.057

0.720

0.058

σ2

6.447

2.890

1.966

1.482

2.674

1.907

2.484

2.022

λ

-2.603

2.070

-1.823

1.369

-3.423

2.108

-2.241

1.710

ν

-

-

3.415

1.267

1.967

0.539

0.562

0.197

γ

-

-

-

-

-

-

0.389

0.114

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 30 / 35

Applications

The oil palm dataset

The oil palm dataset

Table: Oil palm yield data set. Comparison between SMSN–NLM by using different Bayesian criteria.

criterion

SN–NLM

ST–NLM

SSL–NLM

SCN–NLM

B

-40.007

-38.949

-39.459

-39.146

DIC

75.469

72.626

73.561

73.183

EAIC

85.595

83.349

84.561

84.5612

EBIC

90.317

88.015

90.227

90.172

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 31 / 35

Applications

The oil palm dataset

The oil palm dataset

The K-L divergence and related calibration are computed. We do not find highly influential cases. The K (P, P(−i) ) is smaller that 0.71 and the corresponding calibrations are smaller than 1. However, for SN-NLM, cases 13,18, 10 and 15 had larger K (P, P(−i) ) when compared with the other cases.

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 32 / 35

Applications

The oil palm dataset

The oil palm dataset

Table: Oil palm yield data. Case influence diagnostics.

SN–NLM

ST–NLM

SSL-NLM

SCN–NLM

Case

K (P, P(−i) )

Cal.

K (P, P(−i) )

Cal.

K (P, P(−i) )

Cal.

K (P, P(−i) )

Cal.

13

0.709

0.935

0.549

0.908

0.699

0.934

0.571

0.912

18

0.703

0.934

0.290

0.832

0.307

0.818

0.561

0.911

10

0.306

0.838

0.304

0.836

0.297

0.835

0.214

0.795

15

0.272

0.823

0.244

0.810

0.258

0.817

0.256

0.816

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 33 / 35

Applications

The oil palm dataset

5

15

10

18

Index

(c)

(d)

15

1.5 10

15

18

13

0.5 15

18

10

15

10

15

0.0

10

0.0

0.5

13

1.0

1.0

K−L divergence

1.5

2.0

Index

2.0

5

K−L divergence

1.0

1.5 15

13 10

0.0 10

0.0

15

0.5

18

10

K−L divergence

1.0

13

0.5

K−L divergence

1.5

2.0

(b)

2.0

(a)

5

Index

5

Index

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 34 / 35

Conclusions

Conclusions

• We propose a interesting, useful and novel class of asymmetric heavy-tailed NLM.

• We discus the use of Markov Chain Monte Carlo methods as an alternative way to get Bayesian inference for the proposed model

• Bayesian case influence diagnostics based on the Kullback-Leibler divergence in order to study the sensitivity of the Bayesian estimates under perturbations in the model/data.

• Our analysis indicates that a ST-NLM

Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 35 / 35

References Branco, M. D., Dey, D. K., 2001. A general class of multivariate skew-elliptical distributions. Journal of Multivariate Analysis 79, 99–113. Cancho, V. C., Lachos, V. H. & Ortega, E. M. M. (2009). A nonlinear regression model with skew-normal errors. Statistical Papers, doi:10.1007/s00362-008-0139-y. Cho, H., Ibrahim, J. G., Sinha, D. & Zhu, H. (2009). Bayesian case influence diagnostics for survival models. Biometrics, 65, 116–124. Cordeiro, G. M., Cysneiros, A. H. M. A., Cysneiros, F. J. A., 2009. Corrected maximum likelihood estimators im heteroscedastic symmetric nonlinear models. Journal of Statistical Computation and Simulation doi:10.1080/00949650802706420. Cysneiros, F. J. A., Vanegas, L. H., (2008). Residuals and their statistical properties in symmetrical nonlinear models. Statistics & Probability Letters 78, 3269–3273. Foong, F. S. (1999). Impact of mixture on potential evapotranspiration, growth and yield of palm oil. PORIM Interl. Palm Oil Cong. (Agric.), pages 265–287. Peng, F. & Dey, D. (1995). Bayesian analysis of outlier problems using divergence measures. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, 23(2), 199–213. Rosa, G. J. M., Padovani, C. R. & Gianola, D. (2003). Robust linear mixed models with normal/independent distributions and bayesian mcmc implementation. Biometrical Journal, 45, 573–590. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & van der Linde, A. (2002). Bayesian measures of model complexity and fit. 64(4), 583–639. Wang, J. & Genton, M. G. (2006). The multivariate skew-slash distribution. Journal of Statistical Planning and Inference, 136, 209–220. Xie, F. C., Wei, B. C., Lin, J. G., 2009a. Homogeneity diagnostics for skew-normal nonlinear regression models. Statistics & Probability Letters 79, 821–827. Xie, F. C., Lin, J. G., Wei, B. C., 2009b. Diagnostics for skew-normal nonlinear regression models with ar(1) errors. Computational Statistics & Data Analysis, (in press). Vicente G. Cancho (ICMC-USP), Victor H. Lachos Bayesian (IMECC-UNICAMP) Nonlinear Regression and Models Marinhowith Andrade Scale(ICMC-USP) Mixtures of mar¸ Skew (ICMC-USP) co Normal - 2010 Distributions: 35 / 35