Bifurcation and Chaos in Coupled BVP Oscillators

Report 2 Downloads 158 Views
Bifurcation and Chaos in Coupled BVP Oscillators

T. Ueta†, T. Kosaka‡, and H. Kawakami† †Tokushima University, Japan ‡Fukuyama University Japan Bifurcation and Chaos in Coupled BVP Oscillators – p.1/42

History of BVP Oscillator •

• •

Introduced as a simplified model of Hodkin-Huxley equation (four-dimensional autonomous system) alias is FitzHugh-Nagumo oscillator extraction of excitatory activity from HH equation x3 x˙ = c(x − + y + z) 3 1 y˙ = − (x + by − a) c

Bifurcation and Chaos in Coupled BVP Oscillators – p.2/42

Analogue of BVP equation An natural extension of van der Pol equation. • 2nd dimensional autonomous system. • Evaluate a resistance in a coil. • Adding a bias source to destroy symmetric property. •



A. N. Bautin, “Qualitative investigation of a Particular Nonlinear System,” PPM, vol. 39, No. 4, pp. 606–615, 1975. → Topological classification of solutions in BVP equation Doi, et. al: Response of BVP with an impulsive force Bifurcation and Chaos in Coupled BVP Oscillators – p.3/42

Coupled BVP equation • •

O. Papy, H. Kawakami: Analysis on coupled BVP equations from symmetry point of view. Kitajima: Chaos generation from symmetry coupled BVP equations

No chaotic oscillations in symmetrical configuration of coupled BVP equations

Bifurcation and Chaos in Coupled BVP Oscillators – p.4/42

BVP Oscillator L C

v

g(v)

R E

Circuit equation: dv C = −i − g(v) dt di L = v − ri + E dt

(1)

Bifurcation and Chaos in Coupled BVP Oscillators – p.5/42

Nonlinear conductor 2SK30A FET: 47K

47K

100

2SK30AGR5B

g(v) = −a tanh bv

Bifurcation and Chaos in Coupled BVP Oscillators – p.6/42

Fitting Marquardt-Levenberg method (nonlinear least square method)

a = 6.89099 × 10−3 , b = 0.352356

Bifurcation and Chaos in Coupled BVP Oscillators – p.7/42

Approximation error g(v) = −a tanh bv

with a = 6.89099 × 10−3 , b = 0.352356 Theoretical value versus measurement value. fitting error [A]

0.001 0.0005 0 -0.0005 -0.001 -10

-5

0

5

10

v [V]→

A reasonable approximation. Bifurcation and Chaos in Coupled BVP Oscillators – p.8/42

BVP equation 





x˙ = −y + tanh γx y˙ = x − ky. · = d/dτ, 1 τ = √ t, LC

x= k=r

r r

C v, L

C , L



i y= a r

γ = ab

L C

Bifurcation and Chaos in Coupled BVP Oscillators – p.9/42

Bifurcation of equilibria for single BVP oscillator 2

d

1.5

(c)

k

(e) (a)

1

G

h1

h2

0.5

(d)

(b) Oscillatory

0 0

0.5

1

1.5

2

γ

Bifurcation and Chaos in Coupled BVP Oscillators – p.10/42

An example phase portrait 1.5

1

y→

0.5

0

-0.5

-1

-1.5 -1.5

-1

-0.5

0

x→

0.5

1

At region (d): • Two stable sinks. • A saddle. • Two unstable limit cycles. • A stable limit cy1.5 cle.

Bifurcation and Chaos in Coupled BVP Oscillators – p.11/42

Circuit parameters setup L = 10 [mH],

γ = 1.6369909,

C = 0.022 [µF] ⇓ r

L = 674.19986. C

2

d

1.5

(c)

k

(e) (a)

1

G

h1

h2

0.5

(d)

(b) Oscillatory

0 0

0.5

1

1.5

2

γ

Bifurcation and Chaos in Coupled BVP Oscillators – p.12/42

Coupled BVP oscillators A pair of BVP oscillators coupled by a register R. R v2

v1 L

r1

C

g(v1)

L

C

g(v2)

r2

G = 1/R

Bifurcation and Chaos in Coupled BVP Oscillators – p.13/42

Circuit equation dv1 C dt di1 L dt dv2 C dt di2 L dt

= −i1 + a tanh bv1 − G(v1 − v2 ) = v1 − ri1

(2)

= −i2 + a tanh bv2 − G(v2 − v1 ) = v2 − ri2

Bifurcation and Chaos in Coupled BVP Oscillators – p.14/42

Scaling xj =

r

C v j, L

ij yj = , a

1 τ = √ t, γ = ab LC

kj = rj r

r

L ,δ = C

C , L r

j = 1, 2. L G. C





x˙1 y˙ 1 x˙2 y˙ 2 

= = = =

−y1 + tanh γx1 − δ(x1 − x2 ) x1 − k1 y1 −y2 + tanh γx2 − δ(x2 − x1 ) x2 − k2 y2



Bifurcation and Chaos in Coupled BVP Oscillators – p.15/42

Symmetry x˙ = f (x) where, f : Rn → Rn : C ∞ for x ∈ Rn . P : Rn → Rn x 7→ Px P-invariant equation: f (Px) = P f (x)

for all x ∈ Rn

Bifurcation and Chaos in Coupled BVP Oscillators – p.16/42

A matrix P •

in case k1 = k2 ,   0 0 1   0 0 0 P =   1 0 0  0 1 0

 0   1   0   0

Γ = {P, −P, In, −In }



forms a group for production. in case k1 , k2 :

Γ = {In , −In } Bifurcation and Chaos in Coupled BVP Oscillators – p.17/42

Bifurcation of Equilibria 2

0D 1.5

k2

2D 1

4D

0.5

0 0

0.5

1

k1

1.5

2

Bifurcation and Chaos in Coupled BVP Oscillators – p.18/42

Poincaré mapping A solution ϕ(t) : x(0) = x0 = ϕ(0, x0 ) .

x(t) = ϕ(t, x0 ), Poincaré section:

Π = { x ∈ Rn | q(x) = 0 } , ˆ → Π; T :Π

x˜ 7→ ϕ(τ( x˜ ), x˜ ) ,

The fixed point x0 for the limit cyclde ϕ(t): T (x0 ) = x0 .

Bifurcation and Chaos in Coupled BVP Oscillators – p.19/42

Characteristic equation !

∂ϕ χ(µ) = det − µIn . ∂x0 Local bifurcations: • µ = 1: tangent bifurcation G • µ = −1: period-doubling bifurcation I • •

µ = e jθ : Neimark-Sacker bifurcation NS µ = ±1: Pitchfork bifurcation P f

Bifurcation and Chaos in Coupled BVP Oscillators – p.20/42

Bifurcation diagram, δ = 0.337(R = 2000[Ω]) 2 two limit cycles

I1

I2

h G

non-oscillatory Chaotic area

1.5

k2

Pf 1

G

h G

0.5

two limit cycles

single limit cycle

I2

Pf I1

0 0

0.5

1

k1

1.5

2

Bifurcation and Chaos in Coupled BVP Oscillators – p.21/42

Hopf bifurcation k1 = 1.18(r1 ≈ 800)

r2 ≈ 600

r2 ≈ 400 Bifurcation and Chaos in Coupled BVP Oscillators – p.22/42

Period-doubling cascade

r2 ≈ 400( k ≈ 0.72)

r2 ≈ 395[Ω] Rössler-type attractor Bifurcation and Chaos in Coupled BVP Oscillators – p.23/42

Presence of Double scroll

r2 ≈ 390 → r2 ≈ 380[Ω].

Bifurcation and Chaos in Coupled BVP Oscillators – p.24/42

Chaotic attractor. r1 = 370[Ω]

(a) v1 -r1 i1 . (b) v2 -r2 i2 .

(c) v1 -v2 , (d) r1 v1 -r2 i2 . Bifurcation and Chaos in Coupled BVP Oscillators – p.25/42

1.5

1.5

1

1

0.5

0.5

x2 →

x2 →

Numerical simulation

0

0

-0.5

-0.5

-1

-1

-1.5 -1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1.5

-1

-0.5

x1 →

x1 -y1

0

0.5

1

1.5

x1 →

x2 -y2

Bifurcation and Chaos in Coupled BVP Oscillators – p.26/42

1.5

1.5

1

1

0.5

0.5

x2 →

x2 →

Phase portrait between oscillators

0

0

-0.5

-0.5

-1

-1

-1.5 -1.5

-1

-0.5

0

0.5

x1 →

(c) x1 -x2

1

1.5

-1.5 -1.5

-1

-0.5

0

0.5

1

1.5

x1 →

(d) y1 -y2

Bifurcation and Chaos in Coupled BVP Oscillators – p.27/42

Poincaré mapping x1 -x2 plane: Π = {x|q(x) = y1 = 0} 1

x2 →

0.5

0

-0.5

-1 -0.7

-0.6

-0.5

-0.4

-0.3

-0.2

x1 →

-0.1

0

0.1

0.2

0.1

x2 →

0.08 0.06 0.04 0.02 0

Bifurcation and Chaos in Coupled BVP Oscillators – p.28/42

Time response of Oscillator 1

y1 →

x1 →

Chaotic attractor. δ = 0.337, k1 = 1.187, k2 = 0.593, (R = 2000[Ω], r1 = 400[Ω], r2 = 800[Ω]). 1.5 1 0.5 0 -0.5 -1 -1.5 600

800

1000

1200

1400

600

800

1000

1200

1400

t→

1.5 1 0.5 0 -0.5 -1 -1.5

t→

Bifurcation and Chaos in Coupled BVP Oscillators – p.29/42

y2 →

x2 →

Time response of Oscillator 2 1.5 1 0.5 0 -0.5 -1 -1.5 600

800

1000

1200

1400

600

800

1000

1200

1400

t→

1.5 1 0.5 0 -0.5 -1 -1.5

t→

Bifurcation and Chaos in Coupled BVP Oscillators – p.30/42

Projection into x1 -x2 -y1 —(1)

Bifurcation and Chaos in Coupled BVP Oscillators – p.31/42

Projection into x1 -x2 -y1 —(2)

Bifurcation and Chaos in Coupled BVP Oscillators – p.32/42

Projection into x1 -x2 -y1 —(3)

Bifurcation and Chaos in Coupled BVP Oscillators – p.33/42

Enlargement of bifurcation diagram 0.75

0.7

I

Rossler type

0.65

I

k2

0.6

Pf

I

Double scroll

0.55

0.5

I

NS 0.45

bi-stable

G

Pf

G 0.4

0.35 1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

k1 Bifurcation and Chaos in Coupled BVP Oscillators – p.34/42

r2 = 390 → 360[Ω]

Bifurcation and Chaos in Coupled BVP Oscillators – p.35/42

The end of scrolling. left: r2 = 360[Ω], right: r2 = 358[Ω], lower: r2 = 346[Ω]. Bifurcation and Chaos in Coupled BVP Oscillators – p.36/42

to be synchronized

upper left: r2 = 342[Ω], upper right: r2 = 340[Ω]. lower left: r2 = 290[Ω], lower right: r2 = 184[Ω]. Bifurcation and Chaos in Coupled BVP Oscillators – p.37/42

Features • •

There is no period-doubling route for k1 = k2 . (Osc. 1) equilibrium + (Osc. 2) limit cycle = (Osc. 1+2) chaotic solution. Cubic characteristics is essential: g(v) = ax + bx3 with a = −2.27 × 10−3 , b = 4.72 × 10−5 . 1

0.5

x2 →



0

-0.5

-1 -1

-0.5

0

0.5

1

x1 → Bifurcation and Chaos in Coupled BVP Oscillators – p.38/42

An application: Hybrid coupling

i01 v1 g(v1)

L

G1

G2

i02 v2 L

C

C r1

g(v2)

r2

Bifurcation and Chaos in Coupled BVP Oscillators – p.39/42

Period-doubling cascade

Bifurcation and Chaos in Coupled BVP Oscillators – p.40/42

Chaotic response

Bifurcation and Chaos in Coupled BVP Oscillators – p.41/42

Remarks A resistively coupled BVP oscillators • Bifurcation of periodic solutions • Chaos is observed with k1 , k2 . • No bifurcation for k1 = k2 Future problems: • synchronization of oscillators • higher dimensional cases

Bifurcation and Chaos in Coupled BVP Oscillators – p.42/42