Bifurcation and Chaos in Coupled BVP Oscillators
T. Ueta†, T. Kosaka‡, and H. Kawakami† †Tokushima University, Japan ‡Fukuyama University Japan Bifurcation and Chaos in Coupled BVP Oscillators – p.1/42
History of BVP Oscillator •
• •
Introduced as a simplified model of Hodkin-Huxley equation (four-dimensional autonomous system) alias is FitzHugh-Nagumo oscillator extraction of excitatory activity from HH equation x3 x˙ = c(x − + y + z) 3 1 y˙ = − (x + by − a) c
Bifurcation and Chaos in Coupled BVP Oscillators – p.2/42
Analogue of BVP equation An natural extension of van der Pol equation. • 2nd dimensional autonomous system. • Evaluate a resistance in a coil. • Adding a bias source to destroy symmetric property. •
•
A. N. Bautin, “Qualitative investigation of a Particular Nonlinear System,” PPM, vol. 39, No. 4, pp. 606–615, 1975. → Topological classification of solutions in BVP equation Doi, et. al: Response of BVP with an impulsive force Bifurcation and Chaos in Coupled BVP Oscillators – p.3/42
Coupled BVP equation • •
O. Papy, H. Kawakami: Analysis on coupled BVP equations from symmetry point of view. Kitajima: Chaos generation from symmetry coupled BVP equations
No chaotic oscillations in symmetrical configuration of coupled BVP equations
Bifurcation and Chaos in Coupled BVP Oscillators – p.4/42
BVP Oscillator L C
v
g(v)
R E
Circuit equation: dv C = −i − g(v) dt di L = v − ri + E dt
(1)
Bifurcation and Chaos in Coupled BVP Oscillators – p.5/42
Nonlinear conductor 2SK30A FET: 47K
47K
100
2SK30AGR5B
g(v) = −a tanh bv
Bifurcation and Chaos in Coupled BVP Oscillators – p.6/42
Fitting Marquardt-Levenberg method (nonlinear least square method)
a = 6.89099 × 10−3 , b = 0.352356
Bifurcation and Chaos in Coupled BVP Oscillators – p.7/42
Approximation error g(v) = −a tanh bv
with a = 6.89099 × 10−3 , b = 0.352356 Theoretical value versus measurement value. fitting error [A]
0.001 0.0005 0 -0.0005 -0.001 -10
-5
0
5
10
v [V]→
A reasonable approximation. Bifurcation and Chaos in Coupled BVP Oscillators – p.8/42
BVP equation
x˙ = −y + tanh γx y˙ = x − ky. · = d/dτ, 1 τ = √ t, LC
x= k=r
r r
C v, L
C , L
i y= a r
γ = ab
L C
Bifurcation and Chaos in Coupled BVP Oscillators – p.9/42
Bifurcation of equilibria for single BVP oscillator 2
d
1.5
(c)
k
(e) (a)
1
G
h1
h2
0.5
(d)
(b) Oscillatory
0 0
0.5
1
1.5
2
γ
Bifurcation and Chaos in Coupled BVP Oscillators – p.10/42
An example phase portrait 1.5
1
y→
0.5
0
-0.5
-1
-1.5 -1.5
-1
-0.5
0
x→
0.5
1
At region (d): • Two stable sinks. • A saddle. • Two unstable limit cycles. • A stable limit cy1.5 cle.
Bifurcation and Chaos in Coupled BVP Oscillators – p.11/42
Circuit parameters setup L = 10 [mH],
γ = 1.6369909,
C = 0.022 [µF] ⇓ r
L = 674.19986. C
2
d
1.5
(c)
k
(e) (a)
1
G
h1
h2
0.5
(d)
(b) Oscillatory
0 0
0.5
1
1.5
2
γ
Bifurcation and Chaos in Coupled BVP Oscillators – p.12/42
Coupled BVP oscillators A pair of BVP oscillators coupled by a register R. R v2
v1 L
r1
C
g(v1)
L
C
g(v2)
r2
G = 1/R
Bifurcation and Chaos in Coupled BVP Oscillators – p.13/42
Circuit equation dv1 C dt di1 L dt dv2 C dt di2 L dt
= −i1 + a tanh bv1 − G(v1 − v2 ) = v1 − ri1
(2)
= −i2 + a tanh bv2 − G(v2 − v1 ) = v2 − ri2
Bifurcation and Chaos in Coupled BVP Oscillators – p.14/42
Scaling xj =
r
C v j, L
ij yj = , a
1 τ = √ t, γ = ab LC
kj = rj r
r
L ,δ = C
C , L r
j = 1, 2. L G. C
x˙1 y˙ 1 x˙2 y˙ 2
= = = =
−y1 + tanh γx1 − δ(x1 − x2 ) x1 − k1 y1 −y2 + tanh γx2 − δ(x2 − x1 ) x2 − k2 y2
Bifurcation and Chaos in Coupled BVP Oscillators – p.15/42
Symmetry x˙ = f (x) where, f : Rn → Rn : C ∞ for x ∈ Rn . P : Rn → Rn x 7→ Px P-invariant equation: f (Px) = P f (x)
for all x ∈ Rn
Bifurcation and Chaos in Coupled BVP Oscillators – p.16/42
A matrix P •
in case k1 = k2 , 0 0 1 0 0 0 P = 1 0 0 0 1 0
0 1 0 0
Γ = {P, −P, In, −In }
•
forms a group for production. in case k1 , k2 :
Γ = {In , −In } Bifurcation and Chaos in Coupled BVP Oscillators – p.17/42
Bifurcation of Equilibria 2
0D 1.5
k2
2D 1
4D
0.5
0 0
0.5
1
k1
1.5
2
Bifurcation and Chaos in Coupled BVP Oscillators – p.18/42
Poincaré mapping A solution ϕ(t) : x(0) = x0 = ϕ(0, x0 ) .
x(t) = ϕ(t, x0 ), Poincaré section:
Π = { x ∈ Rn | q(x) = 0 } , ˆ → Π; T :Π
x˜ 7→ ϕ(τ( x˜ ), x˜ ) ,
The fixed point x0 for the limit cyclde ϕ(t): T (x0 ) = x0 .
Bifurcation and Chaos in Coupled BVP Oscillators – p.19/42
Characteristic equation !
∂ϕ χ(µ) = det − µIn . ∂x0 Local bifurcations: • µ = 1: tangent bifurcation G • µ = −1: period-doubling bifurcation I • •
µ = e jθ : Neimark-Sacker bifurcation NS µ = ±1: Pitchfork bifurcation P f
Bifurcation and Chaos in Coupled BVP Oscillators – p.20/42
Bifurcation diagram, δ = 0.337(R = 2000[Ω]) 2 two limit cycles
I1
I2
h G
non-oscillatory Chaotic area
1.5
k2
Pf 1
G
h G
0.5
two limit cycles
single limit cycle
I2
Pf I1
0 0
0.5
1
k1
1.5
2
Bifurcation and Chaos in Coupled BVP Oscillators – p.21/42
Hopf bifurcation k1 = 1.18(r1 ≈ 800)
r2 ≈ 600
r2 ≈ 400 Bifurcation and Chaos in Coupled BVP Oscillators – p.22/42
Period-doubling cascade
r2 ≈ 400( k ≈ 0.72)
r2 ≈ 395[Ω] Rössler-type attractor Bifurcation and Chaos in Coupled BVP Oscillators – p.23/42
Presence of Double scroll
r2 ≈ 390 → r2 ≈ 380[Ω].
Bifurcation and Chaos in Coupled BVP Oscillators – p.24/42
Chaotic attractor. r1 = 370[Ω]
(a) v1 -r1 i1 . (b) v2 -r2 i2 .
(c) v1 -v2 , (d) r1 v1 -r2 i2 . Bifurcation and Chaos in Coupled BVP Oscillators – p.25/42
1.5
1.5
1
1
0.5
0.5
x2 →
x2 →
Numerical simulation
0
0
-0.5
-0.5
-1
-1
-1.5 -1.5
-1
-0.5
0
0.5
1
1.5
-1.5 -1.5
-1
-0.5
x1 →
x1 -y1
0
0.5
1
1.5
x1 →
x2 -y2
Bifurcation and Chaos in Coupled BVP Oscillators – p.26/42
1.5
1.5
1
1
0.5
0.5
x2 →
x2 →
Phase portrait between oscillators
0
0
-0.5
-0.5
-1
-1
-1.5 -1.5
-1
-0.5
0
0.5
x1 →
(c) x1 -x2
1
1.5
-1.5 -1.5
-1
-0.5
0
0.5
1
1.5
x1 →
(d) y1 -y2
Bifurcation and Chaos in Coupled BVP Oscillators – p.27/42
Poincaré mapping x1 -x2 plane: Π = {x|q(x) = y1 = 0} 1
x2 →
0.5
0
-0.5
-1 -0.7
-0.6
-0.5
-0.4
-0.3
-0.2
x1 →
-0.1
0
0.1
0.2
0.1
x2 →
0.08 0.06 0.04 0.02 0
Bifurcation and Chaos in Coupled BVP Oscillators – p.28/42
Time response of Oscillator 1
y1 →
x1 →
Chaotic attractor. δ = 0.337, k1 = 1.187, k2 = 0.593, (R = 2000[Ω], r1 = 400[Ω], r2 = 800[Ω]). 1.5 1 0.5 0 -0.5 -1 -1.5 600
800
1000
1200
1400
600
800
1000
1200
1400
t→
1.5 1 0.5 0 -0.5 -1 -1.5
t→
Bifurcation and Chaos in Coupled BVP Oscillators – p.29/42
y2 →
x2 →
Time response of Oscillator 2 1.5 1 0.5 0 -0.5 -1 -1.5 600
800
1000
1200
1400
600
800
1000
1200
1400
t→
1.5 1 0.5 0 -0.5 -1 -1.5
t→
Bifurcation and Chaos in Coupled BVP Oscillators – p.30/42
Projection into x1 -x2 -y1 —(1)
Bifurcation and Chaos in Coupled BVP Oscillators – p.31/42
Projection into x1 -x2 -y1 —(2)
Bifurcation and Chaos in Coupled BVP Oscillators – p.32/42
Projection into x1 -x2 -y1 —(3)
Bifurcation and Chaos in Coupled BVP Oscillators – p.33/42
Enlargement of bifurcation diagram 0.75
0.7
I
Rossler type
0.65
I
k2
0.6
Pf
I
Double scroll
0.55
0.5
I
NS 0.45
bi-stable
G
Pf
G 0.4
0.35 1
1.02
1.04
1.06
1.08
1.1
1.12
1.14
1.16
1.18
1.2
k1 Bifurcation and Chaos in Coupled BVP Oscillators – p.34/42
r2 = 390 → 360[Ω]
Bifurcation and Chaos in Coupled BVP Oscillators – p.35/42
The end of scrolling. left: r2 = 360[Ω], right: r2 = 358[Ω], lower: r2 = 346[Ω]. Bifurcation and Chaos in Coupled BVP Oscillators – p.36/42
to be synchronized
upper left: r2 = 342[Ω], upper right: r2 = 340[Ω]. lower left: r2 = 290[Ω], lower right: r2 = 184[Ω]. Bifurcation and Chaos in Coupled BVP Oscillators – p.37/42
Features • •
There is no period-doubling route for k1 = k2 . (Osc. 1) equilibrium + (Osc. 2) limit cycle = (Osc. 1+2) chaotic solution. Cubic characteristics is essential: g(v) = ax + bx3 with a = −2.27 × 10−3 , b = 4.72 × 10−5 . 1
0.5
x2 →
•
0
-0.5
-1 -1
-0.5
0
0.5
1
x1 → Bifurcation and Chaos in Coupled BVP Oscillators – p.38/42
An application: Hybrid coupling
i01 v1 g(v1)
L
G1
G2
i02 v2 L
C
C r1
g(v2)
r2
Bifurcation and Chaos in Coupled BVP Oscillators – p.39/42
Period-doubling cascade
Bifurcation and Chaos in Coupled BVP Oscillators – p.40/42
Chaotic response
Bifurcation and Chaos in Coupled BVP Oscillators – p.41/42
Remarks A resistively coupled BVP oscillators • Bifurcation of periodic solutions • Chaos is observed with k1 , k2 . • No bifurcation for k1 = k2 Future problems: • synchronization of oscillators • higher dimensional cases
Bifurcation and Chaos in Coupled BVP Oscillators – p.42/42