Brook trout popula-on dynamics: Integrated modeling across scales ...

Report 2 Downloads 23 Views
Ben  Letcher,  Yoichiro  Kanno,  Ron  Bassar,  Ana  Rosner,   Paul  Schueller,  Kyle  O’Neil,  Krzysztof  Sakrejda,  MaQ   O'Donnell,  Todd  Dubreuil   Conte  Anadromous  Fish  Research  Center,  U.S.   Geological  Survey,  Turners  Falls,  MA,  USA       Keith  H.  Nislow,  Jason  Coombs     Northern  Research  Sta+on,  USDA  Forest  Service,   Amherst,  MA,  USA           Andrew  Whiteley     Department  of  Natural  Resources  Conserva+on  UMass,   Amherst,  MA,  USA      

Steve  Hurley  

Brook  trout  popula+on  dynamics:  Integrated  modeling   across  scales  and  data  types  

Overview   è 

è 

Goal:  understand  popula+on  dynamics   and  provide  broad  spa+al  scale   forecasts  in  response  to  environmental   change   Problem:  specificity/generality  tradeoff   Can’t  do  detailed,  mechanis+c  studies   everywhere   ¤  Lots  of  good  survey  data   ¤ 

è 

Approach/solu+on:  combined   approach  

How  does/will   environmenta l  change  affect   stream   salmonids?  

Data  types   è 

PIT  tag   ¤ 

Single-­‐site  demographic  models   n 

è 

Abundance     ¤ 

Mul+ple-­‐site  demographic   models   n 

è 

Seasonal  sensi+vity  of  lambda   (popula+on  growth)  

Sensi+vity  +  basin  characteris+cs  

Presence/absence   ¤ 

Occupancy  models   n 

Effects  of  long  term  means  +   basin  characteris+cs  

Data  types   è 

PIT  tag   ¤ 

Single-­‐site  demographic  models   n  n  n 

è 

Abundance     ¤ 

Mul+ple-­‐site  demographic  models   n  n  n 

è 

Sensi+vity  of  lambda   Strong  seasonal    results   Pathways  of  sensi+vity  

Sensi+vity  of  lambda   Seasonal  results  with  enough  data   Basin  characteris+cs  effects  

Presence/absence   ¤ 

Occupancy  models   n  n 

Basin  characteris+cs  effects   Long-­‐term  mean  effects  

What  can  we  es+mate?   Data  type  

Model  

Endpoint  

Basin   characteris 4c  effects?  

Yearly   environment al  effects  

Seasonal   environment al  effects  

Pathways  of   seasonal   environment al  effects    

PIT  tag  

Single-­‐site   demographic  

Popula+on   growth  

No  

Yes  

Yes  

Yes  

Abundance  

Mul+ple-­‐site   demographic  

Popula+on   growth  

Yes  

Yes  

Yes,  but  need   lots  of  data  

No  

P(occupancy)  

Yes  

No  

No  

No  

Pres/abs  

Occupancy  

Data  types   è 

PIT  tag   ¤  ¤  ¤ 

è 

Abundance     ¤ 

è 

Single-­‐site  demographic   model   Body  growth,  survival,   movement,  reproduc+on   Integral  projec+on  model  

Abundance  models  

Presence/absence   ¤ 

Occupancy  models  

West  Brook  

Isolated  

Data  types   è 

Presence/absence   ¤  Occupancy  models  

è 

Abundance   ¤  Abundance  models  

è 

PIT  tag   ¤  Mechanis+c  models  

Autumn  

Lambda  sensi+vi+es  

Spring        ↔   Winter      ↔   Autumn    ↓   Summer  ↓  

Summer↑     Autumn  ↑     Spring  ↔     Winter↓  

Lambda  response  surfaces  

Forecast  

Data  types   è 

PIT  tag   ¤ 

è 

Single-­‐site  demographic   model  

>  age-­‐0+  

Abundance     ¤ 

Abundance  models   n  n  n 

¤  ¤ 

è 

Age-­‐0+  

Autumn,  Winter,  Spring  Flow   Spring  Temperature     Eleva+on  

State  space   Popula+on  projec+on  

Presence/absence   ¤ 

Occupancy  models  

Yearly  data,  many  sites  

All  

Es+mated  abundances   è 

PIT  tag   ¤ 

è 

Single-­‐site  demographic   model  

Abundance     ¤ 

Abundance  models   n  n  n 

¤  ¤ 

è 

Autumn,  Winter,  Spring  Flow   Spring  Temperature     Eleva+on  

State  space   Popula+on  projec+on  

Presence/absence   ¤ 

Occupancy  models  

Forecast   è 

PIT  tag   ¤ 

è 

Single-­‐site  demographic   model  

Abundance     ¤ 

Abundance  models   n  n  n 

¤  ¤ 

è 

Autumn,  Winter,  Spring  Flow   Spring  Temperature     Eleva+on  

State  space   Popula+on  projec+on  

Presence/absence   ¤ 

Occupancy  models  

Forecasts   è 

Presence/absence  

¤  Occupancy  models  

è 

Abundance  

¤  Abundance  models   ¤  Simple  popula+on  

projec+on  -­‐  state   space  

è 

PIT  tag  

¤  Mechanis+c  models  

↑     ↓     ↔  

Extreme  events  forecast   è 

PIT  tag   ¤ 

è 

Single-­‐site  demographic   model  

Abundance     ¤ 

Abundance  models   n  n  n 

¤  ¤ 

è 

Autumn,  Winter,  Spring  Flow   Spring  Temperature     Eleva+on  

State  space   Popula+on  projec+on  

Presence/absence   ¤ 

Occupancy  models  

Data  types   è 

PIT  tag   ¤  Single-­‐site  

demographic  model  

è 

Abundance    

¤  Abundance  models  

  è 

Presence/absence   ¤  Occupancy  models  

Single  or  mul+ple  year  data,  many  sites  

Model  es+mates   è 

PIT  tag   ¤ 

è 

Precip  

%  forest  

Abundance     ¤ 

  è 

Single-­‐site  demographic   model  

Abundance  models  

Presence/absence   ¤ 

Occupancy  models   n  n  n  n  n  n 

Annual  precipitation   Minimum  temperature   Soil  drainage  class   Drainage  area   Forest  cover   Stream  slope  

Air  T  

Probability  of  Occupancy  for  Current  Conditions

Brook  Trout Probability  of  Occupancy <  10% 11%  -­‐  20% 21%  -­‐  30% 31%  -­‐  40% 41%  -­‐  50% 51%  -­‐  60% 61%  -­‐  70% 71%  -­‐  80%

Model  drivers   Drainage  area   Forest  cover   Stream  slope  

Annual  precipitation   Minimum  temperature   Soil  drainage  class

81%  -­‐  90% >  90%

Probability  of  Occupancy  for  Current  Conditions Probability  of  Occupancy  2  C  increase

Brook  Trout Probability  of  Occupancy <  10% 11%  -­‐  20% 21%  -­‐  30% 31%  -­‐  40% 41%  -­‐  50% 51%  -­‐  60% 61%  -­‐  70% 71%  -­‐  80%

Model  drivers   Drainage  area   Forest  cover   Stream  slope  

Annual  precipitation   Minimum  temperature   Soil  drainage  class

81%  -­‐  90% >  90%

Probability  of  Occupancy  4  C  increase

Probability  of  Occupancy  for  Current  Conditions

Resilience  of  occupancy  to   temperature  increase

Brook  Trout Probability  of  Occupancy <  10% 11%  -­‐  20% 21%  -­‐  30% 31%  -­‐  40% 41%  -­‐  50% 51%  -­‐  60% 61%  -­‐  70% 71%  -­‐  80%

Model  drivers   Drainage  area   Forest  cover   Stream  slope  

Annual  precipitation   Minimum  temperature   Soil  drainage  class

81%  -­‐  90% >  90%

Brook  Trout  Resilience Increase  tolerated  (°C) 0° 0.1°  -­‐  0.5° 0.6°  -­‐  1° 1.1°  -­‐  1.5° 1.6°  -­‐  2° 2.1°  -­‐  2.5° 2.6°  -­‐  3° 3.1°  -­‐  8 .5°

Currently  below  threshold  

Bringing  it  together     Variable    

Flow  

Temperature    

Season  

Model   Single-­‐site   demographic  

Mul+ple-­‐site   demographic  

Occupancy  

Fall  

↑  **  

↑  ***  

Winter  

↓  **  

↓  **  

Spring  

↔  

↔  

    Precip  ↑  

Summer  

↑  ***  

NA  

Fall  

↓  **  

NA  

Winter  

↔  

NA  

Spring  

↔  

↔    

Summer  

↓  ***  

NA  

    Temperature    ↓  

Summary   è 

Congruent  environmental  effects   on  popula+on  growth  across   scales  

Increases  confidence  in  generality   of  results   ¤  Nega+ve  effects  of  temperature   ¤  Posi+ve  effects  of  flow  in  fall  and   summer,  nega+ve  effects  in  winter     ¤ 

è 

Many  brook  trout  popula+ons  at   risk  in  future   Flow  and  temperature     ¤  Extreme  events   ¤ 

è 

Can  iden+fy  resilient  popula+ons    

Steve  Hurley  

Web  app   è 

Map  viewer   ¤  Standard  layers   ¤  Data   ¤  Model  results   ¤  Select  a  basin  for  scenario  tester    

è 

Scenario  tester   ¤  Climate  -­‐>  Landuse    -­‐>  Environment  -­‐>  Popula+on  

response   ¤  Evaluate  management  ac+ons  under  alternate  futures   hQp://felek.cns.umass.edu:8080/geoserver/www/data.html  

Data  types   Sensi+vity  of  annual  survival