Buck Converter Modeling, Control, and Compensator Design

Report 15 Downloads 160 Views
Buck Converter Modeling, Control, and Compensator Design

1

OUTLINE • Three terminal PWM switch modeling • Open loop transfer function • Voltage Mode Control and Peak Current Mode Control • Closed loop transfer functions • Closed loop gain • Compensator Design • Pspice and Mathcad Simulation • Experimental verification

2

Voltage Mode Switching Regulator VO

Converter Power Stage

VIN +

d

PWM Comparator Fm

+

Feedback Control To Achieve

• • •

R K Loop Compensator A(S) +

VREF

Accuracy: Steady-State Error Speed:

Transient Response

Stability

Gain and Phase Margin 3

Average Small Signal PWM Switch Modeling

4

Average Model L

Q1 Vin +

?

RL Rc

D

Ro

Co

Nonlinear Characteristics for Switching Elements Q1 and Q2 Modeling Method: 1. Space Average Model-----Middlebrook (CIT) 2. Three Terminal Switch --- Vorperian (VPEC) 3. DC Transformer Based 5

PWM Switch in Basic DC-DC Converters Boost Buck A Vin +

Q1 C

?

P

C D

Co D

L

L

Ro

+

VIN

Co

? Q1

P

R

A

Buck-Boost A

• A: Active Switch Node • C: Common Node • P: Passive switch (Diode)

D

Q1 C

P

? Vin +

L

Co

Ro

6

Non-Linear PWM Switch A

Q1 C D P

DC Model A

D C

AC Model A

d C

D’

d’

P

P

Where D’ = 1 - D 7

Average Model for Buck Regulator (Cont.) A

C iL L

Q1

+

iin +

Vin

?

vPH

-

RL

iin Rc

Ip Iv

iL

d

Co Vin

vQ2

P

i in =

I p + Iv 2

• d = d iL

Transformer Characteristics

DC Average Model iin A 1:d C iL +

i in = i L d v PH = v ind Model valid only at CCM

vPH

P 8

What is Small Signal Model? • Adding a small signal near the operating point v in = Vin + vˆ in i in = I in + iˆin d = D + dˆ i L = I L + iˆL v PH = VPH + vˆ PH

A

C iL L

Q1

+

iin +

Vin

?

vPH

-

RL Rc Co

P

9

Small Signal Average Model of three Terminal PWM Switch

i in = i L d v PH = v ind

Linearization v in = Vin + vˆ in i in = I in + iˆin d = D + dˆ i L = I L + iˆL

iˆin = I L dˆ + D iˆL vˆ PH = Vindˆ + D vˆ in

C

Q1

A 1:d C iL

iin

+

?

vPH

P

P

Small Signal Average Model iˆin A C +

v PH = VPH + vˆ PH

A

ILdˆ 1:D Vindˆ

P

10

Small Signal Average Model Buck Converter

+

A

C

A

C

L

ILdˆ 1:D Vindˆ

VIN

Co

+

P

R

P

+ Vˆ in

+

A

ILdˆ 1:D Vindˆ

C L Co

R

P 11

Open Loop Line to Output Transfer Function (Buck)

vˆ o z Gv = =D vˆ in ˆ S S2 d =0 1 + Qω + 2 o ω o

+

1 + ωS

L

ILdˆ 1:D Vindˆ

+

vˆ o

C RL

A

RC

Vˆin

R

C

Vo Gv = =D Vin S =0

P C RL

A

vˆ o

L

1:D

RC

+

Vˆin

R

C

1 1 RL R P ωo ≈ , ωz = , ωzL = , Q≈ L Rc C L LC C

12

Open Loop Line to Output Transfer Function (buck)

vˆ o Gv = vˆ in Vo Gv = Vin

=D dˆ =0

1 + ωS

z

S 1 + Qω o

+

S2 2 ωo

Q factor

Gv

D ωo

-40db/dec

S =0 = D

ESR Zero -20db/dec RL 1 R ωo ≈ , ωz = , ωzL = , Q≈ L R C L LC c 1

C

13

Open Loop Control to Output Transfer Function (Buck)

vˆ o

C RL +

A

L

ILdˆ 1:D Vindˆ

+

RC

Vˆin

C

P

1+ = VIN vˆ in =0

S 1 + Qω + o

S2 2 ωo

Vindˆ

P Vo Gd ( DC ) = = VIN D

1 + ωS

z

S 1 + Qω + o

vˆ o

L

+

vˆ o Gd = dˆ

RL

S ωz

S2 2 ωo S =0

R

C RC

R

C

= VIN ωo ≈

1 1 RL R , ωz = , ωzL = , Q≈ L Rc C L LC

C

14

Control to Output Transfer Function (buck) Q factor

vˆ o Gd = dˆ

= VIN vˆ in =0

VIN

Gd

1 + ωS

z

S 1 + Qω o

+

S2 2 ωo

ωo

-40db/dec

ESR Zero -20db/dec RL 1 R ωo ≈ , ωz = , ωzL = , Q≈ L R C L LC c 1

C

15

Open Loop Output Impedance +

Zp

vˆ o = iˆ

vˆ o

C RL

A

L

ILdˆ 1:D Vindˆ

+

RC

Vˆin

o dˆ =vˆ =0 in

R

C

P

Zp

S ωz

(1 + vˆ o = = RL // R • ˆi o 1+

Z p (S = 0 ) = RL // R

) • ( 1 + ωS zL S S2 Qωo + ω2 o

)

vˆ o

RL L

RC

R

ZO

C

Z p (s = ∞) = Rc // R

16

Open Loop Output Impedance

Zp

S ωz

(1 + vˆ o = = RL // R • ˆi o 1+

) • ( 1 + ωS zL S S2 Qωo + ω2 o

vˆ o

RL

)

L RC C

Z p (S = 0 ) = RL // R Z p (s = ∞) = Rc // R

ZO

R

Zp Q factor RL //R

ωZL

ωo

20db/dec RL 1 R ωo ≈ , ωz = , ωzL = , Q≈ L R C L LC c 1

-20db/dec Rc //R ESR Zero ω Z

C 17

Single Close Loop Controlled Switching Regulator

18

Small Signal Close Loop Controlled Switching Regulator Small Signal Block Diagram

vˆ in



Converter Power Stage

iˆo

vˆ in

vˆ vˆ o vˆ o , , , ... vˆ in iˆo dˆ

vˆ o

iˆo

Compensator -A(S) Fm

GV ZP

Power Stage

vˆ o

X T

Gd



-A(S)

Fm

PWM Comparator 19

Open-loop Transfer Function

vˆ in Open Loop Voltage Gain

iˆo

(Open loop audio Susceptibility) vˆ o Gv = @ iˆo = 0 and dˆ = 0 vˆ in

GV ZP

vˆ o

X T

Gd



Fm

-A(S)

vˆ C

Open Loop Output Impedance vˆ o Zp = @ dˆ = 0 and vˆ = 0 iˆ o

20

Open-loop Transfer Function (Cont.) vˆ in GV

Control to Output Transfer Function vˆ o Gd = @ vˆ in = iˆo = 0 dˆ

iˆo

ZP

vˆ o

X T

Gd Loop Compensator Gain

vˆ c A(s) = vˆ o



-A(S)

vˆ C

Fm

PWM Comparator Gain

dˆ Fm = vˆ c 21

Small Signal PWM Comparator Gain Fm

PWM Comparator

vˆc

vcomp

vramp

Vc



+ Fm -

DTs

Fm

vc

vˆ c VP

dˆTs

dd dˆ 1 = = = ˆ dv c v c VP 22

Closed Loop Audio-Susceptibility (Line Trans. Response)

vˆ o vˆ in Audio Susceptibility GV vˆ in ˆ i o = 0 iˆ o vˆ o = Gv vˆ in + Gd dˆ dˆ = -Fm A vˆ o

vˆ o Gv Gv = = vˆ in 1 + Gd Fm A 1 + T

ZP

vˆ o

X T

Gd



Fm

-A(S)

vˆ C

Audio-Susceptibility Physical meaning: Line transient response Loop Gain:

T = Fm Gd A

• High loop gain T will improve the line transient response 23

Closed Loop Output Impedance (Load Transient Response)

vˆ o Closed Loop Output Impedance iˆo vˆ in = 0 vˆ o = Z p iˆo - Gd Fm A vˆ o

Zp Zp vˆ o ˆi = 1 + Gd Fm A = 1 + T o

iˆo vˆ in

ZP GV

vˆ o

X T

Gd



-A

Fm

Output Impedance Physical meaning: Load step transient response • The smaller the output impedance, the faster the transient response • Higher loop gain is desired 24

Loop Gain Analysis

Loop Gain Provides: • System performance analysis: Transient response • Stability analysis: • Absolute stability • Degree of stability • Design insight • Measurement verification

25

Function of Loop Gain T: Closed-Loop Audio Susceptibility

vˆ o Gv = =D vˆ in

1 + ωSz 1 + QSωo +

vˆ in S2 2 ωo

iˆo

GV ZP

X

fC (bandwidth)

Gd

vˆ o

1+T

fo

GV

T ESR Zero

GCL

T dˆ

-A

Fm

vˆ o Gv GCL = = vˆ in 1 + T

• The smaller GCL, the faster line transient response • Require higher bandwidth fc

26

Function of Loop Gain T: Closed-Loop Output Impedance vˆ o Z p = ˆ = RL // R • io

( 1 + ωSz ) • ( 1 + ωSzL ) 1 + QSωo

+

1+T

S2 2 ωo

fC (bandwidth)

fo

ZP ωzL =

ESR

ZCL

iˆo

GV ZP

vˆ o

X T

Gd



T ESR Zero

RL L

vˆ in

-A

Fm

vˆ o Z p ZCL = ˆ = io 1 + T

• ZCL used for load transient analysis • The smaller ZCL, the faster load transient response • The minimum high frequency Zo is ESR 27

Closed-Loop Output Impedance L

Q1

RL Rc

+ Q2

ZO

Ro

Co

1+T fC (bandwidth)

fo

ZP ωzL =

T ESR Zero

RL L

ESR

ZCL

ZCL

Zp vˆ o = = ˆi 1 +T o

When f • C shorts and L open • Minimum ZO: ESR • Smaller ESR, better load transient • Higher T, better load transient 28

Ideal Loop Gain Characteristics • • • •

High DC gain (Low frequency) for small DC error Wide bandwidth for fast transient response -20dB/dec slope near cross-over frequency for higher phase margin High attenuation at high frequency for noise reduction

|T|

fC (bandwidth)

0dB

fo

Gm: Gain margin

∠T Phase margin Φm

-180o 29

Examples of Loop Gain T S=jω Definition

• Single Order System ; T = Gm S ω 1+ p T ωp -20dB/Dec

Magnitude = 20 log T Phase = Angle (T )

ω S-Plane 0o

(-1,0)

Gm (S=0)

-45o -90o Phase Margin: 90o -180o • Always stable • 90o phase margin

T=1/(1 + j) @ S=jωp Magnitude = -20 log 2 Phase = -45 degree 30

Examples of Loop Gain T • 2nd Order System ; T =

T

ωo

Gm S S2 1+ + 2 ωoQ ωo

ω -40dB/Dec

|T|=1 (-1,0)

0o -90o

S-Plane Gm (S=0)

ϕ

-180o • Stable • ϕ phase margin: may be very small • Gain margin: infinite (theoretical)

S = jωo QGm T = j 31

Basic Pole and Zero Characteristics

ωp One Pole

T 20dB/Dec

• 45 degree at the Pole (frequency fp) • Total of

90o

ω

phase delay after >10 fp

• -20 db/dec One Zero • 45o phase lead at the zero • Total of 90o phase lead after >10 fz • +20db/dec

1+ G( S ) = 1+

90o 45o 0o

S 10 3 S 10 5 32

DC Loop Gain

iˆo vˆ in

ZP

+

GV

Gd



OUTPUT

T Fm

A

Error

-

Vo

+ VREF

vˆ in = iˆo = 0 DC Error = VREF

Vo - Vo = AFmGd

S =0

Vo = T ( DC loop gain )

• The higher DC loop gain, the smaller the DC steady-state error • 40dB DC loop gain, 1% error 33

Compensator Design Considerations

34

Objectives of Loop Gain Design

vˆ in Objective:

iˆo

• To shape the loop gain T for achieving

GV ZP

vˆ o

+ T

Gd



High DC gain at low frequency



>40 degree phase margin



> 10 dB gain margin



High bandwidth for fast transient response



-A(S)

Fm

T = Gd • A( S ) • Fm 35

Load Transient Step Response vs Phase Margin • The amount of ringing determines the phase margin – 45º phase margin is sufficient • The crossover frequency is equal to the ringing frequency – Crossover frequency should be 1/5 or 1/10 of the converter switching frequency 2 1.659 ϕ=15°° ϕ=30°° ϕ=45°° ϕ=60°°

1.5 v( t , 15 ) v( t , 30 ) v( t , 45 )

1

v( t , 60 )

Crossover Frequency

0.5

1.177 ×10

−4

0

0 0.015

5

10 ω c⋅ t

15

20 20

36

Compensator Design Considerations (Voltage mode) Buck Converter

Compensator: Constant Gain

T

T = Gd AFm , A(s) = K c ; T = FmVIN

1 + ωS

z

S S2 1 + Qω + 2 o ωo

1 1 ωo ≈ , ωz = , Rc C LC

ωo fC (bandwidth)

• Kc

ESR Zero 0o

Q≈

R L C

ωZ

-90o -180o

• Low DC gain, need an integrator • Almost 0o phase margin if ωz > 3 ωo • Stable if ESR zero ωz < 3 ωo 37

Compensator Design Considerations (cont.) -20db/dec ωo -60db/dec T ωC (bandwidth)

Compensator: Integrator Kc T = Gd AFm , A(s) = S ; 1 + ωS Kc z T = FmVIN • S 2 S 1 + Qω + S2 o ωo

1 1 ωo ≈ , ωz = , Rc C LC

Q≈

ESR Zero -90o

ωZ

-40db/dec

-180o R L C

-270o

Unstable

• Integrator: 90o delay; Double pole: 180o delay • low bandwidth or unstable • Need to introduce two zeros before cross-over frequency ωC 38

Type III Compensator Characteristics TOPEN = Gd Fm TCLOSE = Gd Fm A(s )

• Design based on OPEN LOOP GAIN • An integrator for high DC gain

A(S)

Two Poles Integrator x Two Zeros x

GdFm

• Place two zeros around fo for compensating phase delay due to the integrator and double poles

fo

ESR Zero |T|

• Two high frequency poles

fC

• to cancel ESR zero • to attenuate high frequency noise • to ensure the gain decreasing after fc

∠T

-90o

• to ensure the phase lag minimum at fc

-180o 39

Type III Loop compensator Circuit vˆ c ZF =, A( S ) = vˆ o ZI 1 1 ZF = // ( R2 + ); SC3 SC1 1 Z I = R1 //( R3 + ) SC2

ZF R2

vC

• Zeros: 1. R2, C1; 2. R1+R3, C2

• 1. 2. 3.

C1

ZI

R3 C2

vo

-

Compensator output

S S ( 1 + ) • ( 1 + ) KI ω z1 ωz 2 A( S ) = S ( 1+ S )•( 1+ S ) ω p1 ω p2

C3

+

R1

VREF

K I = R (C1 +C ) , 1 1 3 ωz1 = R 1C , ωz 2 = C (R1 +R ) 2 1 2 1 3

Poles: 1 DC ω p1 = R 1C , ω p 2 = C1C3 3 2 R2 R2, C3 if C1>>C3 C1 +C3 R3, C2

40

Loop Gain Design (voltage mode) vˆ in

iˆo

T = Gd AFm T = FmVIN

1 + ωS

z

K c ( 1 + ωS ) • ( 1 + ωS )

z1 z2 S S2 S • (1 + S ) • (1 + S ) 1 + Qω + 2 ω p1 ωp2 o ωo

Gd(S)

A(S): Compensator

1 1 ωo ≈ , ωz = , Rc C LC

Q≈

GV ZP

vˆ o

+ T

Gd



-A

Fm

R L C

• Type III compensator: two zeros (ωz1, ωz2) and three poles (0, ωp1, ωp2) • Loop gain is proportional to the input voltage. Need input voltage feed-forward function 41

Objective of Compensator Design

T = Gd AFm T = FmVIN

1 + ωS

K c ( 1 + ωS ) • ( 1 + ωS )

z1 z2 S S2 S • (1 + S ) • (1 + S ) 1 + Qω + 2 ω p1 ωp2 o ωo z

• Objective is to design a compensator, Kc, ωz1, ωz2, ωp1, ωp2, to SHAPE the loop gain T for stability and optimum performance for given power stage parameters, ωz, ωo, Q, VIN, and PWM gain Fm.

42

Loop Gain Design Procedure (Case 1)

Integrator -20db/dec ωz1, ωz2

FmGd

T = Fm

ωp1

VIN ( 1 + ωS ) K c ( 1 + ωS ) • ( 1 + ωS ) z z1 z2 S 1 + Qω o

S • ( 1 + ωS ) • ( 1 + ωS ) p1

Gd(S)

T

ωc

ωp2

p2

A(S)

• Bandwidth fc = (1/5-1/10) fs • ωz1, ωz2 near ωo

ωo

ESR Zero ωz

+

S2 2 ωo

• ωp1 cancel ESR zero ωz -40deb/dec

• ωp2 = 10 ωc • Determine Kc • Select compensator R’s and C’s 43

Type III Compensator Design (Case II)

• An integrator for high DC gain • Place two zeros around fo

A(S)

Two Poles Integrator x Two Zeros x

GdFm

fo

• Two high frequency poles to cancel ESR zero and increase |T| gain attenuation at high frequency

Open loop Gain ESR Zero

fC

∠T

-90o -180o 44

Type II Compensator Integrator A(S) Type II Compensator • One zero and two poles • if ESR zero is close to double pole ωz< 3 ωo

A( S ) =

One Zero

GdFm

One Pole

x

ωo

ωz |T|

S K I 1 + ωz 1 • S 1+ S ω p1

ωC ∠T -90o -180o 45

Loop Gain T function of Input Voltage T = Fm

VIN ( 1 + ωS ) K c ( 1 + ωS ) • ( 1 + ωS ) z

S 1 + Qω o

VIN

+

S2 2 ωo

S • (1 +

z1 S ω p1

) • (1 +

z2 S ωp2

)

• T is function of VIN • Need feed-forward function to cancel

VIN

VIN effect fC

-90o -180o

Very little phase margin 46

Comparator Gain with Feed-Forward Function Feed-Forward: PWM ramp is function of the input voltage

v comp

d

1 = Vcomp VP

+ Fm -

dd dˆ 1 Fm = = = dv comp vˆ comp VP

VP = K VIN

PWM Comparator

1 Fm = KVIN

vcomp

d

vramp

VP

d

47

Loop Gain with Feed-Forward Function T = Gd AFm T = Fm VIN

1 + ωSz 1 + QSωo

+

Kc ( 1 + ωSz1 ) • ( 1 + ωSz 2 ) S2 2 ωo

S • ( 1 + ωSp1 ) • ( 1 + ωSp 2 )

1 Fm = KVIN 1 T = V IN KV IN 1+

1+

S ωz

S Q ωo

+

Kc (1 + S2 2 ωo

S • (1 +

S ωz1 S ω p1

) • (1 + ) • (1 +

S ωz 2 S ωp2

) )

• Loop Gain is INDEPENDENT of input voltage. • Fast line step transient response, Only depends on conversion speed of Vramp= f(VIN) 48

How to Measure the Loop Gain Q1

L VIN

VO

RESR

+

R

c

Co

Q2

R1

Ton D= Ts

Gate driver

Vexcite = 10-20mV

+ PWM Comparator

-

a VC

A(S)

+

b

VREF Compensator

R2

• Network Analyzer • AP200 • a and b: 20-50mV perturbation; c: depends on output voltage 49

Modeling, Simulation and Test Example TPS40200 • Voltage mode PWM controller • Input Voltage range: 4.5V to 50V • Input Voltage Feed Forward function PWM ramp voltage = VIN/10 • Programmable switching frequency • Vout: 0.7V to 90% of VIN VIN=20V, VOUT= 5V, fs = 300kHz, L=47uH, Co=22uF/10mΩ Ω

50

Buck Converter with Voltage Mode and Type III Compensator L: 47uH, 0.25Ω Ω

Q1

VIN 20V

RESR 5mΩ Ω +

D

Co 22µ µF

VO

R C3: 10p

Ton D= Ts

VIN 10 Gate driver

R2: 23.2k C1:1.5n

+ PWM Comparator

VC

C2 1n

R1 30.9k

R3 1.15k

A(S) +

VREF + 0.7V

Rx 4.99k

51

Pspice Simulation Schematic PWM small signal average model

PWM gain Loop gain test perturbation

Type III Compensator 52

Simulation and Test Results PSPICE Simulation Results 0.3

3.5 Output Voltage Load Current

0.2

3 2.5

VOUT

0.0

2

-0.1

1.5

IOUT

-0.2

1

-0.3

0.5

-0.4

0

-0.5

-0.5 0

40

80

Load Current (A)

0.1 Output Voltage (V)

Test Results

VOUT IOUT

120 160 200 240 280 320 360 400 Time (us)

Load Step Transient: 0.4A to 0.8A

53

Simulation and Test Results Test Results

1.0

3.5

0.5

3

VOUT

0.0

2.5

-0.5

Output Voltage Load Current

IOUT

-1.0

2 1.5

-1.5

1

-2.0

0.5

-2.5

0

-3.0

-0.5 0

Load Current (A)

Output Voltage (V)

PSPICE Simulation Results

100 200 300 400 500 600 700 800 900 1000 Time (us)

Load Step Transient: 0.1A to 1.5A 54

Loop Bandwidth Simulation: Mathcad and Pspice Mathcad 60

Pspice 60

50

Bandwidth 35kHz

40

Bandwidth 45kHz

20

0

0

gain(Tv( S( fi) ) )

-20 50

-40

− 80 100 100 0

3

4

1 .10

5

1 .10 f( fi)

6

1 .10

1 .10 6

-60 1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+04

1.0E+05

1.0E+06 55

1×10

0

0

Phase Margin 65 degree

50

-50

phase( Tv( S( fi) ) ) − 180

-100

100

150

-150

-180

− 200 200 10 10

100

3

4

1 .10

1 .10 f ( fi)

5

1 .10

6

1 .10 6 1×10

Phase Margin 70 degree

-200 1.0E+02

1.0E+03

Thanks!

Current Mode Loop Compensator Design will be next time

56