Building Accurate Workload Models Using Markovian Arrival Processes

Report 1 Downloads 59 Views
Building Accurate Workload Models Using Markovian Arrival Processes Giuliano Casale Department of Computing Imperial College London [email protected]

BCAM Seminar – November 15th, 2012

1/51

Outline

Main topics covered in this seminar: • Phase-type (PH) distributions • Moment matching • Markovian arrival processes (MAP)

2/51

1. PH DISTRIBUTIONS

3/51

Continuous-Time Markov Chain (CTMC) Notation • m states • λi,j ≥ 0: (exponential) transition rate from state i to j P • λi = m j=1 λi,j : total outgoing rate from state i • Infinitesimal generator matrix:   −λ1 λ1,2 . . . λ1,m  λ2,1 −λ2 . . . λ2,m    Q= . .. ..  , Q1 = 0, ..  .. . . .  λn,1

λn,2

  1 1  1=  ..  .

. . . −λm

1

• π(t) ˙ = π(t)Q, initial value π(0) • π(t) = π(0)e Qt : state probability vector at time t • πi (t): probability of the CTMC being in state i at time t • π(0): initial state probability vector

4/51

Example 1.1: CTMC Transient Analysis Initial state: π(0) = [0.9, 0.0, 0.1, 0.0]

  −5 4 1 0  4 −7 2 1  Q= 2 3 −5 0  2 0 0 −2

Transient analysis: π(t) = π(0)e Qt = π(0)

∞ X (Qt)k k=0

k!

Transient Probabilities

A Sample Path 1 0.8 state probabilities

current state

4

3

2

0.6 0.4 0.2

1 0

5

10

15

20

25 time

30

35

40

45

0 0

0.5

1

1.5 time

2

2.5

3

5/51

Phase-Type Distribution (PH) • Q: CTMC with m = n + 1 states, last is absorbing (λn+1 = 0) 

−λ1 λ1,2 . . . λ1,n λ1,n+1



   λ2,1 −λ2 . . . λ2,n λ2,n+1    T t .. .. . . .. ..  Q= =  . . . .  0 0  .  λ  n,1 λn,2 . . . −λn λn,n+1 0 0 ... 0 0 



• T: PH subgenerator matrix, T1 < 0 • t = −T1: exit vector

• “No mass at zero” assumption: π(0) = [α, 0], α1 = 1 References: [Neu89]

6/51

Example 1.2: Absorbing State Probability Initial state: π(0) = [α, 0.0] = [0.9, 0.0, 0.1, 0.0]       −5 4 1 0 −5 4 1 0  4 −7 2 1     Q= , T = 4 −7 2 , t = −T1 = 1 2 3 −5 0  2 3 −5 0 0 0 0 0 1 absorbing state probability

1

state probabilities

0.8 0.6 0.4 0.2 0 0

5

10 time

15

0.8 0.6 0.4 0.2 0 0

5

10

15

time

7/51

PH: Fundamental Concepts Basic idea: model F (t) = Pr(event occurs in X ≤ t time units) as the probability mass absorbed in t time units in Q. • Semantics: entering the absorbing state models the occurrence of an event, e.g., the arrival of a TCP packet, the completion of a job, a non-exponential state transition in a complex system • Understanding the absorption dynamics:   ∞ ∞ P (Tt)k P Tk−1 t k t  π(t) = π(0)e Qt = π(0)  k=0 k! k=1 k!  0

1

• Using the definition t = −T1, we get π(t) = [αe Tt , πn+1 (t)],

πn+1 (t) = 1 − αe Tt 1

where πn+1 (t) is the probability mass absorbed in t time units.

8/51

PH: Fundamental Formulas

PH distribution: F (t) = Pr(event occurs in X ≤ t) = 1 − αe Tt 1 def

• PH representation: (α, T) • Probability Density function: f (t) = αe Tt (−T)1 R +∞ • (Power) Moments: E [X k ] = 0 t k f (t)dt = k!α(−T)−k 1 • (−T)−1 = [τi,j ] ≥ 0 • τi,j : mean time spent in state j if the PH starts in state i • Median/Percentiles: no simple form, determined numerically.

9/51

Example 1.3: a 3-state PH distribution

    −(λ + µ) λ µ 0    0 −λ λ , t = 0  , λ ≥ 0. α = [1, 0, 0], T = 0 0 −λ λ • Case µ → +∞: E [X k ] = k!λ−k (Exponential, c 2 = 1). • Case µ = λ: E [X k ] = (k + 1)!λ−k (Erlang-2, c 2 = 1/2) (k+2)! −k 2 λ delivers c 2 > 1

• Case µ = 0: E [X k ] = • No choice of µ

(Erlang-3, c 2 = 1/3).

def

Remarks: Squared coefficient of variation: c 2 = Var [X ]/E [X ]2

10/51

PH: “Family Picture” - n ≤ 2 states c2 1

α [1]

1 2

[1, 0]

Hypo-Exp.

[ 12 , 1)

[1, 0]

Hyper-Exp.

[1, +∞)

[α1 , α2 ]

Coxian/APH

[ 12 , +∞)

[1, 0]

General

[ 12 , +∞)

[α1 , α2 ]

Exponential Erlang

T  −λ  −λ λ  0 −λ  −λ1 λ1 −λ2   0 −λ1 0 −λ2   0 −λ1 p1 λ1 −λ2   0 −λ1 p1 λ1 p2 λ2 −λ2

Subset of Hyper-Exp. Hypo-Exp. Coxian/APH Coxian/APH General

def Remarks: α1 + α2 = 1, c 2 = Var [X ]/E [X ]2

11/51

PH: “Family Picture” - Examples — n = 3 states c2

α

Hyper-Erlang

[ 12 , +∞)

[α1 , α2 , 0]

Coxian/APH

[ 13 , +∞)

[1, 0, 0]

Circulant

[ 13 , +∞)

[α1 , α2 , α3 ]

General

[ 13 , +∞)

[α1 , α2 , α3 ]

T  −λ1  0  0 −λ1  0 0  −λ1  0 p λ  31 3 −λ1 p21 λ2 p31 λ3

0 −λ2 0 p1 λ 1 −λ2 0 p12 λ1 −λ2 0 p12 λ1 −λ2 p32 λ3

 0 λ2  −λ2  0 p2 λ2  −λ3  0 p23 λ2  −λ3  p13 λ1 p23 λ2  −λ3

def Remarks: α1 + α2 + α3 = 1, c 2 = Var [X ]/E [X ]2

12/51

Example 1.4: Reducing to Coxian Form Algorithms exist to reduce a PH to Coxian form. • With n = 2 states (PH(2) models) this can be done analytically   −25 0 0 0 • Hyper-Exponential: α = [0.99, 0.01], T = , 0 −5 F 0 (t) = 1 − 0.99e −25t − 0.01e −5t   −λ1 p1 λ1 • Coxian: α = [1, 0], T = 0 −λ2 • Symbolic analysis gives that in the 2-state Coxian F (t) = 1 − M1 e −λ1 t − (1 − M1 )e −λ2 t ,

def

M1 = 1 −

λ1 p1 λ1 − λ2

• Thus the two models are equivalent if λ1 = 25, λ2 = 5, and p1 = 0.008 such that M1 = 0.99.

13/51

Example 1.4: Reducing to Coxian Form Compare moments of Hyper-Exponential and Coxian: E [X ] E [X 2 ] E [X 3 ] E [X 4 ] .. .

Hyper-Exp 41.600 · 10−3 3.968 · 10−3 860.160 · 10−6 444.826 · 10−6 .. .

Coxian 41.600 · 10−3 3.968 · 10−3 860.160 · 10−6 444.826 · 10−6 .. .

Key message: differences between (α0 , T0 ) and (α, T) are deceptive! In general, (α, T) is a redundant representation. Redundancy problem: how many degrees of freedom in PH distributions? How to cope with redundant parameters?

14/51

PH: Degrees of Freedom • PH Moments: E [X k ] = k!α(−T)−k 1 • A of order n, characteristic polynomial: • φ(θ) = det(θI − A) • φ(A) = An + m1 An−1 + . . . + mn−1 A + mn I = 0 • A = (−T)−1 implies that PH moments are linearly-dependent E [X n−1 ] E [X n ] + m1 + . . . + mn−1 E [X ] + mn = 0 n! (n − 1)! • Thus, a PH offers up to 2n − 1 degrees of freedom (df) for fitting a workload distribution (n − 1 moments + n terms mj ). • n = 2 states ⇒ 3 df, n = 3 ⇒ 5 df, n = 4 ⇒ 7 df, ... References: [TelH07],[CasZS07]

15/51

PH: Algebra of Random Variables and Closure Properties • PH: the smallest family of distributions on 1 • Obtain m1 ,. . .,mn by solving the linear system  e n] e n−1 ] E [X [X   + m1 E(n−1)! + . . . + mn = 0  k!   n+1 n e e   E [X ] + m1 E [X ] + . . . + mn E [X e] = 0 (k+1)!

       E [Xe 2n−1 ] (2k−1)!

.. .

n!

.. .

e 2n−2

e n−1

[X ] E [X ] + m1 E(2K −2)! + . . . + mn (n−1)! = 0

• Obtain θi as roots of φ(θ) = θn + m1 θn−1 + . . . + mn−1 θ + mn • Obtain Mi,1 from the spectral characterization given θi and e k ]. E [X −1 • Output: α = (M1,1 , . . . , MK ,1 ), T = −diag(θ1−1 , . . . , θK ) References: [CasZS08b]

23/51

Example 2.1: Prony’s Method Trace: LBL-TCP-3, http://ita.ee.lbl.gov MATLAB Code, PH(3): E=[1,5.3109e-003,89.7845e-006,3.0096e-006,163.1872e-009,12.9061e-009]; f=factorial(0:6); A=[E(4:-1:1)./f(4:-1:1);E(5:-1:2)./f(5:-1:2); E(6:-1:3)./f(6:-1:3);1,0,0,0]; b=[0;0;0;1]; m=(A\b)’, theta=roots(m)’ M=([theta*f(2);theta.ˆ2*f(3);theta.ˆ3*f(4)]\E(2:4)’)’

α = [M1,1 , M2,1 , M3,1 ] = [26.2074, 384.7137, 589.0789] · 10−3 ; T = −diag(θ1−1 , θ2−1 , θ3−1 ) = −diag(49.9628, 110.5089, 451.3770) BC−pOct89

LBL−TCP−3 0

−1

−1

−2 −3 −4 −5 −6 −5

Trace PH(3) −4

−3 −2 −1 Interarrival Time t [log]

−2 −3 −4 −5 −6

0

CCDF 1−F(t) [log]

0 −1 CCDF 1−F(t) [log]

CCDF 1−F(t) [log]

LBL−PKT−5 0

−7 −5

Trace PH(3) −4

−3 −2 −1 Interarrival Time t [log]

−2 −3 −4 −5 −6

0

−7 −5

Trace PH(3) −4

−3 −2 −1 Interarrival Time t [log]

0

24/51

PH: Approximate Moment Matching • Relatively few techniques for approximate moment matching • Kronecker product composition for PH (KPC-PH): • X1 ∼ (α, T) of order n, X2 ∼ (β, S) of order m def

def

• X = X1 ⊗ X2 ∼ (γ, R), γ = α ⊗ β, R = (−T) ⊗ S • (γ, R) is PH only if S = −diag(λ1 , . . . , λn ) • Divide-and-conquer approximate moment matching: E [X k ] =k!(α ⊗ β)(−((−T) ⊗ S))−k (1n ⊗ 1m ) =k!(α(−T)−k 1n )(β(−S)−k 1m ) =E [X1k ]E [X2k ]/k! References: [CasZS08]

25/51

Example 2.2: KPC-PH – Increased Degrees of Freedom • X1 : PH(2), E [X1 ] = 1, E [X12 ] = 10, E [X13 ] = 200 • X2 : PH(2), E [X2 ] = 1, E [X22 ] = 10, E [X23 ] = 3200 • Y1 : PH(2), E [Y1 ] = 1, E [Y12 ] = 3.2691, E [Y13 ] = 200 • Y2 : PH(2), E [Y2 ] = 1, E [Y22 ] = 30.589, E [Y23 ] = 3200 • Z1 : PH(2), E [Z1 ] = 1, E [Z12 ] = 20, E [Z13 ] = 200 • Z2 : PH(2), E [Z2 ] = 1, E [Z22 ] = 5, E [Z23 ] = 3200 E [X ] E [X 2 ] E [X 3 ] E [X 4 ] E [X 5 ] E [X 6 ] .. .

X1 ⊗ X2 1.0000 5.0000 · 101 1.0667 · 105 7.2362 · 108 5.2745 · 1012 4.8979 · 1016 .. .

Y1 ⊗ Y2 1.0000 5.0000 · 101 1.0667 · 105 7.2362 · 108 6.3130 · 1012 6.6129 · 1016 .. .

Z1 ⊗ Z2 1.0000 5.0000 · 101 1.0667 · 105 3.7813 · 108 1.6796 · 1012 8.9531 · 1015 .. .

26/51

PH: Generalized KPC-PH Technique Generalization: N N N • X = Jj=1 Xj ∼ ( Jj=1 αj , (−1)J−1 Jj=1 Tj ) • X is PH if J − 1 subgenerators are diagonal Q E [X k ] • E [X k ] = k! Jj=1 k!j KPC-Toolbox:

http://www.cs.wm.edu/MAPQN/kpctoolbox.html

• Support for exact and approximate moment matching • Determine (αj , Tj ) by numerical optimization • Search on moments directly instead of (α, T) parameters References: [CasZS08]

27/51

Example 2.3: KPC-Toolbox Fitting • Internet Traffic Archive Trace: BC-Aug-p89,

http://ita.ee.lbl.gov

• Prony’s method fails if n > 3: θ2 = 0.0026 + i0.0179 • How to find a perturbation of the moment sets that delivers more accurate result? 0

10

KPC-PH, PH(4): 39.630, 155.67) α =[0.66082, 0.31138,

CCDF 1−F(t) [log]

T = − diag(283.677, 1114.3,

−2

10

−4

10

Trace PH(3) − Prony PH(4) − KPC−PH

−6

0.01889, 0.00890]

10

−8

10 −5 10

−4

10

−3

−2

10 10 Interarrival Time [log]

−1

10

0

10

28/51

PH: Other Publicly Available Tools for PH Fitting EMpht (1996) —

http://home.imf.au.dk/asmus/pspapers.html:

• EM algorithm for ML fitting, based on Runge-Kutta methods • Local optimization technique jPhase (2006) —

http://copa.uniandes.edu.co/software/jmarkov/index.html:

• Java library — ML and canonical form fitting algorithms PhFit (2002) —

http://webspn.hit.bme.hu/∼telek/tools.htm:

• Separate fit of distribution body and tail • Both continuous and discrete ML distributions G-FIT (2007) —

http://ls4-www.cs.uni-dortmund.de/home/thummler/gfit.tgz:

• Hyper-Erlang PHs used as building block • Automatic aggregation of large traces, dramatic speed-up of computational times compared to EMpht

29/51

3. MARKOVIAN ARRIVAL PROCESS

30/51

Time Series Analysis

Notation: def

• {t0 = 0, t1 , t2 , t3 , . . .} : sequence of arrival times of events in the real system def

• Xk = tk − tk−1 : inter-arrival time between arrival of the (k − 1)-th and the k-th events. • tk and Xk may not be directly observable, e.g., aggregate data

31/51

Stochastic Process Descriptions

• Inter-arrival process: models sequence of values Xk • Natural description for unaggregated traces • Enables reasoning on individual events (e.g., response time distributions, covariance of successive arrivals, ...) • Counting process: models number of arrivals in interval [0, t] • Preferred for aggregate data (e.g., packet counts) • Enables reasoning on the volumes of events at timescale t • The two descriptions are equivalent in theory; in practice they carry independent information when fitted on a dataset

32/51

Sequence of PH Inter-Arrival Times

• PH-Renewal process: • for k = 1, 2, 3, . . . • initialize a PH with subgenerator T according to α • generate Xk as the time to absorption in (α, T) • tk = tk−1 + Xk is the arrival time of the k-th event • Limitation: every time the PH is restarted independently of the past. No way to define time-varying patterns, e.g., periodicities, burstiness, ... References: [Neu89]

33/51

PH-R: Counting Process

• PH-Renewal Process State (N(t), J(t)) • N(t): event counter increased upon arrival/restart events • J(t): PH state within current level    α T t·α 0 0 0 0 T t · α 0    π c (0) =  0  Qc =  0 0 T t·α    .. .. .. .. .. . . . . .

 . . . → N(t) = 0 . . .  → N(t) = 1 . . .  → N(t) = 2 .. .. . .

34/51

Markovian Arrival Process (MAP) • MAP: generalizes the PH-Renewal construction by considering restarts that depend on the exit state of the previous sample. • A technical device to introduce “memory” in the time series. • MAP Counting Process:     D0 D1 0 0 . . . → N(t) = 0 α  0 D0 D1 0 . . . → N(t) = 1 0     π c (0) =  0  Qc =  0 0 D0 D1 . . .  → N(t) = 2    .. .. .. .. . . . . .. . . . . . . . • D0 : same as T, transitions do not increase N(t) • D1 : generalizes t · α, transitions increase N(t) by 1 • Batch MAP (BMAP): Db , b > 1, increasing N(t) by b units References: [Neu89]

35/51

Example 3.1: Sequence of MAP(2) Inter-Arrival Times    −10 3 5 D0 = , D1 = 5 −5 0

 2 0

• k = 1; start in a random state according to α, e.g., state 2. • Xk = 0 • Xk = Xk + r , r ∼ exp(5). Jump to state 1. • Xk = Xk + r , r ∼ exp(10). • u ∼ uniform(0, 1). 3 • if u ∈ [0, 10 ) jump to state 2 3 3+5 • if u ∈ [ 10 , 10 ): save Xk ; Xk+1 = 0; restart from state 1. 3+5+2 • if u ∈ [ 3+5 10 , 10 ]: save Xk ; Xk+1 = 0; restart from state 2

• ...

36/51

Example 3.2: Temporal Dependence in MAPs

 −1 D0 =  0 0

0 −10 0

  0 p 1−p 0  , D1 =  0 10p −100 100(1 − p) 0

 0 10(1 − p) 100p

p = 0.90

p = 0.99

p = 0.10

2

2

10

10

0

−2

10

−4

10

−2

10

−4

10

−6

0

0

10

sample value − Sk

sample value − Sk

sample value − Sk

0

10

10

2

10

400 600 sample number − k

800

1000

10

0

−2

10

−4

10

−6

200

10

−6

200

400 600 sample number − k

800

1000

10

0

200

400 600 sample number − k

800

1000

37/51

MAP: “Family Picture” - n ≤ 2 states Name Poisson Erlang Renewal Process Hyper-exp. Renewal Process Interrupted Poisson Process MMPP Acyclic MAP(2) MAP(2)

 D0   −λ  −λ λ  0 −λ  −λ1 0 0 −λ2   −λ1 λ1,2 λ −λ2  2,1  −λ1 λ1,2 λ −λ2   2,1 −λ1 λ1,2 0 −λ2   −λ1 λ1,2 λ2,1 −λ2

D1  λ  0 0  λ 0  pλ1 qλ1 pλ2 qλ2  ∗  λ1,1 λ∗1,2 0 0  ∗  λ1,1 0 0 λ∗2,2   ∗ λ1,1 0 λ∗ λ∗2,2  ∗2,1  λ1,1 λ∗1,2 λ∗2,1 λ∗2,2

Remarks: p + q = 1

38/51

MAP: “Family Picture” - Examples – n = 3 states Name  −λ1  0 Hyper-Exp. Renewal 0  −λ1 Circulant MMPP(3)  λ2,1 0  −λ1  λ2,1 MMPP(3) λ3,1  −λ1  0 Hyper-Exp. MAP 0  −λ1  λ2,1 MAP(3) λ3,1 Remarks: p + q + r = 1

D0 0 −λ2 0 0 −λ2 λ3,2 λ1,2 −λ2 λ3,2 0 −λ2 0 λ1,2 −λ2 λ3,2

 0 0  −λ3  λ1,1 0  −λ3  λ1,3 λ2,3  −λ3  0 0  −λ3  λ1,3 λ2,3  −λ3

 λ1 p λ1 p λ p  ∗3 λ1,1  0 0  ∗ λ1,1  0 0  ∗ λ1,1 λ∗2,1 λ∗  3,1 λ∗1,1 λ∗2,1 λ∗3,1

D1 λ1 q λ2 q λ3 q 0 λ∗2,2 0 0 λ∗2,2 0 λ∗1,2 λ∗2,2 λ∗3,2 λ∗1,2 λ∗2,2 λ∗3,2

 λ1 r λ2 r  λ3 r  0 0  λ∗3,3  0 0  λ∗3,3  λ∗1,3 λ∗2,3  λ∗3,3  λ∗1,3 λ∗2,3  λ∗3,3

39/51

MAP: Key Formulas for Inter-Arrival Times

• MAP representation: (D0 , D1 ) • Embedded chain: P = (−D0 )−1 D1 • Interval-stationary initial vector: α = αP Distribution of samples: • (Marginal) Distribution: F (t) = 1 − αe D0 t 1

• (Marginal) Density: f (t) = αe D0 t (−D0 )1 = αe D0 t D1 1

• (Marginal) Moments: E [X k ] = k!α(−D0 )−k 1 • Degrees of freedom of distribution: 2n − 1

40/51

MAP: Key Formulas for Inter-Arrival Times Sequence of samples: • Joint Density Function: Pr(X1 = x1 , X2 = x2 , . . . , Xq = xq ) = αe D0 x1 D1 e D0 x2 D1 · · · e D0 xq D1 1

• D1 → D1 Ph−1 for samples spaced by h lags • Joint Moments: E [X1k1 X2k2 · · · Xq q ] = k1 ! · · · kq !α(−D0 )−k1 P(−D0 )−k2 · · · (−D0 )−kq 1 k

• P → Ph for samples spaced by h lags • Analysis often limited to second-order properties. • Autocorrelation function: ρh =

α(−D0 )−1 Ph (−D0 )−1 1 − α(−D0 )−1 1 E [X1 X1+h ] − E [X ]2 = E [X 2 ] − E [X ]2 2α(−D0 )−2 1 − α(−D0 )−1 1 References: [TelH07]

41/51

4. INTER-ARRIVAL PROCESS FITTING

Includes joint work with Evgenia Smirni (IBM Research, William & Mary)

42/51

MAP: Approximate Inter-Arrival Process Fitting KPC readily generalizes to MAP random variables N (j) N (j) N • X = Jj Xj ∼ ((−1)J−1 Jj D0 , Jj D1 ) (j)

• X is a MAP if J − 1 D0 are diagonal (hyper-exp. moments) Moments and Joint Moments: Q E [X k ] • E [X k ] = k! Jj=1 k!j u QJ E [Xj,ik Xj,i+h ] u ] = k!u! • E [Xik Xi+h , ∀ lags i, h j=1 k!u! u v QJ E [Xj,ik Xj,i+h Xj,i+h+l ] u Xv • E [Xik Xi+h , ∀ lags i, h, l j=1 i+h+l ] = k!u!v ! k!u!v ! • ... References: [CasZS07]

43/51

MAP: KPC-Toolbox Autocorrelation decay rates and embedded chain: Q N • γi = Jj=1 γj,i , P = Jj=1 Pj Second-order properties follow recursively from those of X ⊗ Y : 1 + c 2 = 21 (1 + cX2 )(1 + cY2 )  2  2  2 2 cX cY cX cY X Y Y ρk = ρk + ρk + ρX k ρk 2 2 c c c2 KPC-Toolbox – MAP Fitting: • Optimization-based second-order and third-order fitting • Xj ∼ MAP(2), known feasibility region for c 2 and ρk • Fitting of c 2 and ρk disjoint from first-order and third-order • Residual df spent to fit third-order moments E [Xi Xi+h Xi+h+l ] References: [CasZS08]

44/51

Example 4.1: Second-Order vs Third-Order Fitting • Second-Order: approximately match E [Xi Xi+h ] (equiv. ρh ) • Third-Order: approx. match E [Xi Xi+h ] and E [Xi Xi+h Xi+h+l ] LBL−PKT−5

LBL−PKT−5

Pr(queue ≥ x) [log]

Trace Autocorrelation Identical Fittings

−1

−2

k

ρ IAT autocorrelations [log]

0

Trace Simulation Second−Order Fit Third−Order Fit

0

−2

−4

−3 0

1

2 3 lag k [log]

4

0

2 x [log]

4

References: [AndN02],[CasZS07]

45/51

Example 4.2: KPC MAP Fitting Comparison of inter-arrival and counting process methods: • KPC: second-order and third-order fit of inter-arrival process • Superposition: fit Hurst coefficient for counts SWeb − MAP/D/1 − Utilization 80%

SWeb − Autocorrelation Fitting

0

0

−1 Pr(queue ≥ x) [log]

Autocorrelation ρk [log]

Web MAP(16) kpc −1

−2

−2 −3 −4 −5

−3 0

1

2 3 Lag k [log]

4

5

−6 0

Trace SUP KPC 2

4

6

x [log]

References: [AndN98],[CasZS07]

46/51

CONCLUSION

47/51

Summary

• PHs and MAPs are tractable models for characterizing empirical data using Markov chains • PHs and MAPs are compositional with other Markov models, e.g., queueing systems • PHs and MAPs closed under several operations (mixture, convolution, kronecker sum, kronecker product, ...) • Models with n ≤ 3 states are analytically tractable • Larger models can be dealt with using divide-and-conquer methods (KPC)

48/51

REFERENCES

49/51

References and Additional Readings 1/2 [AldS87] D. Aldous and L. Shepp. The least variable phase type distribution is Erlang. Comm. Stat.-Stochastic Models, 3(3):467–473, 1987. [AndN98] A. T. Andersen and B. F. Nielsen. A Markovian approach for modeling packet traffic with long-range dependence. IEEE JSAC, 16(5):719–732, 1998. [AndN02] A. T. Andersen and B. F. Nielsen. On the use of second-order descriptors to predict queueing behavior of MAPs. Naval Res. Log., 49(4):391–409, 2002. [BauBK10] Falko Bause, Peter Buchholz, Jan Kriege. ProFiDo - The Processes Fitting Toolkit Dortmund. QEST 2010: 87-96. [BuchK09] P. Buchholz, Jan Kriege. A Heuristic Approach for Fitting MAPs to Moments and Joint Moments. In Proc of QEST, 2009: 53-62, 2009. [BodHGT08] L. Bodrog and A. Heindl and G. Horv´ ath and M. Telek. A Markovian Canonical Form of Second-Order Matrix-Exponential Processes. European Journal of Operations Research, 190(457-477), 2008. [Bre78] J. Brewer. Kronecker products and matrix calculus in system theory. IEEE Trans. on Circuits and Systems, 25(9):772–781, 1978. [CasZS07] G. Casale, E. Zhang, and E. Smirni. Characterization of moments and autocorrelation in MAPs. ACM Perf. Eval. Rev., 35(1):27–29, 2007. [CasZS08] G. Casale, E. Zhang, and E. Smirni. KPC-toolbox: Simple yet effective trace fitting using markovian arrival processes. In Proc. of QEST, 83–92, 2008. [CasZS08b] G. Casale, E. Z. Zhang, and E. Smirni. Interarrival times characterization and fitting for Markovian traffic analysis. Technical Report WM-CS-2008-02, College of William and Mary, 2008.

50/51

References and Additional Readings 2/2 [HeiHG06] A. Heindl, G. Horvath, and K. Gross. Explicit Inverse Characterizations of Acyclic MAPs of Second Order. EPEW workshop, 108-122, 2006. [HeiML06] A. Heindl, K. Mitchell, and A. van de Liefvoort. Correlation bounds for second-order MAPs with application to queueing network decomposition. Performance Evaluation, 63(6):553–577, 2006. [HorT09] G. Horvath, M. Telek. On the canonical representation of phase type distributions. Performance Evaluation, 66(8):396–409, (2009). [MaiO92] R. S. Maier and C. A O’Cinneide. A closure characterisation of phase-type distributions. J. App. Probab., 29:92–103, 1992. [Neu89] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York, 1989. [Nie98] B. F. Nielsen. Note on the Markovian Arrival Process, Nov 1998. http://www2.imm.dtu.dk/courses/04441/map.pdf [OsoH06] T. Osogami, M. Harchol-Balter. Closed form solutions for mapping general distributions to quasi-minimal PH distributions. Performance Evaluation, 63(6): 524-552, 2006. [TelH03] M. Telek and A. Heindl. Matching moments for acyclic discrete and continuous phase-type distributions of second order. International Journal of Simulation, 3:47–57, 2003. [TelH07] M. Telek and G. Horv´ ath. A minimal representation of Markov arrival processes and a moments matching method. Performance Evaluation, 64(9-12):1153-1168, 2007.

51/51