c amazonaws com

Report 3 Downloads 175 Views
Incropera & DeWitt

L3

Lecture 3 Heat Exchangers J. H. Kent

Incropera & DeWitt

Heat Exchangers

11.1

Heat Exchangers •Transfer heat from one fluid to another. •Want to minimise necessary hardware.

Examples: boilers, condensors, car radiator, air-conditioning coils, human body.

Types: eg.

LIQUID-LIQUID

LIQUID-GAS

GAS-GAS

Shell and tube

Air-conditioning

Furnace superheater

J. H. Kent

1

Heat Exchangers

Incropera & DeWitt 11.1

J. H. Kent

Incropera & DeWitt 11.1

J. H. Kent

2

Incropera & DeWitt

Heat Exchangers

11.1

Configurations FLUID B FLUID A

FLUID B FLUID A

COUNTERFLOW

PARALLEL FLOW

FLUID A

FLUID B

(unmixed)

ONE-SHELL, FOUR TUBE PASSES

CROSSFLOW

(mixed) J. H. Kent

Heat Exchangers

Incropera & DeWitt 11.2 Table 11.1, 11.2

Overall Heat Transfer Coefficient U Internal and external thermal resistances in series.

1 1 1 = + UA (UA)c (UA)h R′′ R′′ 1 1 1 = + f ,c + Rw + + f ,c (hηo A)h (ηo A)h UA (hηo A)c (ηo A)c

Rw

wall A is wall total surface area hot or cold side.

fin

Fouling factor R"f (m2 K/W) for seawater, fuel oil etc.

ηo overall surface efficiency (if finned) J. H. Kent

3

Incropera & DeWitt

Heat Exchangers

11.3

Heat Exchanger Analysis Want a relationship Q& = UA ∆Tm where ∆Tm is some mean ∆T between hot and cold fluid. Th1

Th1

hot fluid

∆T1

dTh

Tc1

dQ cold fluid

Th2 Th2

∆T1

∆T2

∆T2

dTc

Tc2

Tc2

Tc1

end 1

end 2 Counterflow Note Th,out can be < Tc,out

end 1

Parallel Flow T’s cannot cross

end 2

J. H. Kent

Incropera & DeWitt

Heat Exchangers

11.3

Energy Balance (counterflow)

Th1

on element shown.

dQ& = − m& h ch dTh = − m& c cc dTc

(1)

Tc1

m& mass flow rate of fluid c specific heat

end 1

Rate Equation dQ& = UdA(Th − Tc ) Now from (1)

dTh =

dTc =

dQ dTc Tc

Th2 Tc2 end 2

(dT in direction 1 → 2)

(2)

− dQ& m& h ch

Th dTh

− dQ& m& c cc

 1 1   ∴ d (Th − Tc ) = dQ&  −  m& c cc m& h ch  J. H. Kent

4

Incropera & DeWitt

Heat Exchangers

11.3

& from (2), Sub. dQ  1 d (Th − Tc ) 1  dA = U  − (Th − Tc )  m& c cc m& h ch  Integrate 1 → 2

T −T   1 1   ln h 2 c 2  = UA −  Th1 − Tc1   m& c cc m& h ch 

Th1 Tc1

Total heat transfer rate

Th2 Tc

Q& = m& h ch (Th1 − Th 2 )

and

Q& = m& c cc (Tc1 − Tc 2 ) J. H. Kent

Incropera & DeWitt

Heat Exchangers

11.3

Sub for m& c and put

∆T1 = Th1 − Tc1

END 1

∆T2 = Th 2 − Tc 2

END 2

 ∆T2 − ∆T1  Q& = UA   ln (∆T2 ∆T1 ) 

∆T1 ∆T2 end 1

end 2

Q& = UA(LMTD) LOG MEAN TEMPERATURE DIFFERENCE • Remember - 1 and 2 are ends, not fluids • Same formula for parallel flow (but ∆T’s are different) • Counterflow has highest LMTD, for given T’s therefore smallest area for Q.

J. H. Kent

5

Incropera & DeWitt

Heat Exchangers

11.3

∆T1 ∆T2

end 1

end 2

∆T1 ∆T2 end 1

Condenser

end 2 Evaporator

J. H. Kent

Incropera & DeWitt

Heat Exchangers

11.3

Crossflow and Multipass Q& = F UA(LMTD )counterflow where F = f(Th1, Th2, Tc1, Tc2, configuration) is correction factor relative to counterflow (ideal) configuration. • F