Cation-Induced Band-Gap Tuning in Organohalide Perovskites ...

Report 4 Downloads 26 Views
Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin-Orbit Coupling and Octahedra Tilting Anna Amat,a Edoardo Mosconi,a,* Enrico Ronca,a,b Claudio Quarti,a Paolo Umari,c,d Md. K. Nazeeruddin,e Michael Grätzel,e Filippo De Angelis a,* a

Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), CNR-ISTM, Via Elce di Sotto 8, I-06123, Perugia, Italy.

b

Department of Chemistry, Biochemistry and Biotechnologies, University of Perugia, Via Elce di Sotto 8, I-06123, Perugia, Italy.

c

Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy. d

CNR-IOM DEMOCRITOS, Theory@Elettra Group, c/o Sincrotrone Trieste, Area Science Park, Basovizza, I-34012 Trieste, Italy. e

Laboratory of Photonics and Interfaces, Institute of Chemical Science and Engineering, E P F L, CH-1015 Lausanne, Switzerland email: [email protected], [email protected]

SUPPORTING INFORMATION

Figure S1. Top: Normalized absorption spectra for FAPbI3, MAPbI3 and CsPbI3, along with estimated optical-absorption onsets. Adapted from Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982-988. Bottom: Comparison of the optical absorption spectra of MAPbI3 and FAPbI3 (absorbance multiplied by 4). Redrawn from the data of Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem. Int. Ed. 2014, 53, 3151-3157.

Figure S2. Optimized structure of the tetragonal 1-MA system, compared with X-ray data for the Pb-I distances from Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019-9038. Notice the calculated alternate long-short-long Pb-I bonds, nicely matching the typical non centrosymmetric I4/cm space group experimental data.

Figure S3. SOC – SR band-gap differences as a function of the α dihedral . The best quadratic fit is y = -0.0003x2 -0.0012x + 1.2754 with R2 = 0.9997.

Table S1. Calculated effective masses for holes (mh) and electrons (me) by SOC-DFT for the CsPbI3 model as a function of the α angle and for structures 1-MA and 2-FA. α mh

0

5

10

15

20

25

30

1-MA

2-FA

Γ-M

0.17

0.17

0.18

0.19

0.21

0.23

0.26

0.30

0.24

Γ -Z

0.23

0.23

0.23

0.23

0.23

0.35

0.35

0.44

0.43

Γ -X

0.14

0.14

0.15

0.16

0.18

0.20

0.24

0.22

0.19

Γ -A

0.15

0.15

0.16

0.17

0.18

0.20

0.22

0.24

0.22

Γ -R

0.14

0.14

0.15

0.15

0.17

0.18

0.20

0.20

0.19

Avg.

0.17

0.17

0.17

0.18

0.19

0.23

0.25

0.28

0.25

α

me

0

5

10

15

20

25

30

1-MA

2-FA

Γ -M

0.13

0.13

0.14

0.15

0.17

0.20

0.24

0.16

0.17

Γ -Z

0.16

0.16

0.17

0.17

0.17

0.24

0.23

0.26

0.26

Γ -X

0.11

0.12

0.12

0.13

0.15

0.18

0.22

0.16

0.15

Γ -A

0.12

0.12

0.13

0.13

0.15

0.17

0.19

0.14

0.15

Γ -R

0.11

0.11

0.12

0.12

0.14

0.15

0.17

0.14

0.14

Avg.

0.13

0.13

0.13

0.14

0.15

0.19

0.21

0.17

0.17

Figure S4. SR-GW calculated absorption spectra for 1-MA (blue) and 2-FA (brown); joint DOS for 1-MA (red) and 2-FA (magenta); and the ratio between the absorption coefficient and the joint DOS for 1-MA (green) and 2-FA (light blue). The dashed vertical line signals the calculated band-gap region.

Figure S5. Comparison of SOC-GW calculated band structure for MAPbI3 (A, blue lines) and MASnI3 (B, red lines) along the directions Γ (0,0,0) → M (0.5, 0.5,0); Γ → Z (0,0,0.5); Γ → X (0,0.5,0); Γ → A (0.5,0.5,0.5); Γ → R (0,0.5,0.5). Redrawn from the data published in Umari, P.; Mosconi, E.; De Angelis, F. Sci. Rep. 2014, 4, 4467.

Notice the smaller band splitting along the Γ → M direction in MASnI3 compared to MAPbI3.