CHAPTER 104 FOURIER SERIES OVER ANY RANGE

Report 73 Downloads 56 Views
CHAPTER 104 FOURIER SERIES OVER ANY RANGE EXERCISE 366 Page 1083

1. The voltage from a square wave generator is of the form:  0, − 10 〈 t 〈 0 v(t) =   5, 0 〈 t 〈 10 and is periodic of period 20. Show that the Fourier series for the function is given by: v(t) =

 5 10   π t  1  3π t  1  5π t  + sin   + sin   + sin   + ... 2 π   10  3  10  5  10  

The square wave is shown below



The Fourier series is of the form:

v(t) = a 0 +

n =1

{∫

 2π nt   2π nt   cos   + bn sin    L   L 



∑ a 

n

a0 =

1 1 L /2 1 10 v(t ) d t = v(t ) d t = ∫ ∫ 20 −10 L − L /2 20

an =

2 L /2 2 10  2π nt   2π nt  = v t t ( ) cos d v(t ) cos  dt   ∫ ∫ L /2 − − 10 L 20  20   L 

=

0 −10

10

}

0 d t + ∫ 5d t = 0

1 5 10 [5t ] 0 = 20 2

10 1  0  π nt   π nt    ∫ −10 0 cos   d t + ∫ 0 5cos  dt 10   10   10  

10

  π nt   5sin    1  10   = 5 [sin π n − sin 0] = 0 for n = 1, 2, 3, …  = πn 10   π n       10   0

bn =

2 L /2 2 10  2π nt   2π nt  v(t ) sin  v(t ) sin  dt dt = ∫ ∫ L /2 − − 10 L 20  20   L 

1538

© 2014, John Bird

=

10 1  0  π nt   π nt    ∫ −10 0sin   d t + ∫ 0 5sin  dt 10   10   10  

10

  π nt   −5cos    −5 1 10      = = [cos π n − cos 0] πn 10  πn        10  0

When n is even, b n = 0 When n is odd, b 1 =

−5

π

(–1 –1) =

10

π

, b3 =

10 10 −5 , and so on (−1 − 1) = , b 5 = 5π 3π 3π

Thus the Fourier series for the function v(t) is given by: v(t) =

 5 10   π t  1  3π t  1  5π t  + sin   + sin   + sin   + ... 2 π   10  3  10  5  10  

2. Find the Fourier series for f(x) = x in the range x = 0 to x = 5

The periodic function is shown in the diagram below

The Fourier series is given by:

∞   2π nx   2π nx   f(x) = a0 + ∑  an cos   + bn sin    where L = 5  L   L  n =1 

5

1 L 1 5 1  x2  1  52  5 = = = = = a0 f ( x ) d x x d x L ∫0 5 ∫0 5  2  0 5  2  2 5

an

2 L L ∫0

  2π nx   2π nx   x sin  cos     2 5 2  2π nx   2π nx   5 +  5   by parts f ( x)= cos  d x x = cos d x    2 5 ∫0 5   2π n   L   5   2π n          5  0   5 

        2  5sin 2π n cos 2π n   1  = 0 = + − 0+ 2 2     2 π n 5    2π n   2π n                5   5     5    1539

© 2014, John Bird

5

  2π nx   2π nx   sin  x cos     2 L 2 5 2 5  5   2π nx   2π nx    by parts bn = f ( x) sin  x sin  − + d x = d x = 2 5 ∫0 5 L ∫0  2π n   L   L   2π nx          5   5  0 

         2 5cos 2π n sin 2π n  2 5cos 2π n  5 5 = − = =  − + − + − − 0 0 cos 2π n = ( ) 2   5   2π n   2π n   5   2π n   πn πn              5     5   5    5 5 5 5 Hence, b1 = − , b2 = − , b3 = − , b4 = − , and so on π 2π 3π 4π

Thus,

∞   2π nx   2π nx   f(x) = a0 + ∑  an cos   + bn sin    L   L  n =1 

i.e.

f(x) =

5 5  2π x  5  4π x  5  6π x  − sin  sin  sin  − −  − ... 2 π  5  2π  5  3π  5 

i.e.

f(x) =

 5 5   2π x  1  4π x  1  6π x  − sin   + sin   + sin   + ... 2 π  5  2  5  3  5  

3. A periodic function of period 2π is defined by:  − 3, − 2 〈 x 〈 0 f(x) =   + 3, 0 〈 x 〈 2 Sketch the function and obtain the Fourier series for the function.

The periodic function is shown in the diagram below

The function is odd since it is symmetrical about the origin, i.e. an = 0 Thus,

a0 =

∞   2π nx   f(x) = a0 + ∑ bn sin    L  n =1 

1 L /2 1 f ( x) d x = ∫ L − L /2 4

{∫

0 −2

2

where L = 4

} 14 {[−3x]

−3d x + ∫ 3d x = 0

1540

0 −2

}

+ [3 x ] 0 = 2

1 {( 0 ) − ( 6 ) + ( 6 ) − ( 0 )} = 0 4 © 2014, John Bird

2 2 L /2 2 0  2π nx   2π nx   2π nx   −3sin  bn = f ( x) sin  dx= d x + ∫ 3sin      d x ∫ ∫ 0 L − L /2 4  −2  L   4   4  

0 2        π nx    π nx    3cos    3cos            1 3cos 0   2   1  3cos 0 3cos(−π n)   3cos π n  2   + − =    =  − + − −−  2   π n    π n    2   π n  πn    πn   π n                 2   − 2    2   2   0   2     2   2    

    6 1 6 6 =  − cos π n  = (1 − cos π n ) 2  π n   π n   πn   2   2  

When n is even, bn = 0 Hence, = b1 Thus,

6

π

12

1) (1 − −=

π

b3 =

,

6 12 6 12 1) , = b5 1) , and so on (1 − −= (1 − −= 3π 3π 5π 5π

∞ 12  π x  12   3π x  12  5π x   2π nx   f(x) = a0 + ∑ bn sin    = 0 + π sin  2  + 3π sin  2  + 5π sin  2  + ...        L  n =1 

i.e.

 12   π x  1  3π x  1  5π x  sin   + sin   + sin   + ... π   2  3  2  5  2  

f(x) =

4. Determine the Fourier series for the half-wave rectified sinusoidal voltage V sin t defined by:  V sin t , 0 〈 t 〈 π f(t) =  0, π 〈 t 〈 2π  which is periodic of period 2π.

The periodic function is shown in the diagram below

The Fourier series is given by: a= 0

1 L 1 f (t ) d= t ∫ 0 2π L



π 0

∞   2π nt   2π nt   f(t) = a0 + ∑  an cos   + bn sin    where L = 2π  L   L  n =1 

V sin t d= t

V V V V π [ − cos t ]= [(− cos π ) − (− cos 0)=] [1 + 1=] 0 2π 2π 2π π © 2014, John Bird 1541

an

2 L 2 π V  2π nt   2π nt  dt dt = = f (t ) cos  V sin t cos    ∫ ∫ 2π 0 L 0 π  L   2π  =

= a1

π 0

sin t cos nt d t

(1)

π

1 [sin(n + 1)t + sin(1 − n)t ] ∫ 2 π

V

0

V = 2π =



V 2π

π

 cos(n + 1)t cos(1 − n)t   − (n + 1) − (1 − n)   0

 cos(n + 1)π cos(1 − n)π   1 1  − −  − −−  (n + 1) (1 − n)   (n + 1) (1 − n)   

V  1 1   1 1    − −  −  − −  = 0 = a3 = a5 and so on 2π  2 0   2 0  

V  1 1   1 1   V a2 =  +  −  − −   = 2π  3 −1   3 −1   2π

2  V −2 =  3  2π

2V  4  −  =− 3π  3

V  1 1   1 1   V  2 2  V a4 =  +  −  − −   =  −  = 2π  5 −3   5 −3   2π  5 3  2π V  1 1   1 1   V a6 =  +  −  − −   = 2π  7 −5   7 −5   2π

 6 − 10  V  =  (3)(5)  2π

 4  2V −  =− π (3)(5)  (3)(5) 

 2 2  V  10 − 14  V  7 − 5  =2π  (5)(7)  =2π  

 4  2V −  =− π (5)(7)  (5)(7)  and so on

bn

V 2 L 2 π  2π nt   2π nt  = = f t x V sin t sin  ( ) sin d   dt ∫ ∫ 0 0 L π 2π  L   2π 



π 0

sin t sin nt d t

It may be shown that bn = 0 except when n = 1 V

π∫

When n= = 1, b1

π 0

sin t= sin t d t

V

π∫

=

0

V 2π

= sin 2 t d t

V

π∫

π 0

1 (1 − cos 2t ) d t 2

π

V V  sin 2t    t π 0 0 − = − − = ( ) ( )    2  0 2π 2 

∞   2π nt   2π nt   f(t) = a0 + ∑  an cos   + bn sin    L   L  n =1 

Thus,

i.e. f(x) =

i.e.

π

V

π



f(t) =

2V 2V 2V V  2π (2)t   2π (4)t   2π (6)t   2π (1)t  cos  cos  cos  − −  − ... + sin   3π 2  2π  π (3)(5)  2π  π (5)(7)  2π   2π  V

π

+

V 2V sin t − 2 π

 cos 2t cos 4t cos 6t  + + + ...    (1)(3) (3)(5) (5)(7) 

1542

© 2014, John Bird

EXERCISE 367 Page 1085 1. Determine the half-range Fourier cosine series for the function f(x) = x in the range 0 ≤ x ≤ 3. Sketch the function within and outside of the given range.

The periodic function is shown in the diagram below. Since a half-range cosine series is required, the function is symmetrical about the f(x) axis and

= a0

1 L

{∫

L 0

}

f= ( x) d x

∞  nπ x  f ( x= ) a0 + ∑ an cos    L  n =1

3 1 3 1   x 2   3 = x d x =   3 ∫0 3   2  0  2

2 L  nπ x   2 3  nπ x  = x cos   ∫ 0 f ( x) cos   d x d x ∫ L  L   3 0  3 

an

3        n x n x π π       x sin   cos          2  1  3  3    2  3sin nπ cos nπ     =  + = + − 0+  2 2 2 3    nπ   nπ    3   nπ   nπ     nπ                   3   3   3    3 3           0  

by parts

  2   2 cos nπ 1  2 3  6 = 0 + nπ − 1} −= = ( cos nπ − 1)   {cos 2 2  n 2π 2 3   nπ   nπ   3  nπ    3   3  

When n is even, an = 0 and

Thus,

i.e.

6 12 6 12 ( −2 ) =− 2 , a3 = 2 2 ( −2 ) =− 2 2 , 2 π (1) π π (3) π (3)

a1 =

2

a5 = −

12 , and so on π (5) 2 2

∞ 12 12  nπ x  3 12 πx  3π x   5π x  f ( x) = a0 + ∑ an cos  cos  cos  cos  − − − =    − ...  L  2 π2  3  π 2 (3) 2  3  π 2 (5) 2  3  n =1

 3 12   π x  1  3π x  1  5π x  f ( x) = − cos   + 2 cos   + 2 cos   + ... 2 2 π   3  3  3  5  3  

1543

© 2014, John Bird

2. Find the half-range Fourier sine series for the function f(x) = x in the range 0 ≤ x ≤ 3. Sketch the function within and outside of the given range.

The periodic function is shown in the diagram below. Since a half-range sine series is required, the function is symmetrical about the origin and

∞  nπ x  f ( x) = ∑ bn sin    L  n =1

3

  nπ x   nπ x   x cos  sin     2 L 2 3 3  3   nπ x   nπ x   2    by parts − + bn = f ( x) sin   x sin  d x =  d x = 2 L ∫0 3 ∫0  nπ   L   3   3  nπ          3   3  0 

      2  3cos nπ sin nπ  2 cos nπ 6 = cos nπ − + − ( 0 + 0 ) = − = − 2  3   nπ   nπ   nπ  nπ            3    3   3    6 6 6 6 b1 == , b2 − , b3 = , b4 = − , and so on 2π 3π 4π π ∞ 6 πx  6  2π x  6  3π x  6  4π x   nπ x  sin  sin  sin  Thus, f ( x) = ∑ bn sin  − + −  + ...  = sin   3  2π  3  3π  3  4π  3   L  π n =1

i.e.

f(x) =

 6  πx  1  2π x  1  3π x  1  4π x  sin   − sin   + sin   − sin   + ... π  3  2  3  3  3  4  3  

3. Determine the half-range Fourier sine series for the function defined by:  t, 0 〈 t 〈 1 f(t) =  (2 − t ), 1 〈 t 〈 2

1544

© 2014, John Bird

The periodic function is shown in the diagram below. Since a half-range sine series is required, the function is symmetrical about the origin and

= bn

∞  nπ t  f (t ) = ∑ bn sin    L  n =1

2 2 L 2 1  nπ t   nπ t   nπ t   f (t ) = sin  dt t sin  d t + ∫ (2 − t ) sin     dt ∫ ∫ 1 L 0 2 0  L   2   2   1 2      n t n t n t n t n t π π π π π             t cos   sin     2 cos   t cos   sin     2  2   2  2  2        = − + + − + −  2 2    n π n π n π       n π    nπ                      2   2   2  2 2     1    0 

        − 2 cos nπ + 2 cos nπ − sin nπ     nπ   nπ 2     nπ     cos nπ sin  nπ         2     2   2     2    2  = − + − (0 + 0) +  2   nπ     π n       nπ   nπ        2 cos   cos     2  2        2 +  2  −−    nπ   nπ            2   2   

by parts

         nπ      sin    −  2     2  nπ          2    

 nπ  2sin   8  nπ   2  = = sin   2 n 2π 2  2   nπ     2  When n is even, bn = 0

8 8 8 b1 = , b3 = − , b5 = , and so on 2 2 2 π (3) π (5) 2 π 2 ∞ 8 8 8  nπ t   πt   3π t   5π t  Thus, f (t ) = ∑ bn sin   = 2 sin   − 2 2 sin   + 2 2 sin   − ...  L  π  2  (3) π  2  (5) π  2  n =1

i.e.

f(t) =

 8   πt  1  3π t  1  5π t  sin   − sin  + sin  − ...    π 2   2  32  2  52  2  

1545

© 2014, John Bird

4. Show that the half-range Fourier cosine series for the function f(θ) = θ 2 in the range 0 to 4 is given by: f(θ) =

 16 64   πθ  1  2πθ  1  3πθ  −  cos   − 2 cos   + 2 cos   − ...  2 3 π   4  2  4  3  4  

Sketch the function within and outside of the given range.

The periodic function is shown in the diagram below. Since a half-range cosine series is required, the function is symmetrical about the f(θ) axis and

1 = a0 L an

{∫

L 0

∞  nπθ  f (θ= ) a0 + ∑ an cos    L  n =1

}

4 1 4 2 1   θ 3   1  64  16 = θ dθ f (θ= ) dθ  =  =   4 ∫0 4   3  0  4  3  3

2 L  nπθ   2 4 2  nπθ = θ cos   ∫ 0 f (θ ) cos   dθ  ∫ L  L   4 0  4    θ 2 sin  nπθ 1  4 =  2   nπ       4  

  nπθ  2θ cos  +  4 2  nπ     4 

  nπθ  2sin  −  4 3  nπ     4 

  1  16sin nπ 8cos nπ 2sin nπ =  + − 2 3 2   nπ   nπ   nπ          4   4   4  

  dθ  4        by parts      0

        64  1  8cos nπ  1  8(16)  = cos nπ = − ( 0 ) = cos nπ    2  2 2  n 2π 2 2   nπ   2  n π       4    

64 64 64 64 64 64 , a2 = ( −1) =−= (1) 2 2 , a3 = 2 2 (−1) =− 2 2 , and so on 2 2 2 2 π (3) π (3) π (1) π π (2) π (2)

and a1 =

2

Thus, ∞  nπθ f (θ ) = a0 + ∑ an cos   L n =1

 16 64  πθ − cos  =  3 π2  4

64   2πθ  + 2 2 cos   π (2)  4 1546

64   3πθ  − 2 2 cos   π (3)  4

  + ... 

© 2014, John Bird

i.e.

16 64   πθ − f (θ ) = cos  3 π2   4

 1  2πθ  − 2 cos   2  4

 1  3πθ  + 2 cos   3  4

1547

   − ...  

© 2014, John Bird