chapter 105 a numerical method of harmonic analysis AWS

Report 0 Downloads 16 Views
CHAPTER 105 A NUMERICAL METHOD OF HARMONIC ANALYSIS EXERCISE 368 Page 1088

1. Determine the Fourier series to represent the periodic function given by the table of values, up to and including the third harmonic and each coefficient correct to 2 decimal places. Use 12 ordinates. Angle θ°

30 60

Displacement y 40

θ°

90 120 150 180 210 240 270 300 330 360

43 38 30

y

cos θ

y cos θ

30

40

0.866

34.64

60

43

0.5

90

38

0

120

30

–0.5

150

23

–0.866

180

17

–1

–17

0

210

11

–0.866

–9.53

–0.5

–5.5

240

9

–0.5

–4.5

270

10

0

300

13

0.5

330

21

0.866

18.19

360

32

1

32

0

12

∑y

12

∑y

k

k =1

= 287

k

sin θ

23 17

11

9

10

13 21

y sin θ

cos 2θ

y cos 2θ

sin 2θ

0.5

20

0.5

20

0.866

34.64

0

0

21.50

0.866

37.24

–0.5

–21.5

0.866

37.24

–1

–43

0

0

0

1

38

–1

–38

0

0

0

0

–1

–38

–15.0

0.866

25.98

–0.5

–15

–0.866

–25.98

1

30

0

0

–19.92

0.5

11.5

0.5

11.5

–0.866

–19.92

0

0

1

23

1

17

0

0

–1

–17

0

0

0.5

5.5

0.866

9.53

0

0

–1

–11

0

y sin 2θ

32

cos 3θ

ycos 3θ

sin 3θ

y cos 3θ 40

1

–0.866

–7.79

–0.5

–4.5

0.866

7.79

1

9

0

0

0

–1

–10

–1

–10

0

0

0

0

1

10

6.5

–0.866

–11.26

–0.5

–6.5

–0.866

–11.26

–1

–13

0

0

–0.5

–10.5

0.5

10.5

–0.866

–18.19

0

0

–1

–21

1

32

0

1

32

0

0

cos θ k

k =1

= 46.88

0

12

∑y

k

sin θ k

k =1

= 87.67

12

∑y

k

cos 2θ k

k =1

0

12

∑y

k

sin 2θ k

k =1

= 13.85

=1

12

∑y

k

cos 3θ k

k =1

12

∑y

k

sin 3θ k

k =1

= −2

=3

1 p 1 (287) = 23.92 a0 ≈ ∑ yk = 12 p k =1 2 p ∑ yk cos nxk p k =1

hence, a1 ≈

2 2 2 −0.33 (46.88) = 7.81 , a2 ≈ (1) = 0.17 , a3 ≈ (−2) = 12 12 12

2 p bn ≈ ∑ yk sin nxk p k =1

hence, b1 ≈

2 2 2 2.31 , b3 ≈ (3) = (87.67) = 14.61 , b2 ≈ (13.85) = 0.50 12 12 12

an ≈



Substituting these values into the Fourier series:

f ( x) = a0 + ∑ ( an cos nx + bn sin nx ) n =1

gives:

y = 23.92 + 7.81 cos θ + 0.17 cos 2θ – 0.33 cos 3θ + … 1549

© 2014, John Bird

+ 14.61 sin θ + 2.31 sin 2θ + 0.50 sin 3θ y = 23.92 + 7.81 cos θ +14.61 sin θ + 0.17 cos 2θ + 2.31 sin 2θ – 0.33 cos 3θ + 0.50 sin 3θ

or

2. Determine the Fourier series to represent the periodic function given by the table of values, up to and including the third harmonic and each coefficient correct to 2 decimal places. Use 12 ordinates. Angle θ°

0

Voltage v

θ°

cosθ

30

60

90

120 150 180

210

240 270 300 330

–5.0 –1.5 6.0 12.5 16.0 16.5 15.0 12.5 6.5 –4.0

v cos θ

sin θ

v sin θ

cos 2θ

v cos 2θ

sin 2θ

v sin 2θ

–7.0 –7.5

cos 3θ

0

–5.0

1

–5.0

0

0

1

–5.0

0

0

1

v cos 3θ –5.0

30

–1.5

0.866

–1.299

0.5

–0.75

0.5

–0.75

0.866

–1.299

0

0

v

sin 3θ 0

v cos 3θ 0

1

–1.5

60

6.0

0.5

3.0

0.866

5.196

–0.5

–3.0

0.866

5.196

–1

–6.0

0

0

90

12.5

0

0

1

12.5

–1

–12.5

0

0

0

0

–1

–12.5

120

16.0

–0.5

–8

0.866

13.856

–0.5

–8.0

–0.866

–13.856

1

16.0

0

0

150

16.5

–0.866

–14.29

0.5

8.25

0.5

8.25

–0.866

–14.289

0

0

1

16.5

180

15.0

–1

–15

0

210

12.5

–0.866

–10.83

–0.5

–6.25

240

6.5

–0.5

–3.25

–0.866 –1

1

15.0

0.

0

–1

–15.0

0

0

0.5

6.25

0.866

10.825

0

0

–1

–12.5

–5.629

–0.5

–3.25

0.866

5.629

1

6.5

0

0

4

–1

4.0

0

0

0

0

1

–4.0

270 –4.0

0

300 –7.0

0.5

–3.5

–0.866

6.062

–0.5

3.5

–0.866

6.062

–1

7.0

0

0

330 –7.5

0.866

–6.50

–0.5

3.75

0.5

–3.75

–0866

6.495

0

0

–1

7.5

12

0

0

12

12

12

12

12

12

∑ vk

∑ vk cos θk

∑ vk sin θk

∑ vk cos 2θk

∑ vk sin 2θk

∑ vk cos 3θk

∑v

= 60

= − 64.669

= 40.985

= 0.75

= 4.763

= 3.5

= −6.5

a0 ≈

1 p 1 vk = (60) = 5.00 ∑ p k =1 12

k =1

k =1

2 p an ≈ ∑ vk cos nxk p k =1

k =1

hence, a1 ≈

a3 ≈

2 (3.5) = 0.58 12

bn ≈

2 p ∑ vk sin nxk p k =1

b3 ≈

2 (−6.5) = −1.08 12

hence, b1 ≈

k =1

k =1

k =1

k

sin 3θ k

k =1

2 2 (−64.669) = 0.13 , −10.78 , a2 ≈ (0.75) = 12 12

2 2 (40.985) = 6.83 , b2 ≈ (4.763) = 0.79 , 12 12

1550

© 2014, John Bird



f ( x) = a0 + ∑ ( an cos nx + bn sin nx )

Substituting these values into the Fourier series:

n =1

y = 5.00 – 10.78 cos θ + 0.13 cos 2θ + 0.58 cos 3θ + …

gives:

+ 6.83 sin θ + 0.79 sin 2θ – 1.08 sin 3θ y = 5.00 – 10.78 cos θ + 6.83 sin θ + 0.13 cos 2θ + 0.79 sin 2θ + 0.58 cos 3θ – 1.08 sin 3θ

or

3. Determine the Fourier series to represent the periodic function given by the table of values, up to and including the third harmonic and each coefficient correct to 2 decimal places. Use 12 ordinates. Angle θ°

30

Current i

0

θ°

i

cosθ 0.866

30

0

60

–1.4

0.5

60

90 120 150 180

–1.4 –1.8 –1.9 –1.8

i cos θ 0 –0.7

sinθ 0.5 0.866

i sin θ 0

210

240

270

300

330

360

0

2.2

3.8

3.9

3.5

2.5

–1.3

cos 2θ

i cos 2θ

sin 2θ

i sin 2θ

cos 3θ

i cos 3θ

sin 3θ

i cos 3θ

0.5

0

0.866

0

0

0

1

0

–1.212

–0.5

0.7

0.866

–1.212

–1

1.4

0

0

90

–1.8

0

0

1

–1.8

–1

1.8

0

0

0

0

–1

1.8

120

–1.9

–0.5

0.95

0.866

–1.645

–0.5

0.95

–0.866

1.645

1

–1.9

0

0

–0.9

–1.8

150

–1.8

–0.866

1.56

0.5

0.5

–0.90

–0.866

1.548

0

0

1

180

–1.3

–1

1.3

0

0

1

–1.3

0

0

–1

1.3

0

0

210

0

–0.866

0

–0.5

0

0.5

0

0.866

0

0

0

–1

0

240

2.2

–0.5

–0.866

–1.905

–0.5

–1.1

0.866

1.905

1

2.2

0

0

270

3.8

0

0

–1

–3.8

–1

–3.8

0

0

0

0

1

3.8

300

3.9

0.5

1.95

–0.866

–3.377

–0.5

–1.95

–0.866

–3.377

–1

–3.9

0

0

330

3.5

0.866

3.03

–0.5

–1.75

0.5

1.75

–0.866

–3.031

0

0

–1

–3.5

360

2.5

1

2.5

0

1

2.5

0

0

1

2.5

0

0

12

12

–1.1

0

12

12

12

12

12

∑ yk

∑ yk cos θk

∑ yk sin θk

∑ yk cos 2θk

∑ yk sin 2θk

∑ yk cos 3θk

∑y

= 7.7

= 9.49

= −16.389

= −1.35

= −2.522

= 1.6

= 0.3

k =1

k =1

k =1

k =1

k =1

k =1

k

sin 3θ k

k =1

a0 ≈

1 p 1 yk = (7.7) = 0.64 ∑ p k =1 12

an ≈

2 p 2 2 2 yk cos nxk hence, a1 ≈ (9.49) = 1.58 , a2 ≈ (−1.35) = −0.23 , a3 ≈ (1.6) = 0.27 ∑ p k =1 12 12 12

bn ≈

2 p 2 2 yk sin nxk hence, b1 ≈ (−16.389) = −0.42 , −2.73 , b2 ≈ (−2.522) = ∑ p k =1 12 12 b3 ≈

2 (0.3) = 0.05 12

1551

© 2014, John Bird



Substituting these values into the Fourier series:

f ( x) = a0 + ∑ ( an cos nx + bn sin nx ) n =1

gives:

i = 0.64 + 1.58 cos θ – 0.23 cos 2θ + 0.27 cos 3θ + … – 2.73 sin θ – 0.42 sin 2θ + 0.05 sin 3θ

or

i = 0.64 + 1.58 cos θ – 2.73 sin θ – 0.23 cos 2θ – 0.42 sin 2θ + 0.27 cos 3θ + 0.05 sin 3θ

1552

© 2014, John Bird

EXERCISE 369 Page 1092

1. Without performing calculations, state which harmonics will be present in the waveforms shown below.

(a) Only odd cosine terms are present. This is because the mean value is zero, the function is an even one since it is symmetrical about the vertical axis, and the positive and negative cycles are identical in shape (b) Only even sine terms are present. This is because the mean value is zero, the function is an odd one since it is symmetrical about the origin, and the waveform repeats after half a cycle 2. Analyse the periodic waveform below of displacement y against angle θ into its constituent harmonics, as far as and including the third harmonic, by taking 30° intervals.

1553

© 2014, John Bird

θ°

cos θ

y cos θ

sinθ

y sin θ

cos 2θ

y cos 2θ

sin 2θ

y sin 2θ

cos 3θ

y cos3θ

sin 3θ

30

10

0.866

8.66

0.5

0.5

5

0.866

8.66

0

0

1

y cos 3θ 10

60

–6

0.5

–3.0

0.866

–5.196

–0.5

3

0.866

–5.196

–1

6

0

0

y

5

90

–17

0

0

1

–17

–1

17

0

0

0

0

–1

17

120

–17

–0.5

8.5

0.866

–14.72

–0.5

8.5

–0.866

14.722

1

–17

0

0

150

–13

–0.866

0.5

–6.5

0.5

–6.5

–0.866

11.258

0

0

1

–13

180

–4

–1

1

–4

0

0

–1

4

0

0

210

10

–0.866

–8.66

–0.5

–5.0

0.5

5

0.866

8.66

0

0

–1

–10

240

24

–0.5

–12

–0.866

–20.78

–0.5

–12

0.866

20.784

1

24

0

0

270

33

0

0

–1

–33

–1

–33

0

0

0

0

1

33

300

36

0.5

18

–0.866

–31.18

–0.5

–18

–0.866

–31.176

–1

–36

0

0

330

33

0.866

28.58

–0.5

–16.5

0.5

16.5

–0.866

–28.578

0

0

–1

–33

360

24

1

24

0

1

24

0

1

24

0

0

12

11.26 4

12

0

0

0

12

12

0

12

12

12

∑ yk

∑ yk cos θk

∑ yk sin θk

∑ yk cos 2θk

∑ yk sin 2θk

∑ yk cos 3θk

∑y

= 113

= 79.34

= −144.88

= 5.5

= −0.866

=5

=4

k =1

k =1

k =1

k =1

k =1

k =1

k

sin 3θ k

k =1

1 p 1 (113) = 9.4 a0 ≈ ∑ yk = 12 p k =1 an ≈

2 p 2 2 2 yk cos nxk hence, a1 ≈ (79.34) = 13.2 , a2 ≈ (5.5) = 0.83 0.92 , a3 ≈ (5) = ∑ p k =1 12 12 12

bn ≈

2 p ∑ yk sin nxk p k =1

hence, b1 ≈

2 2 −0.14 , (−144.88) = −24.1 , b2 ≈ (−0.866) = 12 12

b3 ≈

2 (4) = 0.67 12 ∞

Substituting these values into the Fourier series:

f ( x) = a0 + ∑ ( an cos nx + bn sin nx ) n =1

gives:

y = 9.4 + 13.2 cos θ + 0.92 cos 2θ + 0.83 cos 3θ + … – 24.1 sin θ – 0.14 sin 2θ + 0.67 sin 3θ

or

y = 9.4 + 13.2 cos θ – 24.1 sin θ + 0.92 cos 2θ – 0.14 sin 2θ + 0.83 cos 3θ + 0.67 sin 3θ

3. For the waveform of current shown below, state why only a d.c. component and even cosine terms will appear in the Fourier series and determine the series, using π/6 rad intervals, up to and including the sixth harmonic.

1554

© 2014, John Bird

The function is even, thus no sine terms will be present The function repeats itself every half cycle, hence only even terms will be present Hence, the Fourier series will contain a d.c. component and even cosine terms only

θ° 30

1.5

60 90

i cos 2θ

cos 4θ

i cos 4θ

0.5

0.75

–0.5

–0.75

5.5

–0.5

–2.75

–0.5

–2.75

10

–1

–10

1

10

120

5.5

–0.5

–2.75

–0.5

150

1.5

0.5

0.75

180

0

1

0

210

1.5

0.5

240

5.5

–0.5

270

10

–1

–10

300

5.5

–0.5

–2.75

330

1.5

0.5

0.75

–0.5

360

0

1

0

1

12

∑ yk = 48 k =1

a0 ≈

cos 2θ

i

cos 6θ –1

i cos 6θ –1.5

1

5.5

–1

–10

–2.75

1

5.5

–0.5

–0.75

–1

–1.5

1

0

1

0

0.75

–0.5

–0.75

–1

–1.5

–2.75

–0.5

–2.75

1

5.5

1

10

–1

–10

–0.5

–2.75

1

5.5

–0.75

–1

–1.5

1

0

12

0

12

∑ yk cos 4θk = 6

∑ yk cos 2θk = −28

k =1

k =1

12

∑y

k

cos 6θ k = −4

k =1

1 p 1 yk = (48) =4.00 ∑ 12 p k =1

2 p 2 2 2 an ≈ ∑ yk cos nxk hence, a2 ≈ (−28) = −4.67 , a4 ≈ (6) = 1.00 , a3 ≈ (−4) = −0.66 p k =1 12 12 12 ∞

Substituting these values into the Fourier series:

f ( x= ) a0 + ∑ ( an cos nx ) n =1

gives:

i = 4.00 – 4.67 cos 2θ + 1.00 cos 4θ – 0.66 cos 6θ + …

1555

© 2014, John Bird

4. Determine the Fourier series as far as the third harmonic to represent the periodic function y given by the waveform shown. Take 12 intervals when analysing the waveform.

The following values are read from the graph (accuracy will depend on values read) Angle θ°

0

30

60 90

120 150 180 210 240 270 300

330

Voltage v

0

25

50

95

–78

θ°

cosθ

y cos θ

sin θ

75 y sin θ

90 cos 2θ

0 y cos 2θ

–20 –45 –75 sin 2θ

y sin 2θ

–95

cos 3θ

sin 3θ

0

0

1

0

0

1

0

0

0

1

y cos 3θ 0

30

25

0.866

21.65

0.5

12.5

0.5

12.5

0.866

21.65

0

0

60

50

0.5

25

0.866

43.3

–0.5

–25

0.866

43.3

–1

–50

0

0

90

75

0

0

1

75

–1

–75

0

0

0

0

–1

–75

120

95

–0.5

–47.5

0.866

82.27

–0.5

–47.5

–0.866

–82.27

1

95

0

0

150

90

–0.866

–77.94

0.5

45

0.5

45

–0.866

–77.94

0

0

1

90

180

0

–1

0

0

0

1

0

0

210

–20

–0.866

17.32

–0.5

10

0.5

–10.0

0.866

–17.32

240

–45

–0.5

22.5

–0.866

38.97

–0.5

22.5

0.866

270

–75

0

0

–1

75

–1

75

0

300

–95

0.5

–47.5

–0.866

82.27

–0.5

47.5

330

–78

0.866

–67.548

–0.5

39

0.5

–39.0

y

12

0

12

12

12

0

0

y cos 3θ 0

1

25

–1

0

0

0

0

0

–1

20

–38.97

1

–45

0

0

0

0

0

1

–75

–0.866

82.27

–1

95

0

0

–0866

67.548

0

0

–1

78

12

12

12

∑ yk

∑ yk cos θk

∑ yk sin θk

∑ yk cos 2θk

∑ yk sin 2θk

∑ yk cos 3θk

∑y

= 22

= − 154.018

= 503.31

=6

= −1.732

= 95

= 63

k =1

k =1

k =1

k =1

k =1

k =1

k

sin 3θ k

k =1

1 p 1 a0 ≈ ∑ yk = (22) =1.83 p k =1 12 an ≈

2 p ∑ yk cos nxk p k =1

hence, a1 ≈

2 2 2 (−154.018) = 1.0 , a3 ≈ (95) = 15.83 −25.67 , a2 ≈ (6) = 12 12 12

1556

© 2014, John Bird

bn ≈

2 p ∑ yk sin nxk p k =1

b3 ≈

2 (63) = 10.5 12

hence, b1 ≈

2 2 (503.31) = 83.89 , b2 ≈ (−1.732) = −0.29 , 12 12



Substituting these values into the Fourier series:

f ( x) = a0 + ∑ ( an cos nx + bn sin nx ) n =1

gives:

y = 1.83 – 25.67 cos θ + 1.0 cos 2θ + 15.83 cos 3θ + … + 83.89 sin θ – 0.29 sin 2θ + 10.5 sin 3θ

or

y = 1.83 – 25.67 cos θ + 83.89 sin θ + 1.0 cos 2θ – 0.29 sin 2θ + 15.83 cos 3θ + 10.5 sin 3θ

1557

© 2014, John Bird