chapter 16 shear stresses in bending and shear

Report 0 Downloads 210 Views
CHAPTER 16 SHEAR STRESSES IN BENDING AND SHEAR DEFLECTIONS EXERCISE 60, Page 352

1. A beam of length 3 m is simply supported at its ends and subjected to a uniformly distributed load of 200 kN/m, spread over its entire length. If the beam has a uniform cross-section of depth 0.2 m and width 0.1 m, determine the position and value of the maximum shearing stress due to bending. What will be the value of the maximum shear stress at mid-span?

Maximum shearing force occurs at the ends,

wl 200  3  2 2

where

Fmax =

i.e.

Fmax = 300 kN

Fmax 1.5 300 103 1.5  Maximum shearing stress = 12 bd 0.1 0.2

 = 22.5 MPa

i.e. At mid-span τ = F = 0

2. Determine the maximum values of shear stress due to bending in the web and flanges of the sections shown when they are subjected to vertical shearing forces of 100 kN.

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

I

(a)

0.1 0.123 0.09  0.13   6.9 106 m 4 12 12

Flange

F 

0.045  0.01 0.055 100 103 6 0.01 6.9 10

= 35.87 MN/m 2 = 35.87 MPa Web

W 

(0.1 0.01 0.055  0.05  0.01 0.025) 100 103 0.01 6.9 106

= 97.83 MN/m 2 = 97.83 MPa (b) Section

a

y

ay

ay2

i

1 2

1 103 1 103

0.105 0.05

1.05 104 5 105

1.03 105 2.5 106

8.33 109 8.33 107



2 103



1.55 104

1.353 105

8.416 107

y = 0.0775 m

IXX = 1.437 105 m4 INA = 2.358 106 m4

F 

100 103  0.045  0.01 0.0275 0.01 2.358 106

= 52.48 MPa

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

W 

100 103 (0.1 0.01 0.0275  0.02252 / 2  0.01) 100 103 0.01 2.358 106

= 127.36 MPa

3. Determine an expression for the maximum shearing stress due to bending for the section shown, assuming that it is subjected to a shearing force of 0.5 MN acting through its centroid and in a perpendicular direction to NA.

I NA

0.1 0.13   2 = 1.667 10 5 m 4 12

b = 0.1 (1 – 10y)

 y dA   bdy  y   

0.1

y

0.11  10 y  y dy

0.1

0.1  y 2 10 y 3  0.1 3 y 2  20 y 3   = 0.1    y 3 y 6 2

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

=

0.1 0.01   3 y 2  20 y 3   6 

0.01   3 y 2  20 y 3  0.5  0.1   τ 5 6 1.667 10 0.11  10 y 

=

For τ,

5000 0.01   3 y 2  20 y 3  

1  10 y 

d 0 3 dy (1 – 10y)[– (6y – 60y2] – (–10) [0.01 – (3y2 – 20y3)] = 0

i.e.

– 6y + 60y2 + 60y2 – 600y3 + 0.1 – 30y2 + 200y3 = 0

i.e.

– 400y3 + 90y2 – 6y + 0.1 = 0

and

+ 400y3 – 90y2 + 6y – 0.1 = 0 = Ψ dΨ 1200y2 – 180y + 6 = dy = 0

y1  0 

0.1  0.017 6

y2  0.017 

0.022 = 0.024 3.29

y3  0.024 

2.31103 = 0.025 2.37

y4 = 0.025 – 0 i.e.

y = ± 0.025 m perpendicular to NA ( ± because it is a symmetrical beam)

5000  8.4375 103   = ± 56.25 MN/m 2 0.75

4. Determine the value of the maximum shear stress for the cross-section shown, assuming that it is subjected to a shearing force of magnitude 0.5 MN acting through its centroid and in a perpendicular direction to NA.

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

b = 2R cos θ y = R sin θ dy = R cos θ dθ

 y dA   b dy ( y) I NA 

0.2  0.43   0.14   1.062 103 m 4 12 64

 y dA  0.2  0.2  0.1  

 /2

0

= 4 103  2 R3 

 /2

0

2 R cos  R sin  R cos  d

cos 2  d (cos  )  /2

 cos3   = 4 10  2.5 10    3 0 3

4

 1 = 4 103  2.5 104 0    3

 y dA  3.917 10

Hence,

Maximum shear stress,  

Proof of

3

m

3

0.5  3.917 10 3 = 18.44 MPa 0.11.062 10 3

 y dA © Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

b = 2R cos θ y = R sin θ dy = R cos θ dθ

 y dA  

 /2

0

2R cos  R sin  R cos  d

2

= 2 R3  cos2  sin  d 0

2

= 2R3  cos2  d  cos   0

 /2

 cos3   = 2 R    3 0 3

=

2 R3 3

dA 

Therefore,

y

 R2 2

2 R3 2 4R   2 3 R 3

5. A simply supported beam, with a cross-section as shown, is subjected to a centrally placed concentrated load of 100 MN, acting through its centroid and perpendicular to NA. Determine the values of the vertical shearing stress at intervals of 0.1 m from NA.

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

I

113   0.64   0.08333  6.362 103 12 64

I = 0.077 m4

i.e. At y = 0.5, τ = 0 At y = 0.4 m,

 0.4 

50 1 0.1 0.45 = 29.22 MPa 1 0.077

At y = 0.3 m,

 0.3 

50 1 0.2  0.4 = 51.95 MPa 1 0.077

b = 2R cos ϕ

y = R sin ϕ

 y dA   y b dy  2R = At y = 0.2 m,

dy = R cos ϕ d ϕ 3

cos2  d  cos  

 2 R3 cos 3   0 3

ϕ = sin–1 (0.2/0.3) = 41.81º

2  y dA  1 0.3  0.35  3  0.3 cos  41.81 3

3

= 0.105 – 7.454 103 = 0.0975 m 3 b = 0.553 m,

τ = 114.49 MPa

At y = 0.1 m,

ϕ = sin–1 (0.1/0.3) = 19.47º

2  y dA  1 0.4  0.3  3  0.3 cos 19.47 3

3

= 0.12 – 0.0151 = 0.1049 m 3 b = 0.434 m,

τ = 156.95 MPa

At y = 0, ϕ = 0,

2  y dA  1 0.5  0.25  3  0.3 cos  0 3

3

= 0.107 m 3 b = 1 – 2R = 0.4 m,

τ = 173.70 MPa

Summarising, at y = 0, τo = 173.7 MPa, τ0.1 = 156.95 MPa, τ0.2 = 114.49 MPa, τ0.3 = 51.95 MPa, © Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

τ0.4 = 29.22 MPa; at y = 0.5, τ0.5 = 0

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

EXERCISE 61, Page 356

1. Determine the position of the shear centre for the thin-walled section shown.

2

I

i.e.

i.e.

t B3 B  Bt    2 12 2

I = 0.5833 t B3



F B 0.5 t B 2 F 0.5B 2 F    tI 2 tI 0.5833 t B3



0.8572F Bt

 0.429 F  FF     Bt  0.429F  Bt 

Taking moments about the centre of the web gives: FΔ = 0.429 F 

B 2 2

from which, shear centre, Δ = 0.429B

2. Determine the position of the shear centre for the thin-walled section shown. © Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

I NA  

= t R3 

=

from which,

2 0

t R3 2

2 0

 t R d  R sin  

2

 1  cos 2    d 2   2

sin 2     2  0

I NA   t R3





0



y dA   t R d R sin   t R 2   cos   0 

0

= t R2   cos   1  t R2 1  cos  

 

F 1  cos   F  t R 2 1  cos    2 3 t R tR 2

F      t R 2 d  0

=

F t R2 2   sin   0 tR

F t R2  2   2FR tR

Hence, the shear centre, Δ =

2FR = 2R F

3. Determine the shear centre position for the thin-walled section shown.

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

I NA  0.2t  0.22  2 



=

t  0.13  2  0.1 t  0.152  2 12



0

2

 0.2  cos    t 0.2 d 

  1  cos 2  = 0.016t 1.667 10 4 t 4.5 10 3 t 8 10 3 t   d 0 2  

= 0.0207 t + 0.01257t i.e.

I NA  0.0333 t 0.2

AB

 F t  y3 FAB    t dy   5 103 y   0.1 I 6  0.1 0.2

=

Ft  3.333 104    3.333 104   I  6.6667 10 4 F t = 0.02 F 0.0333 t

=



F

y

0.1

 dy / t  y tI



F  y2 3    5 10  I  2 

BC

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

At B,

τB = 0.015F/I

At C, τc = 0.015F/I + 0.2  i.e.

t  0.2  F tI

4

τc = 0.055F/I F F 1  FBC   0.015  0.055    0.2t I I  2 

7 103 F t 7 103 F t  = = 0.21 F I 0.0333t CD



=

0.055F F  I tI

  0.2d t   0.2cos 

0.055 F F    0.04 sin   0 I I

FCD 

F I



  0.055  0.04sin   0.2 d  t 0

=

0.2 Ft  0.055  0.04cos   0 I

=

0.2 Ft  0.055  0.04   0 0.04  0.0333t  FCD  1.518F

i.e. Taking moments about O gives:

F    0.02F  0.2  0.21F  0.2   2  1.518F  0.2 from which, shear centre position, Δ = 0.396 m

4. Determine the shear centre position for the thin-walled section of shown. © Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

INA = 0.016t + 1.667 104 t + 0.1t × 0.252 × 2 + 0.01257t i.e.

INA = 0.0412 t

AB

 y dA  

y

0.2

t dy y y

 y2  t = t     y 2  0.09  2  0.3 2



F  y dA tI



0.5 F t 2  y  0.09 tI 0.2

FAB

= i.e. At B,

FAB

 0.5 Ft  y 3    t dy   0.09 y   I 3  0.3

0.5Ft  1.53 102    1.8 102   I  3 1.35  10 Ft  I

 y dA = 0.1t × 0.25= 0.025t © Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

At C,

 y dA = 0.025t + 0.04t = 0.065t τB = 0.025F/I τC = 0.065F/I FBC = 9 103 Ft/I

CB

 y dA  0.065t  0.04t sin   

F  0.065  0.04sin   I 

FCD     0.2 d t 0

i.e.

=

0.2 Ft  0.065  0.04cos   0 I

=

0.2 Ft  0.065  0.04   0 0.04  I 

FCD 

0.0568Ft I

Taking moments about 0 gives:

F 

=

Ft 1.35 103  0.2  2  9 103  0.2  2  0.0568  2 I

Ft 5.4 104  3.6 103  0.1136 0.0412t

from which, shear centre position, Δ = 2.83 m

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

EXERCISE 62, Page 359

1. Determine the shear centre position for the thin-walled closed tube shown which is of uniform thickness.

  tan 1 (0.05 / 0.2)  14.04 I  2 

0.206

0



t ds1  s1 sin    0.1 t  0.052  2    t R d  R cos   2

2

0

0.206

 s13  = 0.1176t    3 0



 5 10 4 t  t R3  cos 2  d 0

  1  cos 2   d   t = 3.427 10 4  5 10 4  R3   0 2   

 0.053  sin 2   4 = 8.427 10     t 2  2    i.e.

I  1.039  103 t

AB

s  1

F tI

  t ds  s sin  1

1

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

 s12  F  0.2426   1.039 10 3 t 2 

=

= 116.75 F s12 t

B 

4.95F t

BC As ‘t’ is uniform,

s  2

=

c 

4.95F F  t tI

  t ds   0.05 s2

2

0

4.95 F 48.12 F s2  t t 9.76F t

CD As ‘t’ is uniform,

 

9.76 F F  t tI



  t R d  R cos  0

9.76 F FR 2    sin   0 3  t 1.04 10 t i.e.

 

9.76F F  2.404sin  t t

0 

  ds  ds

However,

 ds = 0.206 × 2 + 0.1 × 0.2 + π × 0.05 = 0.769 m and

  ds  2  

0.206

0

0.1  4.9 F 116.8F s12 48.12F s2  ds1  2      ds2 0 t t  t 

+





0

F  9.76 F  2.4sin  0.05 d  t   t

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

0.206

233.6 F  s13  = 3 t  0 =

=

i.e.



0.1

 s2 48.12Fs2 2   0.488F 0.12F cos    9.9 F      t t t t 0  0 

F  0.681 0.09 0.481 1.533 0.24 t



3.925F t

0 

3.925F 1  t 0.769

0 

5.104F t

Taking moments about ‘0’ gives:

F   R  2 

0.206

0

 116.8Fs12     0   t ds1  0.3cos   tan  t   +

0.1   4.95F 48.12 Fs2   2  0      t ds2  0.05 0 t  t  

=





0

 F  9.76 F  2  0   t  2.4 t sin    0.05 d t    0.206

or

 116.8s13  F     0.6 F  5.104s1  3  0 

 0.243 0.1

 s 2 0.1F  5.104s2  4.95s2  48.12 2  2 0  Hence,

  0.052 F  5.1041  9.76  2.4cos   0



= 0.146(– 1.051 + 0.34) + 0.1(– 0.51 + 0.495 + 0.241)

+0.05 2 (– 16.03 + 30.66 + 4.8) = – 0.104 + 0.023 + 0.049 = – 0.032 m i.e. the shear centre position, Δ = – 0.032 m

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

2. Determine the shear centre position for the thin-walled closed tube shown, which is of uniform thickness.

OB

  tan 1 (0.05 / 0.2)  14.04 I  2

0.206

0

 t ds1  s1 sin  

2



ds1  2  0.2  t  0.052   t R d  R cos  

2

0

0.206

s 3  2 =  0.05886  1  3  3 0

t 1.963 10

4

t

= 3.43 10 4 t 1 10 3 t 1.963 10 4 t i.e.

I  1.539  103 t

F  s1  tI



s1

0

78.82Fs12  s1  t

i.e.

and

s1

F  s12  s sin  t ds  sin  1  1 I  2  0

B 

3.345F t

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

BC As ‘t’ is constant,

s  2

3.345F F  t tI



s2

0

t ds2  0.05

3.345 F 32.49 F s2  t t

=

c 

9.84F t

 

9.84 F F  t tI

CD

=





  R d t  R cos  0

9.84 F 1.62 F sin   t t    ds

 ds

 ds  0.206  2  0.2  2    0.05 = 0.969 m

  s ds  2

0.206

0

78.82 Fs12 2F ds1  t t +

 3.345  32.49s  ds 0.2

2

0

F t

2



  9.84 1.62sin   0.05 d 0

0.2

32.49s2 2  157.64 F 3 0.206 2 F   s1   3.345s2  =  0 t t  2 0 +

=

0  

0.05 F  9.84 1.62cos   0 t

F 4.8 F  0.46  2.636 1.71   t t

4.8F 1  t 0.969

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

0  

i.e.

4.96F t

Taking moments about 0 gives:

F    0.05  2F 

0.2

0

 4.96  3.35  32.49s2  ds2  0.05 +



F   4.96  9.84 1.62sin   0.05 2 d 0

or

   0.05  0.1 1.61s2  16.2s22  0

0.2

 0.0122  4.05 103 cos  

= 0.1  0.322 0.65  0.0383 8.1 10

 0

3

= 0.0328 + 0.0464 from which, the shear centre position, Δ = 0.0792 m

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

EXERCISE 63, Page 361

1. Determine the maximum deflection due to shear for the simply supported beam shown. It may be assumed that the beam cross-section is rectangular, of constant width b and of constant depth d.

and

F

W 2



 3W  d 2  y2  3  bd  4 

SSE =

2

 2G d (vol ) 2

 2 9W 2  d 2 =  2 6   y 2  l b dy 2 Gb d  4 

i.e.

SSE =

3W 2l 20Gbd

WD =

1 Ws 2

from which, maximum deflection,  s 

3Wl 10Gbd

2. Determine the maximum deflection due to shear for the simply supported beam shown. It may be assumed that the beam cross-section is rectangular, of constant width b and of constant depth d.

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

F1 

W l2 l

and F2 

W l1 l 2

 2 d /2 36W 2l12  d 2 SSE =   y 2  bl1 dy  2 6 2 2 0 Gb d l  4  d /2

 W2   d 4 y d 2 y3 y5  = 36  2 6 2   b  l2 2l1  l12l2      6 5 0  Gb d l   16

 W 2  l2 2l1  l12l2    W 2  l1  l2  l1 l2   = 36  = 36     60 b d l 2 60 b d l 2     i.e.

SSE =

3W 2l1 l2 5G b d l

WD =

1 Ws 2

from which, maximum deflection,  s 

since l1  l2  l

6Wl1l2 5Gbd

3. Determine the maximum deflection due to shear for the simply supported beam shown. It may be assumed that the beam cross-section is rectangular, of constant width b and of constant depth d.

At x,

F

wl l   wx  w   x  2 2 

 6F  d 2   3   y2  bd  4   2  2 l /2 y 36 F 2  d 2  y 2  b dx dy SSE = 2 6    0 0 2 Gb d  4 

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis

2

=

l /2  l 72bd 5  w2    x  dx 2 6 0 Gb d 60 2 

6 w2 = 5G b d



l /2

0

 l2 2   lx  x  dx 4  l /2

6w2  l 2 x l x 2 x3  =    5G b d  4 2 3 0 i.e.

and

SSE =

6 w2 l 3 120G b d

WD =

1 2  wl   s  2 3

s 

3  WD wl

i.e. the maximum deflection,  s 

3Wl 2 20Gbd

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis