CHAPTER 55 DIFFERENTIATION OF PARAMETRIC EQUATIONS

Report 0 Downloads 52 Views
CHAPTER 55 DIFFERENTIATION OF PARAMETRIC EQUATIONS EXERCISE 237 Page 644

1. Given x = 3t – 1 and y = t(t – 1), determine

If x = 3t – 1, then

dx =3 dt

If y = t(t – 1) = t 2 − t , then

Hence,

dy in terms of t. dx

dy = 2t − 1 dt

dy d y d t 2t − 1 1 = ( 2t − 1) = = 3 dx dx 3 dt

2, y 2. A parabola has parametric equations: = x t= 2t . Evaluate

If x = t 2 , then

dx = 2t dt

If y = 2t, then

dy =2 dt

Hence,

dy when t = 0.5 dx

dy d y dt 2 1 = = = d x d x 2t t dt

When t = 0.5,

dy 1 =2 = d x 0.5

3. The parametric equations for an ellipse are x = 4 cos θ, y = sin θ. Determine (a)

(a) If x = 4 cos θ, then If y = sin θ,

then

dy d2 y (b) dx d x2

dx = −4sin θ dθ dy = cos θ dθ

961

© 2014, John Bird

dy 1 d y dθ cos θ Hence, = = = − cot θ 4 d x d x −4sin θ dθ

d dy d  1  − cot θ  − 1 ( − cosec 2 θ )    d y dθ  d x  dθ  4 1 1 = 4 (b) = = = −  2 2 dx −4sin θ −4sin θ dx 16  sin θ sin θ dθ 2

1 1   −  =  16  sin 3 θ   =−

4. Evaluate

1 cosec3 θ 16

π dy at θ = radians for the hyperbola whose parametric equations are x = 3 sec θ, dx 6

y = 6 tan θ

If x = 3 sec θ, then

dx = 3sec θ tan θ dθ

If y = 6 tan θ, then

dy = 6sec 2 θ dθ

Hence,

dy  1  2   d y dθ 6sec θ 2sec θ 2 = = = = 2  cos θ=  d x d x 3sec θ tan θ tan θ  sin θ  sin θ dθ  cos θ 

π

dy 2 2 , = = =4 6 d x sin π 0.5 6

When θ =

5. The parametric equations for a rectangular hyperbola are x = 2t, y =

2 dy . Evaluate when t dx

t = 0.40

If x = 2t, then If y=

dx =2 dt

2 dy −2 = 2t −1 , then = −2t −2 = t dt t2

Hence,

dy 2 − 2 d y dt 1 = = t = − d x dx 2 t2 dt 962

© 2014, John Bird

When t = 0.04,

dy 1 = − = –6.25 dx (0.4) 2

6. The equation of a tangent drawn to a curve at point ( x1 , y1 ) is given by:

y −= y1

d y1 ( x − x1 ) d x1

Determine the equation of the tangent drawn to the ellipse x = 3 cos θ, y = 2 sin θ at θ =

y −= y1

and

d x1 = −3sin θ dθ

y1 = 2sin θ

and

d y1 = 2 cos θ dθ

d y1 d y1 d θ 2 cos θ 2 = = = − cot θ d x1 d x1 −3sin θ 3 dθ

Hence,

The equation of a tangent is:

π 6

,

2 y – 2 sin θ = − cot θ ( x − 3cos θ ) 3

y – 2 sin

2 π π = − cot  x − 3cos  3 6 6 6

π

2 (1.732 )( x − 2.598) 3

i.e.

y–1= −

i.e.

y – 1 = –1.155(x – 2.598)

i.e.

y – 1 = –1.155x + 3

and

y = –1.155x + 4

7. The equation of a tangent drawn to a curve at point ( x1 , y1 ) is given by:

y −= y1

d y1 ( x − x1 ) . d x1

Determine the equation of the tangent drawn to the rectangular hyperbola x = 5t, y =

y −= y1

6

d y1 ( x − x1 ) d x1

At point θ, x1 = 3cos θ

At θ =

π

5 at t = 2 t

d y1 ( x − x1 ) d x1

At point θ, x1 = 5t

and

d x1 =5 dt

963

© 2014, John Bird

y=

Hence,

5 = 5t −1 t

and

d y1 5 = −5t −2 = − dt t2

d y1 5 − 2 d y1 1 = dt = t = − t2 d x1 d x1 5 dt

The equation of a tangent is:

y–

5 1 = − ( x − 5t ) t t2

At t = 2 ,

y–

5 1 = − ( x − 10 ) 22 2

i.e.

y–

5 1 5 = − x+ 2 4 2

i.e.

4y – 10 = –x + 10

i.e.

4y = –x + 20

and

1 y = − x+5 4

964

© 2014, John Bird

EXERCISE 238 Page 646 1. A cycloid has parametric equations x = 2(θ – sin θ), y = 2(1 – cos θ). Evaluate, at θ = 0.62 rad, correct to 4 significant figures, (a)

(a) If x = 2(θ – sin θ),

then

If y = 2(1 – cos θ), then

dy d2 y (b) dx d x2

dx = 2 − 2 cos θ dθ dy = 2sin θ dθ

dy dy 2sin θ sin θ θ Hence, = d= = d x d x 2(1 − cos θ ) 1 − cos θ dθ When θ = 0.62 rad,

dy sin 0.62 = 3.122, correct to 4 significant figures = d x 1 − cos 0.62

d dy d  sin θ  (1 − cos θ )(cos θ ) − (sin θ )(sin θ ) cos θ − cos 2 θ − sin 2 θ   d 2 y d θ  d x  d θ  1 − cos θ  (1 − cos θ ) 2 (1 − cos θ ) 2 (b) = = = = dx d x2 2(1 − cos θ ) 2(1 − cos θ ) 2(1 − cos θ ) dθ =

cos θ − (cos 2 θ + sin 2 θ ) cos θ − 1 = 2(1 − cos θ )3 2(1 − cos θ )3

d2 y (cos 0.62) − 1 −0.1861215 = = When θ = 0.62 rad, = –14.43, correct to 4 significant d x 2 2(1 − cos 0.62)3 2(0.00644748) figures 2. The equation of the normal drawn to a curve at point ( x1 , y1 ) is given by: y − y1 = −

1 ( x − x1 ) d y1 d x1

Determine the equation of the normal drawn to the parabola = x

1 If x1 = t 2 , 4

d x1 1 = t dt 2

1 If y1 = t , 2

d y1 1 = dt 2

965

1 2 1 = t , y t at t = 2 4 2

© 2014, John Bird

d y1 1 d y1 t 2 1 = d= = d x1 d x1 1 t t dt 2

Hence,

y − y1 = −

Equation of a normal is:

1 ( x − x1 ) d y1 d x1

1 1 1  y− t = −  x − t2  1 2 4  t

i.e.

At t = 2, equation of normal is:

y – 1 = –2(x – 1)

i.e.

y – 1 = –2x + 2

or

y = –2x + 3

3. The equation of the normal drawn to a curve at point ( x1 , y1 ) is given by:

y − y1 = −

1 ( x − x1 ) d y1 d x1

Find the equation of the normal drawn to the cycloid x = 2(θ – sin θ), y = 2(1 – cos θ) at

θ=

π 2

rad .

If x 1 = 2(θ – sin θ) = 2θ – 2 sin θ, If y1 = 2(1 − cos θ ) = 2 − 2 cos θ ,

d y1 = 2sin θ dθ

d y1 d y1 2sin θ dt = = d x1 d x1 2 − 2 cos θ dt

Hence,

Equation of a normal is:

y − y1 = −

1 ( x − x1 ) d y1 d x1

1 ( x − 2(θ − sin θ ) ) 2sin θ 2 − 2 cos θ

y − 2(1 − cos θ ) = −

i.e.

At θ =

d x1 = 2 − 2 cos θ dθ

1 π − rad , equation of normal is: y − 2(1 − cos ) = π 2 2 2sin 2

π π    x − 2( − sin )  2 2  

π

2 − 2 cos 966

π 2 © 2014, John Bird

y − 2 =−

i.e.

y – 2 = –x + π – 2

i.e.

4. Determine the value of

π 1  x − 2( − 1)   2 2  2

or

y=–x+π

d2 y π , correct to 4 significant figures, at θ = rad for the cardioid 2 6 dx

x = 5(2θ – cos 2 θ), y = 5(2 sin θ – sin 2 θ).

If x = 5(2θ – cos 2θ), then

dx = 10 + 10sin 2θ = 10 (1 + sin 2θ ) dθ

If y = 5(2 sin θ – sin 2θ), then

dy =10 cos θ − 10 cos 2θ =10(cos θ − cos 2θ ) dθ

dy d y d θ 10(cos θ − cos 2θ ) cos θ − cos 2θ = = = dx dx 10(1 + sin 2θ ) 1 + sin 2θ dθ d  dy  d  cos θ − cos 2θ  (1 + sin 2θ )(− sin θ + 2sin 2θ ) − (cos θ − cos 2θ )(2 cos 2θ ) 2   1 + sin 2θ ) ( d 2 y d θ  dx  d θ  1 + sin 2θ  = = = dx d x2 10(1 + sin 2θ ) 10(1 + sin 2θ ) dθ

When θ =

π 6

rad,

2π  2π   2π  2π  π π  1 + sin  − sin + 2sin  −  cos − cos  2 cos  6  6 6   6 6  6   2 2π   1 sin +   d2 y 6   = 2π  d x2  10 1 + sin  6  

(1.86603)(1.23205) − (0.366025)(1) 3.48205 = = 0.02975, correct to 4 significant 18.660254 figures

967

© 2014, John Bird

5. The radius of curvature, ρ, of part of a surface when determining the surface tension of a liquid   d y 2  1 +      d x    ρ= d2 y d x2

is given by:

3/2

Find the radius of curvature (correct to 4 significant figures) of the part of the surface having parametric equations (a) x = 3t, y =

3 1 at the point t = t 2

(b) x 4= = cos3 t , y 4sin 3 t at t =

(a) x = 3t ,

y=

hence

π 6

rad .

dx =3 dt

dy 3 3 = −3t −2 = − = 3t −1 , hence t dt t2

dy 3 − 2 1 d y dt 1 = = t = − and at t = , 2 2 dx dx 3 t dt

dy 1 = − = −4 2 dx 1   2

d dy d  1  d − −t −2 ) 1 d2 y 2 2 16 d y d t  d x  d t  t 2  d t ( 2t −3 2 and at t = , = = = = = = = = 3 2 3 2 3 d x 2 dx 3t 3 dx 3 3 3 3t 1 3   dt 2 2

3/2

  d y 2  1 +      d x    Hence, radius of = curvature, ρ = d2 y d x2 (b) x = 4 cos3 t , hence

y = 4sin 3 t , hence

3

1 + ( −4 )2    = 16 3

173 = 13.14 16 3

dx 12 cos 2 t (− sin t ) = = −12 cos 2 t sin t dt dy = 12sin 2 t cos t dt

dy d y dt 12sin 2 t cos t sin t == = − = − tan t d x d x −12 cos 2 t sin t cos t dt

and at t =

968

π 6

rad ,

dy π = − tan = −0.57735 dx 6

© 2014, John Bird

d dy d ( − tan t ) d y d t  d x  − sec 2 t 1 dt = = = = dx d x2 −12 cos 2 t sin t −12 cos 2 t sin t 12 cos 4 t sin t dt 2

π d2 y and at t rad , = 6 dx 2

1 0.29630 = 4 π π  12  cos  sin 6 6  3/2

  d y 2  1 +      d x   Hence, radius of= curvature, ρ = d2 y d x2

969

3

1 + ( −0.57735 )2    = 0.29630

1.3333333 = 5.196 0.29630

© 2014, John Bird

Recommend Documents