chapter 98 the laplace transform of the heaviside function

Report 0 Downloads 26 Views
CHAPTER 98 THE LAPLACE TRANSFORM OF THE HEAVISIDE FUNCTION EXERCISE 357 Page 1042

1. A 6 V source is switched on at time t = 4 s. Write the function in terms of the Heaviside step function and sketch the waveform.

The function is shown sketched below The Heaviside step function is:

V(t) = 6 H(t – 4)

2 for 0 〈 t 〈 5 2. Write the function V (t ) =  in terms of the Heaviside step function and sketch 0 for t 〉 5 the waveform.

The voltage has a value of 2 up until time t = 5; then it is turned off The function is shown sketched below The Heaviside step function is:

V(t) = 2 H(t) – H(t – 5)

3. Sketch the graph of: f(t) = H(t – 2)

A function H(t – 2) has a maximum value of 1 and starts when t = 2, as shown in the sketch below

1475

© 2014, John Bird

4. Sketch the graph of: f(t) = H(t)

A function H(t) has a maximum value of 1 and starts when t = 0, as shown in the sketch below

5. Sketch the graph of: f(t) = 4 H(t – 1)

A function 4H(t – 1) has a maximum value of 4 and starts when t = 1, as shown in the sketch below

6. Sketch the graph of: f(t) = 7H(t – 5)

A function 7H(t – 5) has a maximum value of 7 and starts when t = 5, as shown in the sketch below

 π 7. Sketch the graph of: f(t) = H  t −  . cos t  4

1476

© 2014, John Bird

 π Below shows a graph of H  t −  . cos t where the graph of cos t does not ‘switch on’ until t = π/4  4

 π  π 8. Sketch the graph of: f(t) = 3H  t −  .cos  t −   2  6  π  π Below shows a graph of f(t) = 3H  t −  .cos  t −  where the graph of 3 cos(t – π/6) does not  2  6 ‘switch on’ until t = π/2

9. Sketch the graph of: f(t) = H ( t − 1) . t 2 Below shows a graph of f(t) = H ( t − 1) . t 2 where the graph of t 2 does not ‘switch on’ until t = 1

10. Sketch the graph of: f(t) = H(t – 2). e



t 2

1477

© 2014, John Bird

Below shows a graph of f(t) = H(t – 2). e



t 2



t

where the graph of e 2 does not ‘switch on’ until t = 2

11. Sketch the graph of: f(t) = [H(t – 2) – H(t – 5)]. e



t 4

Below shows the graph of f(t) = [H(t – 2) – H(t – 5)]. e



t 4



t

where the graph of e 4 does not ‘switch

on’ until t = 2, but then ‘switches off’ at t = 5

 π  π 12. Sketch the graph of: f(t) = 5 H  t −  .sin  t +   3  4

 π  π Below shows a graph of f(t) = 5 H  t −  .sin  t +  where the graph of 5 sin(t + π/4) does not  3  4 ‘switch on’ until t = π/3

1478

© 2014, John Bird

EXERCISE 358 Page 1044

1. Determine ℒ{H(t – 1)} where in this case, F(s) = ℒ {1} and c = 1

ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

1 ℒ{H(t – 1)} = e − s   s =

from (i) of Table 95.1, page 1023

e− s s

2. Determine ℒ{7 H(t – 3)} ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

where in this case, F(s) = ℒ {7} and c = 3

7 ℒ{7 H(t – 3) } = e − 3 s   s =

from (ii) of Table 95.1, page 1023

7 e −3 s s

3. Determine ℒ{H(t – 2).(t – 2) 2 } ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

where in this case, F(s) = ℒ {t 2 } and c = 2

 2!  ℒ{H(t – 2).f(t – 2) 2 } = e − 2 s    s3  =

from (vii) of Table 95.1, page 1023

2 e− 2 s s3

4. Determine ℒ{H(t – 3).sin(t – 3)} ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

where in this case, F(s) = ℒ {sin t} and c = 3

 1  ℒ{H(t – 3).sin(t – 3) } = e − 3 s    s 2 + 12  =

from (iv) of Table 95.1, page 1023

e− 3s s2 + 1

1479

© 2014, John Bird

5. Determine ℒ{H(t – 4). et − 4 } where in this case, F(s) = ℒ {et } and c = 4

ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

 1  ℒ{H(t – 4). et − 4 } = e − 4 s    s −1  =

from (iii) of Table 95.1, page 1023

e− 4 s s −1

6. Determine ℒ{H(t – 5).sin 3(t – 5)} where in this case, F(s) = ℒ {sin 3t} and c = 5

ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

 3  ℒ{H(t – 5).sin 3(t – 5) } = e − 5 s    s 2 + 32  =

from (iv) of Table 95.1, page 1023

3e − 5 s s2 + 9

7. Determine ℒ{H(t – 1).(t – 1) 3 } ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

where in this case, F(s) = ℒ {t 3 } and c = 1

 3!  ℒ{H(t – 1).(t – 1) 3 } = e − s    s 3+1  =

from (viii) of Table 95.1, page 1023

6 e− s s4

8. Determine ℒ{H(t – 6).cos 3(t – 6)} ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

where in this case, F(s) = ℒ {cos 3t} and c = 6

 s  ℒ{H(t – 6).cos 3(t – 6)} = e − 6 s    s 2 + 32  s e− 6 s = s2 + 9

from (v) of Table 95.1, page 1023

9. Determine ℒ{5 H(t – 5).sinh 2(t – 5)} 1480

© 2014, John Bird

ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

where in this case, F(s) = ℒ {sinh 2t} and c = 5

 2  ℒ{5 H(t – 5).sinh 2(t – 5) } = 5 e − 5 s    s 2 − 22 

from (x) of Table 95.1, page 1023

10 e − 5 s s2 − 4

=

 π  π 10. Determine ℒ{ H  t −  .cos 2  t −  }  3  3

where in this case, F(s) = ℒ {cos 2t} and c =

ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

π s  − s  π  π ℒ{  t −  . cos 2  t −  } = e 3    3  3  s 2 + 22  −

π

π 3

from (v) of Table 95.1, page 1023

s

se 3 = s2 + 4 11. Determine ℒ{2 H(t – 3). et − 3 } ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

where in this case, F(s) = ℒ {et } and c = 3

 1  ℒ{2 H(t – 3). et −3 } = 2 e −3 s    s −1  =

from (iii) of Table 95.1, page 1023

2 e− 3 s s −1

12. Determine ℒ{3 H(t – 2).cosh(t – 2)} ℒ{H(t – c).f(t – c)} = e − c s F(s) Hence,

where in this case, F(s) = ℒ {cosh t} and c = 2

 s  ℒ{3 H(t – 2).cosh(t – 2) } = 3 e − 2 s    s 2 − 12  =

from (ix) of Table 95.1, page 1023

3 s e− 2 s s2 −1

1481

© 2014, John Bird

EXERCISE 359 Page 1045

 e− 9 s  1. Determine ℒ −1    s 

Part of the numerator corresponds to e − c s where c = 9. This indicates H(t – 9) Then

1 = F(s) = ℒ{1} from (i) of Table 97.1, page 1033 s

Hence,

 e− 9 s  ℒ −1   = H(t – 9)  s 

 4 e− 3 s  2. Determine ℒ −1    s 

Part of the numerator corresponds to e − c s where c = 3. This indicates H(t – 3) Then

4 = F(s) = ℒ{4} from (ii) of Table 97.1, page 1033 s

Hence,

 4 e− 3 s  ℒ −1   = 4 H(t – 3)  s 

 2 e− 2 s  3. Determine ℒ −1    s2 

The numerator corresponds to e − c s where c = 2. This indicates H(t – 2) 1 = F(s) = ℒ{t} from (vii) of Table 97.1, page 1033 s2 Then

 2 e− 2 s  ℒ −1   = 2 H(t – 2).(t – 2)  s2 

 5e − 2 s  4. Determine ℒ −1    s2 + 1 

Part of the numerator corresponds to e − c s where c = 2. This indicates H(t – 2)

1482

© 2014, John Bird

5 s2 + 1

Then

Hence,

 1  may be written as: 5    s 2 + 12 

 1  5  = F(s) = ℒ{5 sin t} from (iv) of Table 97.1, page 1033  s 2 + 12   5e − 2 s  ℒ −1   = H(t – 2).5 sin(t – 2) = 5 H(t – 2).sin(t – 2)  s2 + 1 

 3 s e− 4 s  5. Determine ℒ −1    s 2 + 16 

Part of the numerator corresponds to e − c s where c = 4. This indicates H(t – 4) 3s s + 16 2

Then

Hence,

 s  may be written as: 3    s 2 + 42   s  3  = F(s) = ℒ{3 cos 4t} from (v) of Table 97.1, page 1033  s 2 + 42   3 s e− 4 s  ℒ −1   =H(t – 4).3 cos 4(t – 4) = 3 H(t – 4).cos 4(t – 4)  s 2 + 42 

 6 e− 2 s  6. Determine ℒ −1    s2 −1 

Part of the numerator corresponds to e − c s where c = 2. This indicates H(t – 2) 6 s2 −1

Then

Hence,

 1  may be written as: 6    s 2 − 12   1  6  = F(s) = ℒ{6 sinh t} from (x) of Table 97.1, page 1033  s 2 − 12   6 e− 2 s  ℒ −1   =H(t – 2).6 sinh (t – 2) = 6 H(t – 2).sinh (t – 2)  s2 −1 

 3e − 6 s  7. Determine ℒ −1    s3 

The numerator corresponds to e − c s where c = 6. This indicates H(t – 6)

1483

© 2014, John Bird

1 1  = F(s) = ℒ  t 2  from (viii) of Table 97.1, page 1033 s3 2 

Then

1  3e − 6 s  ℒ −1  = 3 H(t – 6). (t – 6) 2 = 1.5 H(t – 6). (t – 6) 2  2  s2 

 2 s e− 4 s  8. Determine ℒ −1    s 2 − 16 

Part of the numerator corresponds to e − c s where c = 4. This indicates H(t – 4) 2s s − 16 2

Then

Hence,

 s  may be written as: 2    s 2 − 42   s  2  = F(s) = ℒ{2 cosh 4t} from (ix) of Table 97.1, page 1033  s 2 − 42   2 s e− 4 s  ℒ −1   =H(t – 4).2 cosh 4(t – 4) = 2 H(t – 4).cosh 4(t – 4)  s 2 − 42 

1 − s   2  2 s e  9. Determine ℒ −1   2  s + 5 

1  1 . This indicates H  t −  2  2

Part of the numerator corresponds to e − c s where c = 2s s2 + 5

Then

Hence,

 s may be written as: 2   2 s + 5 

( )

 s 2   s2 + 5 

( )

1  − s 2 2 s e  ℒ −1   s2 + 5 

  2   

  = F(s) = ℒ 2 cos 5 t 2   

( )

{

}

from (v) of Table 97.1, page 1033

   1  1  1  1 = H  t −  .2 cos 5  t − =  2 H  t −  .cos 5  t −  2  2  2  2  2  

 4 e− 7 s  10. Determine ℒ −1    s −1  Part of the numerator corresponds to e − c s where c = 7. This indicates H(t – 7) 1484

© 2014, John Bird

Then

1 = F(s) = ℒ{ et } from (iii) of Table 97.1, page 1033 s −1

Hence,

 4 e− 7 s  ℒ −1   = 4 H(t – 7). et −7  s −1 

1485

© 2014, John Bird