Class 5

Report 7 Downloads 123 Views
ASSIGNMENTS DUE •

ELECTRIC CIRCUITS ECSE-2010 Spring 2003

Today (Thursday): •

• • • •

Class 5

Activities 5-1, 5-2, 5-3 (In Class)

Next Monday:



HW #2 Due Experiment #1 Report Due Activities 6-1, 6-2, 6-3, 6-4 (In Class)

Next Tuesday/Wednesday: • •

Will do Experiment #2 In Class (EP-2) Activities 7-1, 7-2, (In Class)

CONTROLLED SOURCES

REVIEW

+ v1 −

• Controlled/Dependent Sources: • VCVS, VCCS, CCVS, CCCS • Used to Model Electronic Devices • Make Circuits Interesting (and Harder)

• Equivalent Resistance:

2Ω

− 10 V

+

• Replace any Load Network with Req • Load Network = R’s, Controlled Sources, No Independent Sources

3v1 Volts

Voltage Controlled Voltage Source (VCVS)

CONTROLLED SOURCES

CONTROLLED SOURCES i1

+ v1 −

2Ω

2Ω

10 V

Voltage Controlled Current Source (VCCS)

4v1 Amps

10 V

4Ω

5i1 Amps

Current Controlled Current Source (CCCS)

1

CONTROLLED SOURCES

EQUIVALENT RESISTANCE

i

i

i 2Ω

− 10 V

6i Volts

+

+

+

v −

v − [Controlled Sources, R's No Independent Sources]

Current Controlled Voltage Source (CCVS)

Req with Controlled Sources

REVIEW • Connect Test Voltage vt • Define it Using Active Convention • Find it in terms of vt (Use KCL, KVL, Ohm’s Law, etc.) • Req = vt / it

vt

Source(s)]

Connect v t , define i t

Use KCL, KVL to express v t in terms of i t

R eq =

vt it

WHERE ARE WE? • Circuit Elements: • • • • •

v i

• Req with Controlled Sources:

it

[with Controlled

R eq =

R eq

Ideal, Independent i and v sources Ideal, Controlled i and v sources Resistors Potentiometers Have Learned How to Define all i’s and v’s using Active/Passive Convention • Have Begun to do Circuit Analysis = Solving for all i’s and v’s

WHERE ARE WE? • Circuit Analysis Techniques: • • • • • •

Ohm’s Law for R’s KCL and KVL Simplify Circuits using Series/Parallel R’s Replace Load Network with Req Sometimes Hard to Know Where to Start Will Now Develop Systematic Techniques that will Always Work • Node Equations Today • Mesh Equations on Monday

2

NODE EQUATIONS

EXAMPLE

• Systematic Technique for Solving ANY Linear Circuit:

v1

2Ω

1Ω

v2

• Will Always Work! • Not Always the Easiest Technique

• Will Also Learn About Mesh Equations:

3A

2Ω

10 V

• Can Use Either Technique; But Cannot Mix

• Very Powerful Techniques!! • Will Use For Rest of Course

NODE EQUATIONS • See Example Ckt: • Node Equation Procedure:

EXAMPLE 10 V

vv11

2Ω

1Ω

v2 v2

• Label Unknown Node Voltages (v1, v2, …) 2Ω

10 V

3A

0V

NODE EQUATIONS • Node Equation Procedure: • Label Unknown Node Voltages (v1, v2, …) • # of Unknown Node Voltages = # of Nodes # of Voltage Sources - 1 (Reference) • Example: 4 Nodes - 1 Voltage Source - 1 = 2 Unknown Node Voltages; v1, v2

• Write a KCL at Each Unknown Node Voltage

EXAMPLE 10 V

vv11

2Ω i1

10 V

1Ω i2

2Ω

• Sum of Currents Out = 0 • Express i’s in terms of Node Voltages

i3

v2 v2 i4 i5 3A

0V KCL: i1 + i 2 + i3 = 0

KCL: i 4 + i5 = 0; i5 = −3 A

3

NODE EQUATIONS • Example:

KCL at v1:

NODE EQUATIONS • Example:

(v1 − 10) (v1 − 0) (v1 − v2 ) + + =0 2 2 1

Node v1 =>

Node v2 => − v1 + v2 = 3

=> 2v1 − v2 = 5 KCL at v2 :

2v1 − v2 = 5

(v2 − v1 ) + ( − 3) = 0 1

Add: =>

v1 = 8 V

=>

v2 = 11 V

=> ( − v1 + v2 ) = 3

ACTIVITY 5-1

NODE EQUATIONS

60 V

• Writing a KCL at Each Unknown Node Voltage will Always Provide # of Linear Equations = # Unknowns: • Can Always Solve for v1, v2, …. • Node Equations will ALWAYS work • Can take it to the bank

5Ω

10 Ω

R

20 Ω 12 A

4Ω

8A

40 V

ACTIVITY 5-1

ACTIVITY 5-1 v1 − 60

• 6 Nodes - 2 Voltage Sources - 1 (Ref): => 3 Unknown Node Voltages:

60 V 10 Ω

• v1, v2, v3

5Ω

v1 R

v 2 20 Ω

v3

40 V

12 A 8A

4Ω

40 V

0V

4

ACTIVITY 5-1

ACTIVITY 5-1 • 6 Nodes - 2 Voltage Sources - 1 (Ref): => 3 Unknown Node Voltages:

v1 − 60

At Node v 2 : At Node v3 :

v1 − 60 − v3 v1 − 40 v1 − v 2 + + =0 10 5 R v 2 − v1 v − 40 v 2 + 12 + 2 + =0 R 20 4 v3 − (v1 − 60) + (−12) + 8 = 0 10

ACTIVITY 5-1 In Matrix Form: 1 1 1 1 1 − −  10 + 5 + R R 10  v   14    1 1 1 1  −1 0   v 2  =  −10  + +   R R 20 4    v   − 2  1   3   − 1 0 10   10 [ V ] = [ Is ] [G ] volts amps siemons

∑i

out

=0

R

v 2 20 Ω

v3

40 V

12 A 8A

4Ω

40 V

0V

ACTIVITY 5-1

ACTIVITY 5-1 At Node v1:

5Ω

v1

node

10 Ω

• v1, v2, v3

• Write a KCL at each Unknown Node Voltage, relating Currents to the Node Voltages using Ohm’s Law • Usually best to sum Currents OUT of the Node ∑ iout = 0

60 V

1 1 1 1 1 + + ) + v 2 (− ) + v3 (− ) = 6 + 8 = 14 10 5 R R 10 1 1 1 1 + ) + v3 (0) = 2 − 12 = −10 v1 (− ) + v 2 ( + R R 20 4 1 1 v1 (− ) + v 2 (0) + v3 ( ) = 12 − 6 − 8 = −2 10 10

v1 (

3 Equations; Solve for v1 , v 2 , v3 Maple, MATLAB, Calculator, Cramer's Rule, etc

ACTIVITY 5-1 Matrix Equation:

[ G ] [ V ] = [ Is ] Want to Solve for [ V ] Let's Use MAPLE

5

ACTIVITY 5-2

ACTIVITY 5-2

• For Large Matrices, Use MAPLE • Usually for n > 2

• • • •

Must Include with (linalg): Two Ways to Solve using MAPLE: See MAPLE Scripts Must Be Careful with Syntax

• MAPLE SCRIPT – Classic Method: >with (linalg) >G:=R->matrix(3,3,[1/5+1/10+1/R, -1/R,-1/10,-1/R,1/20+1/4+1/R,0, -1/10,0,1/10]): >G(R); >Is:=matrix(3,1,[14,-10,-2]);

ACTIVITY 5-2

ACTIVITY 5-2 >v:=R->evalm(inverse(G(R))&*Is): #&* means matrix multiplication >v(R); >v(1); >ia:=R->(v(R)[2,1]-2): >ia(R); >ia(1);

• MAPLE SCRIPT – Gaussjord Method: >with (linalg) >G:=R->matrix(3,4,[1/5+1/10+1/R, -1/R,-1/10,14,-1/R,1/20+1/4+1/R,0, -10,-1/10,0,1/10,-2]): >G(R); >B:=R->guassjord(G(R)): >B(R); #leads to same result

ACTIVITY 5-3a

ACTIVITY 5-3a

10 kΩ

• KCL at Node v: 30 V

6 kΩ

8V

v

(v + 8) V +

30 V

5 mA

v

2 kΩ



• • • •

Sum of Currents Out of Node = 0 (v-30)/6 + (v+8)/2 + (v+8-30)/10 - 5 = 0 v (1/6 + 1/2 + 1/10) = 30/6 – 8/2 + 22/10 + 5 => (23/30) v = 8.2 => v = 10.7 V

• Writing a KCL at each Unknown Node always works!

0V

1 Unknown Node Voltage

Find v using Node Equations

6

ACTIVITY 5-3b 1A

8Ω

• 5 Nodes - 2 Voltage Sources - 1 (Ref)

7Ω

• 2 Unknown Node Voltages, v1, v2 ic

10 Ω

24 V

24 V

v1

3Ω ib

ACTIVITY 5-3b

2 Unknown Node Voltages

90 V

v2

15 Ω 6Ω 0V

• Write a KCL at each Unknown Node • Sum of Currents Out = 0

2Ω

4Ω

ia

Show that v1 = 24 V; v 2 = −6 V Find i a , i b , i c

ACTIVITY 5-3b KCL at v1 : v1 − 24 v1 − v 2 v1 v1 − (v 2 + 90) + + + =0 3 15 6 10 KCL at v 2 : v2 (v + 90) − v1 v 2 − v1 v 2 − 24 + 2 + + −1 = 0 2+4 10 15 7+8

ACTIVITY 5-3b

ACTIVITY 5-3b 1 1 1 1 1 1 Node v1: v1 ( + + + ) + v 2 (− − ) = 8 + 9 = 17 3 15 6 10 15 10 Node v 2 : v1 (−

1 1 1 1 1 1 24 − ) + v 2 ( + + + ) = −9 + + 1 15 10 6 10 15 15 15

ACTIVITY 5-3b

Multiply by 30: v1 (20) + v 2 (−5) = 510 v1 (−5) + v 2 (12) = −192 G: = matrix(2,3,[20, − 5,510, − 5,12, −192]); V: = gaussjord(G); => v1 = 24 V => v 2 = −6 V

With v1 = 24 V; v2 = −6 V v2 = −1 A 2+4 24 − v1  24 − v2  => i b = + + 1 = 3 A 3  8+7  24 − v1 => ic = i b − = 3A 3 => ia =

7