Climate change projections and hydrological impacts

Report 5 Downloads 154 Views
Climate change projections and hydrological impacts assessment in Central Asia Case study on three pilot areas in Central Asia PIK and CAREC Cooperation.  Iulii Didovets, Anastasia Lobanova, Christoph Menz, Valentina Krysanova, Fred Hattermann

Aim of the project

temperature and precipitation trends in three pilot areas



To estimate

To evaluate

in qualitative terms risks to irrigated agriculture, pastures and disaster management in the districts

To assess

hydrological impacts of projected climate change in two river basins, the Aspara and Isfara;

To analyze







CLIMATE ADAPTATION AND MITIGATION PROGRAM FOR THE ARAL SEA BASIN (CAMP4ASB) Project AIMS:

the existing framework for climate impact assessment and perform knowledge gap analysis

Pilot areas

Methodology

6HOHFWHG 5&3V

,QSXW'DWD )RU6HWXS

,6,0 ,33URMHFWLRQV &2 5'(;3URMHFWLRQV

$QDO\VLVRI +\GURORJLFDO ,P SDFWVRI&OLP DWH FKDQJHDQG DVVRFLDWHGULVNV

5HVXOWV

6: ,0

Input data for hydrological modeling Land Use GlobeLand30 DEM  SRTM 90m resolution

Soil Map HWSD, 1 km resolution

Climate data  WATCH Era40 Product

Discharge GRDC Database, only for Isfara

Climate change projections CORDEX Database CORDEX is a scientific community based initiative to provide dynamically downscaled CMIP5 simulations. Freely available on the Internet. 16 different domains, including Central Asia, number of simulations depends on the domain considered

ISI-MIP Database ISI-MIP database contains simulations of selected CMIP5 GCMs which were later interpolated to a 0.5 deg grid and biascorrected to the WATCH Era40 re-analysis product

Model Calibration for Isfara River • •

Very sensitive to snowmelt parameters The WATCH Era40 has to be checked

Period

NSE

RVE

Full (1963‐1991)

0.66

2.4

Nash–Sutcliffe (NSE) efficiency can range from −∞ to 1. An efficiency of 1 (E = 1) corresponds to a perfect match

Calibration (1965‐1980)

0.66

‐4.9

RVE can range from −∞ to +∞, 0 is a

Validation (1981‐1991)

0.63

14.1

perfect fit

Climate projections fitting of WATCH Era40 • •

ISI‐MIP  ‐ perfect fitting, as bias‐corrected to this dataset CORDEX  comparison shows  significant biases in the Isfara and Aspara Regions,  especially in the mountainous regions Precipitation

Temperature

Climate projections for the pilot areas. Aspara RCP 2.6 Precipitation CORDEX

Precipitation ISI-MIP

RCP 8.5

Climate projections for the pilot areas. Aspara RCP 2.6 Temperature CORDEX

Temperature ISI-MIP

RCP 8.5

Climate projections for the pilot areas. Priaralye RCP 2.6 Precipitation CORDEX

Precipitation ISI-MIP

RCP 8.5

Climate projections for the pilot areas. Priaralye RCP 2.6 Temperature CORDEX

Temprature ISI-MIP

RCP 8.5

Hydrological impacts of projected climate change Aspara River, CORDEX •

Discharge deviations, expressed in % with respect to the reference period

RCP 2.6

RCP 8.5

Hydrological impacts of projected climate change Aspara River, ISI-MIP •

Discharge deviations, expressed in % with respect to the reference period RCP 2.6

RCP 8.5

Selected indicators for quantification of the risks associated with the impacts of projected climate change •

Aim: to quantify risks, associated with the projected climate change to  agriculture, disaster management and pastures



Due to constraint ‐> decided to concentrate on Temperature related indicators  9HJHWDWLRQ SHULRG IRU & DQG & SODQWV  7 H[FHHGLQJ  DQG  GHJUHHV  H[WUHPH KHDW HYHQWVHJGD\V ZLWK GDLO\ 7 !  GHJUHHV

Qualitative analysis  RISURMHFWHGFKDQJHVLQULYHU GLVFKDUJHYVH[LVWLQJFURSSLQJ  LUULJDWLRQSDWWHUQVLQWKHSLORWDUHDV

Duration of vegetation period •

The C3 and C4 vegetation periods are expected to extend in all pilot areas , as a direct consequence of the increase in temperatures



The prolongation depends strongly on the climate change scenario. At the end of the century under RCP8.5 the starting date will be shifted up to one month earlier and the ending date up to one month later Aspara, C3 CORDEX

ISI-MIP

Priaralye, C3

Conclusions for the pilot areas 

No or minor (or uncertain) trends in the  precipitation for all pilot areas



Strong increase in the temperature for the areas,  reaching up to plus 6 ‐ 7 degrees under RCP8.5



Large multi‐model spreads in the precipitation simulations  indicate model disagreement 



Poor quality of the CORDEX Projections



The snowmelt processes are very important ‐>  the temperature increase has a big influence 



Increase in temperature may lead to increased evapotranspiration rates but at the same time may also lead to higher sums of effective temperatures of crops for the same period of time, and could shorten the ripening periods of crops



The prolongation of the vegetation period and shift of high flows to an earlier period may offer some room for adaptation, potentially also more time for cattle grazing, but depends on the condition of the pastures

Conclusions for the pilot areas Aspara:





• • •



Isfara:





• • •

Priaralye:





• •

Increase of water flow in April‐March, decrease in Jul‐September ‐> during the vegetation period possibly the existing cropping patterns have to be revised and altered, as the water resources will decrease during the vegetation period Extreme heat events only slight change in the future Moderate decrease of the low flows may signal for increased frequency of droughts Slight increase in the high flow segment ‐> the amount of water for irrigation but also can signal about the possible increase in the high flow events Contradicting projections from CORDEX and ISI‐MIP: but both indicate increase in the discharge in March‐April The winter cereals are better off in the case of discharge increase in the spring period Rise in extreme heat events may negatively impact the crop yields Likely a strong decrease in the low flow quantiles ‐> less water for irrigation, possibly droughts, the DRR strategy has to be re‐considered Reduction of high flows would lead also to problems with reservoir fillings No modelling was done, but the revision of the recent studies revealed similar trends as in the Isfara and Aspara River, shifts of the high flow period to an earlier date and overall reduction in the discharge Strong rise in extreme heat events may negatively impact the crop yields Rice and cotton may suffer more often from water stress in the future, as discharge of the Amu Darya would very likely decrease.

Thank you for your attention!

Informational and technological gaps for improving the climate change impact assessment frameworks at the regional scale •

Better climate projections and better model calibration, especially for an improved  understanding of hydrological extremes 



Observed climate data is needed to verify the synthetically generated observational  datasets, like WATCH Era40 



Hydrological data is needed for better model calibration and verification Soil data: finer  resolution data is needed, with information on the soil depth 



Data on cropping patterns is needed 



Water management data: it is possible to include them in the SWIM Model, which could  then become a DSS tool for river basin managers