Conditions for Exact Resultants using the Dixon Formulation Arthur D. Chtcherba
Deepak Kapur
Department of Computer Science University of New Mexico Albuquerque, NM 87131
Department of Computer Science University of New Mexico Albuquerque, NM 87131
[email protected] [email protected] ABSTRACT
072 % %
% &
!" "# $
% ?
% &
/
$
%
/
%
% '
% ( ) !" " * $
$
@ ABC DEFGBH B@ DAIF BA
% &
$ %
& , J GK BH L DK I EF
+ $
% MGADEFL
, % -
NO P % ' Q
+ , %
/ 0* !# 2
.
% & 1 :
%
/
%
/ %
1. INTRODUCTION
'
R / 0!62
0* !12
% &
3 & + - % 4 4 5 " " " 6 !# # 4 " 7 8 1 8 6# %
% S
0* !6 !#2 %
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. ISSAC St. Andrews, Scotland : 8 82000, 9 8 4; ! 7 < ! !1 : ! 7 %8 8
' T
+
$
!
% & + % &
$ %
/ % & # %
&
+
, 0!12 % &
-
; 01 !7 "2
,
%
0#2 ' W
% % . $
0! :2 %
& /
' W $ 0!82 %
%
U
,
X G P @ YG EGFYZ
)
%
/ % & 7 %
% %
+ S ;
0! !2 % 5 072 .
( ) 0!:2
/ )
% U 0!:2 ,
%
,
+ $ % & T % -
h 2.[ \ ] ^_ DEFINITIONS & NOTATION ^` ^a _ : %! % bGc DH I @ B YZ H B G I Y d e f g h i j
k lll k P h j t ux YDF f i j m n o 0p 2 IH M i j t e p j t u p j t uv 3q r r r q ps r r r ps y jm 3 w Fz D NO @ @ BAF B{ d |D Fz D N DF } e ~ 3 q r r r q z DAD n s y o 0p IH M f e 8 J D H D I 2 3 q r r r q ps jt
s IH M d $ e } z DAD i e 0p 3 q r r r q p s 2 q y
,
%
, ,
% U
h lll h lll x [ \ ] ^_ ^` ^a _ : %: % J D H D i j $ e p j t pj t pj pj s y 3 3 z DAD n ~8 q r r r q IH M p N IAD H D c IA G I |YD N i j $ e i j G N DK F DH M DM F B @ B YZ H B P G I Y N I N
,
d p 3 q r r r q p s $$ e d p 3 q r r r q p q p 3 q r r r q p s $ r
%
[ \ ] ^_ ^` ^a _ : %1 % bGc DH e ~ d q d 3 q r r r q d s z DAD y o 0p 2 M H ¢ £¤ ¢ £ I N 3 q r r r q p s y D D GF N ¡
&
% U V ;
s ! ds $ e ¦ ¥ d qrrr q ¨ p § p 3
% U
/ ,
© d $ © © d $ 3 © © © © © d $ © s
d3$ 3 d3$ s d3$
lll lll lll
ds $ © © 3 ds $ © © ©r © © s d s $ ©©
ª DH ED ¥ d q d 3 q r r r q d s $ n o 0p 3 q r r r q p s q p 3 q r r r q p s 2 z DAD y IAD H IA I |YD D c G p 3 q p w q r r r q ps N
%
, T %
& i
i
T
U / .
, , / /
T % & %
% & / ,
e ~ d d O H P GK DM qrrr q s % % d $ e } % -
d $ ¥« e ¥ d d q 3q r r r q s
} %
, ,
:
d e Ü § f Ñ i j Ó 8 . Û jÓ Ý 3 $ % &
[ \ ] ^_ ^` ^a _ : %# % ¬ J GK BH @ B YZ H B P G I Y ¥ d q r r r q d s $ EIH |D AGFF DH GH |GYGH DIA { BA P I N
Á Âaa] Æ
d $ e ® ¯ ¥ d d q q 3q r r r q s
¥ d
h
h z DAD e 0i ° q r r r q i ° ± 2 IH M N G P GYIA YZ e 0i j q r r r q i j ² 2 y IAD AB c DEF BA N GFz n ¥ $ IH M ³ n ¥ $ ´z D µ ¶ · P IFAGK ® G N EI Y YDM Fz D ¡ ¢ ¸ ¡
0! ! !#2 ® @ ABC DEFGBH B@ DAIF BA
® % ? ® .
.
d $ qrrr q s
e Þ s§
3 3 ßt àß t
e Þ s§
3 3 ßt àß t
e © á d $ © © d $ ©â 3 % ©â % ©â % ©ã © d $ s ©
. %
U / » DH DAG E
s ¦
e
§
3
? + %
! p ¨ p
Õ Ö ×Ø h ÙÖ ÙÚ x
© © © © © © © © ©
h ij $ ä © © © ijv $ å© % å© % å© % æ© © ijm $ ©
ºË Í $ ººË i $ º
%
3.[ \ ] ^_ DIXON-EXACT SUPPORTS ^` ^a _ 1 %! % bGc DH I » DH DA G E H GK DM @ B YZ H B
O P P GIY NZ NL GFz NO @ @ BAF } } G N EIY YDM J GK BH L DK I EF G{ Fz DAD DK G N F N y I c IA G I |YD BAM DA BH i AD NO YFGH» GH Fz D J GK BH @ BYZ H B P G IY NO Ez Fz IF F DP
Á Âa à a Ä^` ^a _ : %! % bGc DH IH O H P GK DM » DH DAG E @ B YZ H B P GI Y N Z N F D P e ~ d q d 3 q r r r q d s GFz I NO @ @ BAF } y º ¥ « $ º Å À } $$ ¼½ ¾ ¿s r
º ¥ « $ º e À } $$ ¼½ ¾ ¿s r [ \ ] ^_ ^` ^a _ 1 %: % ¬ N DF ç s G N EI Y YDM I |I N G N N G P @ YDK G{
U Á Âa a ] Æ
è ºç º e
0! !2 0