Electronic Supplementary Information (ESI)
Designing 3D highly ordered nanoporous CuO electrodes for highperformance asymmetric supercapacitors Seyyed E. Moosavifard,† Maher F. El-Kady,‡# Mohammad S. Rahmanifar,§ Richard B. Kaner,*‡ Mir F. Mousavi*†‡ †
Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA ‡
Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt Faculty of Basic Sciences, Shahed University, Tehran, Iran
# §
Corresponding Author
* E-mail:
[email protected];
[email protected] Redox reactions of CuO in alkaline electrolyte Based on the previously reported experimental results,15, 43, 44 the redox reactions of CuO in alkaline electrolyte are quite complex, and the following redox reactions between Cu(I) and Cu(II) species have been proposed in the potential range of 0-0.4V. Cu2O + 2OH ̶ ⇔ 2CuO + H2O + 2e ̶
(1)
Cu2O + H2O + 2OH ̶ ⇔ 2Cu(OH)2 + 2e ̶
(2)
CuOH + OH ̶ ⇔ CuO + H2O + e ̶
(3)
CuOH + OH ̶ ⇔ Cu(OH)2 + e ̶
(4)
1
a
b
c
d
e
Scheme S1. Two sets of interpenetrating mesopore channels in KIT-6 (a, b), filling of both channels in the central region and one channel along the edges (c, d), bimodal pore size distribution obtained after silica etching (e).
2
Table S1. Electrochemical Performance of CuO Electrodes. Morphology
Synthesis method
Capacitance @current density
Cell (Config)
Cycles
Retention
ED (W h/kg)
Electrolyte
ΔV (V)
Reference (year)
CuO nanoflowers CuO multilayer nanosheets CuO nanostructures CuO micro-woolen like CuO cauliflowers
130 F/g at 1 A/g 43 F/g at 10 mV/s
3E 3E
7000 -
70% at 6 A/g -
4.2 3.8
6 M KOH 1 M Na2SO4
0.48 0.8
S11(2013) S22(2010)
5000 2000
1 M Na2SO4 1 M Na2SO4 1 M Na2SO4
0.65 0.9 0.9
S33(2013) S44(2013) S55(2013)
3E
2000
46
1 M Na2SO4
0.9
S66(2013)
Liquid–solid reaction
3E
5000
11.7
5 M NaOH
0.55
S77(2012)
CuO porous/amorphous CuO nanoflakes
Electrodeposition
3E
-
85% at 100 mV/s 81% at 100 mV/s 85% at 100 mV/s 85% at 5 mA/cm2 -
5.5 38 18.2
Lotus-like CuO/Cu(OH)2
94 F/g at 5 mV/s 346 F/g at 5 mV/s 179 F/g at 5 mV/s 411 F/g at 10 mV/s 278 F/g (0.098 F/cm2) at 2 mA/cm2 36 F/g
3E 3E 3E
CuO flower-like
water bath method Chemical bath deposition In situ crystallization Mild chemical strategy Potentiodyanamic mode Soft template
-
1 M Na2SO4
1
S88(2009)
190 F/g (0.044 F/cm2) at 2 mA/cm2 134 F/g at 10 mA/cm2 212 F/g at 0.41 mA/cm2 569 F/g at 5 mA/cm2 137 F/g at 3 mA/cm2 348 F/g (0.07 F/cm2) at 1 A/g 900 F/g (0.288 F/cm2) at 1.5 A/g 431 F/g (1.51 F/cm2) at 3.5 mA/cm2
3E
2000
9.5
1 M KOH
0.6
S99(2013)
3E
200
3
6 M KOH
0.4
13 (2008)
3E
850
4.1
6 M KOH
0.4
14 (2012)
3E
500
12.6
6 M KOH
0.4
15 (2011)
3E
500
3
6 M KOH
0.4
16 (2013)
3E
2000
67% at 2 mA/cm2 94.8% at 10 mA/cm2 85% at .41 mA/cm2 82.5% at 10 mA/cm2 88% at 5 mA/cm2 87.9% at 1 a/g
12.1
0.1 M KOH
0.5
17 (2013)
3E
5000
94%
45
3 M KOH
0.6
19 (2014)
3E
3000
14.2
3 M KOH
0.5
2E (asymm)
93% at 7 mA/cm2
3000
19.7
3 M KOH
1.4
CuO flower-like CuO nanosheets
Surface oxidation of Cu foil Chemical precipitation
CuO nanosheet
Anodization of Cu foam Chemical growth
CuO Nanoribbons
Soft template
3D Porous Gear-like CuO CuO nanoribbon
Wet-chemical method
3D highly ordered nanoporous CuO
Anodic deposition Hard template
72.4 F/g at 7.5 mA/cm2
3
96% at 15 mA/cm2
Current study
References: (S1) Heng, B.; Qing, C.; Sun, D.; Wang, B.; Wang, H.; Tang, Y. Rapid Synthesis of CuO Nanoribbons and Nanoflowers from the Same Reaction System, and a Comparison of Their Supercapacitor Performance. RSC Adv. 2013, 3, 15719-15726. (S2) Dubal, D. P.; Dhawale, D. S.; Salunkhe, R. R.; Jamdade, V. S.; Lokhande, C. D. Fabrication of Copper Oxide Multilayer Nanosheets for Supercapacitor Application. J. Alloys Compd. 2010, 492, 26-30. (S3) Krishnamoorthy, K.; Kim, S.-J. Growth, Characterization and Electrochemical Properties of Hierarchical CuO Nanostructures for Supercapacitor Applications. Mater. Res. Bull. 2013, 48, 3136-3139. (S4) Dubal, D. P.; Gund, G. S.; Lokhande, C. D.; Holze, R. CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition. Mater. Res. Bull. 2013, 48, 923-928. (S5) Dubal, D. P.; Gund, G. S.; Holze, R.; Lokhande, C. D. Mild Chemical Strategy to Grow Micro-Roses and Micro-Woolen Like Arranged CuO Nanosheets for High Performance Supercapacitors. J. Power Sources 2013, 242, 687-698. (S6) Dubal, D. P.; Gund, G. S.; Holze, R.; Jadhav, H. S.; Lokhande, C. D.; Park, C.-J. Surfactant-Assisted Morphological Tuning of Hierarchical CuO Thin Films for Electrochemical Supercapacitors. Dalton Trans. 2013, 42, 6459-6467. (S7) Hsu, Y.-K.; Chen, Y.-C.; Lin, Y.-G. Characteristics and Electrochemical Performances of Lotus-Like CuO/Cu(OH)2 Hybrid Material Electrodes. J. Electroanal. Chem. 2012, 673, 43-47. (S8) Patake, V. D.; Joshi, S. S.; Lokhande, C. D.; Joo, O.-S. Electrodeposited Porous and Amorphous Copper Oxide Film for Application in Supercapacitor. Mater. Chem. Phys. 2009, 114, 6-9. (S9) Endut, Z.; Hamdi, M.; Basirun, W. J. Pseudocapacitive Performance of Vertical Copper Oxide Nanoflakes. Thin Solid Films 2013, 528, 213-216.
4