DISCONTINUOUS GALERKIN METHOD FOR AN ... - Semantic Scholar

Report 3 Downloads 282 Views
MATHEMATICS OF COMPUTATION Volume 78, Number 268, October 2009, Pages 1975–1995 S 0025-5718(09)02234-0 Article electronically published on February 23, 2009

DISCONTINUOUS GALERKIN METHOD FOR AN EVOLUTION EQUATION WITH A MEMORY TERM OF POSITIVE TYPE KASSEM MUSTAPHA AND WILLIAM MCLEAN Abstract. We consider an initial value problem for a class of evolution equations incorporating a memory term with a weakly singular kernel bounded by 𝐢(𝑑 βˆ’ 𝑠)π›Όβˆ’1 , where 0 < 𝛼 < 1. For the time discretization we apply the discontinuous Galerkin method using piecewise polynomials of degree at most π‘ž βˆ’ 1, for π‘ž = 1 or 2. For the space discretization we use continuous piecewise-linear finite elements. The discrete solution satisfies an error bound of order π‘˜π‘ž + β„Ž2 β„“(π‘˜), where π‘˜ and β„Ž are the mesh sizes in time and space, respectively, and β„“(π‘˜) = max(1, log π‘˜βˆ’1 ). In the case π‘ž = 2, we prove a higher convergence rate of order π‘˜3 + β„Ž2 β„“(π‘˜) at the nodes of the time mesh. Typically, the partial derivatives of the exact solution are singular at 𝑑 = 0, necessitating the use of non-uniform time steps. We compare our theoretical error bounds with the results of numerical computations.

1. Introduction We study the discretization in time and space of an initial value problem [1, 3, 9, 11, 12, 18, 16] βˆ‚π‘’ + ℬ𝐴𝑒 = 𝑓 (𝑑) for 0 < 𝑑 < 𝑇 , with 𝑒(0) = 𝑒0 , βˆ‚π‘‘ where ℬ denotes a Volterra integral operator ∫ 𝑑 𝛽(𝑑, 𝑠)𝑣(𝑠) 𝑑𝑠 ℬ𝑣(𝑑) =

(1.1)

0

and where 𝐴 is a selfadjoint linear operator with domain 𝐷(𝐴) in a real Hilbert space ℍ. We assume that 𝐴 has a complete eigensystem {πœ†π‘š , πœ™π‘š }∞ π‘š=1 such that 0 ≀ πœ†1 ≀ πœ†2 ≀ β‹… β‹… β‹… and πœ†π‘š β†’ ∞ as π‘š β†’ ∞. Thus, 𝐴 is positive semidefinite. The solution 𝑒 and source term 𝑓 take values in ℍ, and the initial data 𝑒0 is an element of ℍ. We let βŸ¨π‘’, π‘£βŸ© denote the inner product of 𝑒 and 𝑣 in ℍ, and define the bilinear form ∞ βˆ‘ πœ†π‘š βŸ¨π‘’, πœ™π‘š βŸ©βŸ¨πœ™π‘š , π‘£βŸ© for 𝑒, 𝑣 ∈ 𝐷(𝐴1/2 ). 𝐴(𝑒, 𝑣) = βŸ¨π΄π‘’, π‘£βŸ© = π‘š=1

Received by the editor October 16, 2007 and, in revised form, October 9, 2008. 2000 Mathematics Subject Classification. Primary 26A33, 45J05, 65M12, 65M15, 65M60. Key words and phrases. Memory term, discontinuous Galerkin method, a priori error estimates, non-uniform time steps, finite element method. Support of the KFUPM is gratefully acknowledged. c ⃝2009 American Mathematical Society Reverts to public domain 28 years from publication

1975

1976

KASSEM MUSTAPHA AND WILLIAM MCLEAN

Concretely, one may take ℍ = 𝐿2 (Ξ©) for a bounded, Lipschitz domain Ξ© βŠ† ℝ𝑑 and 𝐴 = βˆ’βˆ‡2 subject to homogeneous Dirichlet or Neumann boundary conditions. In this case, ∫ 𝑒 = 𝑒(π‘₯, 𝑑), 𝑓 = 𝑓 (π‘₯, 𝑑) and 𝑒0 = 𝑒0 (π‘₯) for π‘₯ ∈ Ξ© and 𝑑 > 0, with 𝐴(𝑒, 𝑣) = Ξ© βˆ‡π‘’ β‹… βˆ‡π‘£ 𝑑π‘₯. Throughout the paper, we assume the kernel 𝛽 to be real-valued and strictly positive definite, that is, ∫ 𝑇 ∫ 𝑑 (1.2) 𝑣(𝑑) 𝛽(𝑑, 𝑠)𝑣(𝑠) 𝑑𝑠 𝑑𝑑 β‰₯ 0 for all 𝑣 ∈ 𝐿∞ ([0, 𝑇 ], ℝ), 0

0

with equality if and only if 𝑣 is zero almost everywhere on [0, 𝑇 ]. In addition, 𝛽 may be at worst weakly singular, that is, βˆ£π›½(𝑑, 𝑠)∣ ≀ 𝐢(𝑑 βˆ’ 𝑠)π›Όβˆ’1

for 0 < 𝑠 < 𝑑 < ∞, with 0 < 𝛼 ≀ 1,

and we assume for simplicity that 𝛽(𝑑, 𝑠) is continuous for 𝑑 βˆ•= 𝑠. Of particular interest is the choice (𝑑 βˆ’ 𝑠)π›Όβˆ’1 (1.3) 𝛽(𝑑, 𝑠) = , 𝛀 (𝛼) which makes ℬ the Riemann–Liouville fractional integration operator of order 𝛼 and means that the evolution equation in (1.1) is a fractional wave equation [18]. A standard approach [9, 12, 16] to the time discretization of (1.1) uses a combination of finite differences and quadrature. If the kernel 𝛽(𝑑, 𝑠) depends only on the difference 𝑑 βˆ’ 𝑠, then convolution quadrature [3, 10] is a natural choice, allowing the use of fast summation techniques [17]. Another approach [7, 8, 13, 14], again suitable for a convolution kernel, achieves spectral accuracy via numerical inversion of the Laplace transform of the solution. In the present work, we instead apply the discontinuous Galerkin method using piecewise polynomials of degree at most π‘ž βˆ’1, for π‘ž = 1 or 2. Since their inception in the early 1970s, discontinuous Galerkin methods have found numerous applications [2], including for the time discretization of parabolic problems [5]. Their advantages include excellent stability properties even for highly non-uniform meshes and suitability for adaptive refinement based on a posteriori error estimates [4] to handle problems with low regularity. McLean, ThomΒ΄ee and Wahlbin [15] proved a priori error estimates for a piecewise-constant (π‘ž = 1) discontinuous Galerkin method applied to (1.1), although they formulated the method as a generalised backward-Euler scheme; see (1.7) below. Adolfsson, Enelund and Larsson [1] subsequently proved a posteriori error estimates for the same piecewiseconstant discontinuous Galerkin method, leading to adaptive control of the step size. They also incorporated the use of sparse quadrature to reduce the computational cost of the algorithm. Neither [15] nor [1] considered the spatial discretization of (1.1). Here, we focus on the piecewise-linear case (π‘ž = 2) and consider only a priori error bounds. To set up the time discretization, we begin with a (possibly non-uniform) partition of the interval [0, 𝑇 ], (1.4)

0 = 𝑑0 < 𝑑 1 < β‹… β‹… β‹… < 𝑑 𝑁 = 𝑇

with 𝐼𝑛 = (π‘‘π‘›βˆ’1 , 𝑑𝑛 ].

We denote the 𝑛th step-size by π‘˜π‘› = 𝑑𝑛 βˆ’ π‘‘π‘›βˆ’1 and the maximum step-size by π‘˜ = max1≀𝑛≀𝑁 π‘˜π‘› . For π‘ž β‰₯ 1, we let β„™π‘ž denote the space of polynomials of degree strictly less than π‘ž with coefficients in 𝐷(𝐴1/2 ). For π‘ž = 1 or 2, our trial space π’²π‘ž

DISCONTINUOUS GALERKIN METHOD

1977

is the set of functions π‘ˆ : [0, 𝑇 ] β†’ 𝐷(𝐴1/2 ) such that π‘ˆ βˆ£πΌπ‘› ∈ β„™π‘ž for 1 ≀ 𝑛 ≀ 𝑁 . We follow the usual convention that a function π‘ˆ ∈ π’²π‘ž is left-continuous at each time level 𝑑𝑛 , writing (1.5)

π‘ˆ 𝑛 = π‘ˆ (𝑑𝑛 ) = π‘ˆ (π‘‘βˆ’ 𝑛 ),

𝑛 π‘ˆ+ = π‘ˆ (𝑑+ 𝑛 ),

𝑛 [π‘ˆ ]𝑛 = π‘ˆ+ βˆ’ π‘ˆ 𝑛.

For any continuous test function 𝑣 : [0, 𝑇 ] β†’ 𝐷(𝐴1/2 ), the solution 𝑒 of (1.1) satisfies ∫ 𝑑𝑛 ∫ 𝑑𝑛 [ β€² ( )] βŸ¨π‘’ (𝑑), 𝑣(𝑑)⟩ + 𝐴 ℬ𝑒(𝑑), 𝑣(𝑑) 𝑑𝑑 = βŸ¨π‘“ (𝑑), 𝑣(𝑑)⟩ 𝑑𝑑. π‘‘π‘›βˆ’1

π‘‘π‘›βˆ’1

By comparison, given π‘ˆ (𝑑) for 0 ≀ 𝑑 ≀ π‘‘π‘›βˆ’1 , the discontinuous Galerkin method determines π‘ˆ ∈ π’²π‘ž on 𝐼𝑛 by requiring that (1.6)

π‘›βˆ’1 π‘›βˆ’1 βŸ¨π‘ˆ+ , 𝑋+ ⟩+

∫

𝑑𝑛

π‘‘π‘›βˆ’1

[ β€² ( )] βŸ¨π‘ˆ (𝑑), 𝑋(𝑑)⟩ + 𝐴 β„¬π‘ˆ (𝑑), 𝑋(𝑑) 𝑑𝑑 π‘›βˆ’1 ⟩+ = βŸ¨π‘ˆ π‘›βˆ’1 , 𝑋+

∫

𝑑𝑛

π‘‘π‘›βˆ’1

βŸ¨π‘“ (𝑑), 𝑋(𝑑)⟩ 𝑑𝑑

for all 𝑋 ∈ β„™π‘ž (𝐼𝑛 ). This time-stepping procedure starts from π‘ˆ 0 β‰ˆ 𝑒0 , and after 𝑁 steps yields the numerical solution π‘ˆ (𝑑) for 0 ≀ 𝑑 ≀ 𝑑𝑁 . π‘›βˆ’1 For the piecewise-constant case π‘ž = 1, since π‘ˆ β€² (𝑑) = 0 and π‘ˆ (𝑑) = π‘ˆ 𝑛 = π‘ˆ+ for 𝑑 ∈ 𝐼𝑛 , the discontinuous Galerkin method (1.6) amounts to a generalized backward-Euler scheme π‘ˆ 𝑛 βˆ’ π‘ˆ π‘›βˆ’1 + ℬ 𝑛 (π΄π‘ˆ ) = 𝑓¯𝑛 , π‘˜π‘›

(1.7) where

∫ 𝑑𝑛 ∫ 𝑑 𝑛 βˆ‘ 1 𝛽(𝑑, 𝑠)π΄π‘ˆ (𝑠) 𝑑𝑠 𝑑𝑑 = πœ”π‘›π‘— π΄π‘ˆ 𝑗 π‘˜π‘— , ℬ (π΄π‘ˆ ) = π‘˜π‘› π‘‘π‘›βˆ’1 0 𝑗=1 ∫ 𝑑𝑛 ∫ 𝑑𝑛 ∫ min(𝑑,𝑑𝑗 ) 1 1 𝑓¯𝑛 = 𝑓 (𝑑) 𝑑𝑑, πœ”π‘›π‘— = 𝛽(𝑑, 𝑠) 𝑑𝑠 𝑑𝑑. π‘˜π‘› π‘‘π‘›βˆ’1 π‘˜π‘› π‘˜π‘— π‘‘π‘›βˆ’1 π‘‘π‘—βˆ’1 𝑛

Thus, at each time step we must solve an β€œelliptic” problem π‘ˆ 𝑛 + π‘˜π‘›2 πœ”π‘›π‘› π΄π‘ˆ 𝑛 = π‘ˆ π‘›βˆ’1 + π‘˜π‘› 𝑓¯𝑛 βˆ’ π‘˜π‘›

π‘›βˆ’1 βˆ‘

πœ”π‘›π‘— π΄π‘ˆ 𝑗 π‘˜π‘— .

𝑗=1

For the piecewise-linear case π‘ž = 2, we define πœ“π‘›1 (𝑑) =

𝑑𝑛 βˆ’ 𝑑 π‘˜π‘›

and

πœ“π‘›2 (𝑑) =

𝑑 βˆ’ π‘‘π‘›βˆ’1 π‘˜π‘›

and use the representation π‘›βˆ’1 1 π‘ˆ (𝑑) = π‘ˆ+ πœ“π‘› (𝑑) + π‘ˆ 𝑛 πœ“π‘›2 (𝑑) for 𝑑 ∈ 𝐼𝑛 .

1978

KASSEM MUSTAPHA AND WILLIAM MCLEAN

By choosing 𝑋(𝑑) = πœ“π‘›π‘ (𝑑)𝑉 in (1.6) for 𝑝 ∈ {1, 2} and a vector 𝑉 ∈ ℍ (independent of 𝑑), we arrive at the 2 Γ— 2 system (1.8) π‘›βˆ’1 βˆ‘( ) π‘—βˆ’1 π‘›βˆ’1 11 12 11 12 πœ”π‘›π‘— ( 12 + πœ”π‘›π‘› 𝐴)π‘ˆ+ + ( 12 + πœ”π‘›π‘› 𝐴)π‘ˆ 𝑛 = π‘ˆ π‘›βˆ’1 + 𝑓 𝑛1 βˆ’ π΄π‘ˆ+ + πœ”π‘›π‘— π΄π‘ˆ 𝑗 , 𝑗=1

π‘›βˆ’1 21 22 (βˆ’ 12 + πœ”π‘›π‘› 𝐴)π‘ˆ+ + ( 12 + πœ”π‘›π‘› 𝐴)π‘ˆ 𝑛 = 𝑓 𝑛2 βˆ’

where π‘π‘Ÿ πœ”π‘›π‘— =

∫

𝑑𝑛

π‘‘π‘›βˆ’1

πœ“π‘›π‘ (𝑑)

∫

min(𝑑,𝑑𝑗 )

π‘‘π‘—βˆ’1

π‘›βˆ’1 βˆ‘

( 21 π‘—βˆ’1 ) 22 𝑗 πœ”π‘›π‘— π‘ˆ+ + πœ”π‘›π‘— π‘ˆ ,

𝑗=1

𝛽(𝑑, 𝑠)πœ“π‘—π‘Ÿ (𝑠) 𝑑𝑠 𝑑𝑑 and

𝑓 𝑛𝑝 =

∫

𝑑𝑛 π‘‘π‘›βˆ’1

𝑓 (𝑑)πœ“π‘›π‘ (𝑑) 𝑑𝑑.

For a general π‘ž, we would have to solve a π‘ž Γ— π‘ž system. The regularity results in [3, 11, 12] show, for the specific weakly singular kernel (1.3) and under reasonable assumptions on the data 𝑒0 and 𝑓 (𝑑), that there exist constants 𝜎 and 𝑀 , with 0 < 𝜎 ≀ 1, such that the exact solution of (1.1) satisfies (1.9)

𝑑βˆ₯𝐴𝑒′ (𝑑)βˆ₯ + 𝑑2 βˆ₯𝐴𝑒′′ (𝑑)βˆ₯ ≀ 𝑀 π‘‘πœŽβˆ’1

for 0 < 𝑑 ≀ 𝑇

and (1.10)

βˆ₯𝑒′ (𝑑)βˆ₯ + 𝑑βˆ₯𝑒′′ (𝑑)βˆ₯ ≀ 𝑀 π‘‘πœŽβˆ’1

for 0 < 𝑑 ≀ 𝑇 .

This singular behaviour as 𝑑 β†’ 0+ may lead to suboptimal convergence rates if we work with quasi-uniform time meshes. We therefore assume that, for a fixed 𝛾 β‰₯ 1, (1.11)

π‘˜π‘› ≀ πΆπ‘˜π‘‘π‘›1βˆ’1/𝛾

and

𝑑𝑛 ≀ πΆπ‘‘π‘›βˆ’1

for 2 ≀ 𝑛 ≀ 𝑁 ,

with π‘π‘˜π›Ύ ≀ π‘˜1 ≀ πΆπ‘˜π›Ύ .

(1.12) For instance, we may choose (1.13)

𝑑𝑛 = (𝑛/𝑁 )𝛾 𝑇

for 0 ≀ 𝑛 ≀ 𝑁 .

We show in Theorem 3.2 that the error βˆ₯π‘ˆ (𝑑) βˆ’ 𝑒(𝑑)βˆ₯ is of order π‘˜π‘ž , uniformly for 0 ≀ 𝑑 ≀ 𝑇 , provided 𝛾 > π‘ž/𝜎 and the initial data satisfy βˆ₯π‘ˆ 0 βˆ’ 𝑒0 βˆ₯ = 𝑂(π‘˜π‘ž ). However, for a quasi-uniform mesh our bound yields a poorer convergence rate of order π‘˜πœŽ . In the piecewise-linear case π‘ž = 2, faster convergence than 𝑂(π‘˜2 ) is possible at the nodal points 𝑑𝑛 . The nodal error βˆ₯π‘ˆ 𝑛 βˆ’ 𝑒(𝑑𝑛 )βˆ₯ is 𝑂(π‘˜3 ) if 𝛽 and 𝑒 are smooth, and the same result holds for the weakly-singular kernel (1.3) and for 𝑒 satisfying (1.9), provided the mesh grading parameter 𝛾 > 3/(𝜎 + 𝛼); see Corollary 4.2. Compare these results with those of Eriksson, Johnson and ThomΒ΄ee [5] for the classical parabolic problem that arises if one takes ℬ𝑣 = 𝑣 in (1.1): the error is then 𝑂(π‘˜π‘ž ) everywhere on [0, 𝑇 ] and is 𝑂(π‘˜2π‘žβˆ’1 ) at the nodes, for a general π‘ž β‰₯ 1. In related work, Larsson, ThomΒ΄ee and Wahlbin [6] proved the same convergence rates for a parabolic integrodifferential equation of the form βˆ‚π‘’/βˆ‚π‘‘+𝐴𝑒+memory term = 𝑓 (𝑑), using discontinuous Galerkin methods with π‘ž = 1 or 2.

DISCONTINUOUS GALERKIN METHOD

1979

In the concrete setting where ℍ = 𝐿2 (Ξ©) and 𝐴 = βˆ’βˆ‡2 , we discretize in space using standard, continuous, piecewise-linear finite elements on a quasi-uniform partition of the domain Ξ© to obtain a numerical solution π‘ˆβ„Ž . Under the additional regularity assumptions (1.14)

βˆ₯𝑒0 βˆ₯2 ≀ 𝑀

and βˆ₯𝑒(𝑑)βˆ₯2 + 𝑑βˆ₯𝑒′ (𝑑)βˆ₯2 ≀ 𝑀

for 0 < 𝑑 ≀ 𝑇 ,

where βˆ₯𝑣βˆ₯2 = βˆ₯𝑣βˆ₯𝐻 2 (Ξ©) , we show in Theorem 5.2 that, with β„“(π‘˜) = max(1, log π‘˜βˆ’1 ),

(1.15)

the error βˆ₯π‘ˆβ„Ž (𝑑) βˆ’ 𝑒(𝑑)βˆ₯ is of order π‘˜π‘ž + β„Ž2 β„“(π‘˜), uniformly for 0 ≀ 𝑑 ≀ 𝑇 , provided 𝛾 > π‘ž/𝜎. Our final result, Corollary 5.4, establishes an improved error bound of order π‘˜3 + β„Ž2 β„“(π‘˜) for π‘ˆβ„Ž at the nodes 𝑑 = 𝑑𝑛 , when π‘ž = 2 and 𝛽 is as in (1.3). The concluding section of the paper presents the results of some numerical computations that confirm our theoretical error bounds. 2. Stability An energy argument based on the positive-semidefiniteness of ℬ and 𝐴 implies the existence and uniqueness of a mild solution 𝑒 ∈ 𝐢([0, 𝑇 ]; ℍ) to the continuous problem (1.1), and yields a stability estimate [12], ∫ 𝑑 βˆ₯𝑒(𝑑)βˆ₯ ≀ βˆ₯𝑒0 βˆ₯ + 2 βˆ₯𝑓 (𝑠)βˆ₯ 𝑑𝑠. 0

To state an analogous result for the discrete problem (1.6), we introduce the notation βˆ₯π‘ˆ βˆ₯𝐽 = sup βˆ₯π‘ˆ (𝑑)βˆ₯ π‘‘βˆˆπ½ βˆͺ𝑛 for any subinterval 𝐽 βŠ† [0, 𝑇 ], and put 𝐽𝑛 = (0, 𝑑𝑛 ] = 𝑗=1 𝐼𝑗 . Note that the proof makes no assumptions on the mesh (1.4). ( ) Theorem 2.1. Let π‘ž ∈ {1, 2}. Given π‘ˆ 0 ∈ ℍ and 𝑓 ∈ 𝐿1 (0, 𝑇 ); ℍ , there exists a unique π‘ˆ ∈ π’²π‘ž satisfying (1.6) for 𝑛 = 1, 2, . . . , 𝑁 . Furthermore, π‘ˆ (𝑑) ∈ 𝐷(𝐴) for 𝑑 > 0 and, with 𝐢1 = 2 and 𝐢2 = 8, ) ( ∫ 𝑑𝑛 βˆ₯π‘ˆ βˆ₯𝐽𝑛 ≀ πΆπ‘ž βˆ₯π‘ˆ 0 βˆ₯ + βˆ₯𝑓 (𝑑)βˆ₯ 𝑑𝑑 for 𝑛 β‰₯ 1. 0

Proof. Recall the notation (1.5) and assume for the moment that π‘ˆ exists. By choosing 𝑋 = π‘ˆ in (1.6) and using βŸ¨π‘ˆ β€² (𝑑), π‘ˆ (𝑑)⟩ = (𝑑/𝑑𝑑)βˆ₯π‘ˆ (𝑑)βˆ₯2 /2, we obtain ∫ 𝑑𝑗 ( 𝑗 2 ( ) π‘—βˆ’1 2 ) 1 + 𝐴 β„¬π‘ˆ (𝑑), π‘ˆ (𝑑) 𝑑𝑑 2 βˆ₯π‘ˆ βˆ₯ + βˆ₯π‘ˆ+ βˆ₯ π‘‘π‘—βˆ’1

π‘—βˆ’1 = βŸ¨π‘ˆ π‘—βˆ’1 , π‘ˆ+ ⟩+

Since (1.2) implies ∫ 𝑛 ∫ 𝑑𝑗 βˆ‘ ( ) 𝐴 β„¬π‘ˆ (𝑑), π‘ˆ (𝑑) 𝑑𝑑 = 𝑗=1

π‘‘π‘—βˆ’1

𝑑𝑛

0

=

∞ βˆ‘ π‘š=1

0

∫ πœ†π‘š

∫

𝑑𝑛 0

𝑑

∫

𝑑𝑗

π‘‘π‘—βˆ’1

βŸ¨π‘“ (𝑑), π‘ˆ (𝑑)⟩ 𝑑𝑑.

( ) 𝛽(𝑑, 𝑠)𝐴 π‘ˆ (𝑠), π‘ˆ (𝑑) 𝑑𝑠 𝑑𝑑

∫ 0

𝑑

𝛽(𝑑, 𝑠)βŸ¨π‘ˆ (𝑠), πœ™π‘š ⟩ 𝑑𝑠 βŸ¨πœ™π‘š , π‘ˆ (𝑑)⟩ 𝑑𝑑 β‰₯ 0,

1980

KASSEM MUSTAPHA AND WILLIAM MCLEAN

we see that ∫ 𝑛 𝑛 βˆ‘ βˆ‘ ( 𝑗 2 π‘—βˆ’1 2 ) π‘—βˆ’1 π‘—βˆ’1 βˆ₯π‘ˆ βˆ₯ + βˆ₯π‘ˆ+ βˆ₯ ≀ 2 βŸ¨π‘ˆ , π‘ˆ+ ⟩ + 2 𝑗=1

𝑑𝑛

0

𝑗=1

βŸ¨π‘“ (𝑑), π‘ˆ (𝑑)⟩ 𝑑𝑑,

so 0 2 βˆ₯ + βˆ₯π‘ˆ 𝑛 βˆ₯2 + βˆ₯π‘ˆ+

π‘›βˆ’1 βˆ‘

( 𝑗 2 𝑗 𝑗 2) βˆ₯π‘ˆ βˆ₯ βˆ’ 2βŸ¨π‘ˆ 𝑗 , π‘ˆ+ ⟩ + βˆ₯π‘ˆ+ βˆ₯

𝑗=1

≀ 2βŸ¨π‘ˆ and hence (2.1)

0 2 βˆ₯π‘ˆ 𝑛 βˆ₯2 + βˆ₯π‘ˆ+ βˆ₯ +

π‘›βˆ’1 βˆ‘

0

∫

0 , π‘ˆ+ ⟩

+2

( ∫ 0 βˆ₯[π‘ˆ ]𝑗 βˆ₯2 ≀ 2 βˆ₯π‘ˆ 0 βˆ₯βˆ₯π‘ˆ+ βˆ₯+

0

𝑗=1

𝑑𝑛

0

𝑑𝑛

βŸ¨π‘“ (𝑑), π‘ˆ (𝑑)⟩ 𝑑𝑑

) βˆ₯𝑓 (𝑑)βˆ₯βˆ₯π‘ˆ (𝑑)βˆ₯ 𝑑𝑑 .

π‘›βˆ’1 βˆ₯) we have Let π‘ž = 2. Since βˆ₯π‘ˆ βˆ₯𝐼𝑛 = max(βˆ₯π‘ˆ 𝑛 βˆ₯, βˆ₯π‘ˆ+ ( ) ∫ 𝑑1 0 2 0 βˆ₯π‘ˆ βˆ₯2𝐼1 ≀ βˆ₯π‘ˆ 1 βˆ₯2 + βˆ₯π‘ˆ+ βˆ₯ ≀ 2 βˆ₯π‘ˆ 0 βˆ₯βˆ₯π‘ˆ+ βˆ₯+ βˆ₯𝑓 (𝑑)βˆ₯βˆ₯π‘ˆ (𝑑)βˆ₯ 𝑑𝑑 , 0

and, for 𝑛 β‰₯ 2,

) ( ) ( π‘›βˆ’1 2 βˆ₯π‘ˆ βˆ₯2𝐼𝑛 = max βˆ₯π‘ˆ 𝑛 βˆ₯2 , βˆ₯π‘ˆ+ βˆ₯ = max βˆ₯π‘ˆ 𝑛 βˆ₯2 , βˆ₯π‘ˆ π‘›βˆ’1 + [π‘ˆ ]𝑛 βˆ₯2 ) ( ≀ max βˆ₯π‘ˆ 𝑛 βˆ₯2 , 2βˆ₯π‘ˆ π‘›βˆ’1 βˆ₯2 + 2βˆ₯[π‘ˆ ]π‘›βˆ’1 βˆ₯2 ( ) ∫ 𝑑𝑛 0 ≀ 8 βˆ₯π‘ˆ 0 βˆ₯βˆ₯π‘ˆ+ βˆ₯+ βˆ₯𝑓 (𝑑)βˆ₯βˆ₯π‘ˆ (𝑑)βˆ₯ 𝑑𝑑 . 0

Thus, putting 𝑗𝑛 = arg max1≀𝑗≀𝑛 βˆ₯π‘ˆ βˆ₯𝐼𝑗 , the desired bound follows at once from ) ( ∫ 𝑑𝑗𝑛 βˆ₯𝑓 (𝑑)βˆ₯ 𝑑𝑑 , βˆ₯π‘ˆ βˆ₯2𝐽𝑛 = βˆ₯π‘ˆ βˆ₯2𝐼𝑗𝑛 ≀ 8βˆ₯π‘ˆ βˆ₯𝐽𝑛 βˆ₯π‘ˆ 0 βˆ₯ + 0

and we see that π‘ˆ is unique. When ℍ is finite dimensional, the existence of π‘ˆ follows from uniqueness because the square linear system (1.8) must be uniquely solvable. When ℍ is infinite dimensional, we can construct π‘ˆ by expanding in the eigenfunctions of 𝐴, because the 2 Γ— 2 matrix [ 1 ] 11 12 πœ†) ( 21 + πœ”π‘›π‘› πœ†) ( 2 + πœ”π‘›π‘› (2.2) 21 22 (βˆ’ 21 + πœ”π‘›π‘› πœ†) ( 21 + πœ”π‘›π‘› πœ†) is non-singular for all πœ† β‰₯ 0. Moreover, defining 𝑉 (𝑑) = 0 for 𝑑 ∈ / 𝐼𝑛 , we see that the quadratic form ] [ π‘›βˆ’1 ] ∫ 𝑇 [ 11 12 [ π‘›βˆ’1 ] πœ”π‘›π‘› πœ”π‘›π‘› 𝑉+ 𝑉 (𝑑)ℬ𝑉 (𝑑) 𝑑𝑑 = 𝑉+ 𝑉𝑛 21 22 πœ”π‘›π‘› πœ”π‘›π‘› 𝑉𝑛 0 is strictly positive-definite, and so the determinant of (2.2) is bounded below by π‘πœ†2 for πœ† sufficiently large. Thus, Cramer’s rule shows that the norm of the inverse π‘›βˆ’1 , π‘ˆπ‘› ∈ matrix is 𝑂(πœ†βˆ’1 ) as πœ† β†’ ∞, and a simple inductive argument gives π‘ˆ+ 𝐷(𝐴) for 1 ≀ 𝑛 ≀ 𝑁 , implying that π‘ˆ (𝑑) ∈ 𝐷(𝐴) for 0 < 𝑑 ≀ 𝑇 . For π‘ž = 1, we have βˆ₯π‘ˆ βˆ₯𝐼𝑛 = βˆ₯π‘ˆ 𝑛 βˆ₯, so the stability bound with 𝐢1 = 2 follows β–‘ at once from (2.1), and π‘ˆ 𝑛 ∈ 𝐷(𝐴) follows from (1 + πœ”π‘›π‘› πœ†)βˆ’1 = 𝑂(πœ†βˆ’1 ).

DISCONTINUOUS GALERKIN METHOD

1981

The proof above also yields a bound for the jumps in the numerical solution. Corollary 2.2. With 𝐢1 = 4 and 𝐢2 = 16, ( ∫ π‘›βˆ’1 βˆ‘ 𝑗 2 0 βˆ₯[π‘ˆ ] βˆ₯ ≀ πΆπ‘ž βˆ₯π‘ˆ βˆ₯ +

0

𝑗=1

𝑑𝑛

)2 βˆ₯𝑓 (𝑑)βˆ₯ 𝑑𝑑

.

Proof. Apply (2.1).

β–‘

3. Error from the time discretization For our error analysis, we reformulate the discontinuous Galerkin method in terms of a global bilinear form (3.1)

0 0 𝐺𝑁 (π‘ˆ, 𝑋) = βŸ¨π‘ˆ+ , 𝑋+ ⟩+

𝑁 βˆ’1 βˆ‘

𝑛 ⟨[π‘ˆ ]𝑛 , 𝑋+ ⟩

𝑛=1

+

𝑁 ∫ βˆ‘

π‘‘π‘›βˆ’1

𝑛=1

Summing the equations (1.6) gives 0 ⟩+ 𝐺𝑁 (π‘ˆ, 𝑋) = βŸ¨π‘ˆ 0 , 𝑋+

(3.2)

∫

𝑑𝑁

0

𝑑𝑛

[ β€² ( )] βŸ¨π‘ˆ (𝑑), 𝑋(𝑑)⟩ + 𝐴 β„¬π‘ˆ (𝑑), 𝑋(𝑑) 𝑑𝑑.

βŸ¨π‘“ (𝑑), 𝑋(𝑑)⟩ 𝑑𝑑 for all 𝑋 ∈ π’²π‘ž ,

and conversely, by choosing 𝑋 to be identically zero outside 𝐼𝑛 , we see that if π‘ˆ ∈ π’²π‘ž satisfies (3.2), then (1.6) holds for each 𝑛. Since the exact solution 𝑒 has no jumps, ∫ 𝑑𝑁 0 ⟩+ βŸ¨π‘“ (𝑑), 𝑋(𝑑)⟩ 𝑑𝑑 𝐺𝑁 (𝑒, 𝑋) = βŸ¨π‘’0 , 𝑋+ 0

and thus (3.3)

0 ⟩ for all 𝑋 ∈ π’²π‘ž . 𝐺𝑁 (π‘ˆ βˆ’ 𝑒, 𝑋) = βŸ¨π‘ˆ 0 βˆ’ 𝑒0 , 𝑋+

Integration by parts yields an alternative expression for the bilinear form (3.1), (3.4)

𝐺𝑁 (π‘ˆ, 𝑋) = βŸ¨π‘ˆ 𝑁 , 𝑋 𝑁 ⟩ βˆ’

𝑁 βˆ’1 βˆ‘

βŸ¨π‘ˆ 𝑛 , [𝑋]𝑛 ⟩

𝑛=1

+

𝑁 ∫ βˆ‘

𝑛=1

𝑑𝑛

π‘‘π‘›βˆ’1

[

( )] βˆ’βŸ¨π‘ˆ (𝑑), 𝑋 β€² (𝑑)⟩ + 𝐴 β„¬π‘ˆ (𝑑), 𝑋(𝑑) 𝑑𝑑.

For any continuous function 𝑒 : [0, 𝑇 ] β†’ ℍ we define a piecewise-constant interpolant Π𝑒 : [0, 𝑇 ] β†’ 𝒲1 by putting Π𝑒(𝑑) = 𝑒(𝑑𝑛 )

for 𝑑 ∈ 𝐼𝑛 ,

with Π𝑒(0) = 𝑒(0),

β€²

and observe that if 𝑒 is integrable, then the interpolation error has the representation ∫ 𝑑𝑛 (3.5) Π𝑒(𝑑) βˆ’ 𝑒(𝑑) = 𝑒′ (𝑠) 𝑑𝑠 for 𝑑 ∈ 𝐼𝑛 . 𝑑

In the piecewise-linear case, we define Π𝑒 : [0, 𝑇 ] β†’ 𝒲2 by requiring that ∫ 𝑑𝑛 [𝑒(𝑑) βˆ’ Π𝑒(𝑑)] 𝑑𝑑 = 0, (3.6) Π𝑒(𝑑𝑛 ) = 𝑒(𝑑𝑛 ) and π‘‘π‘›βˆ’1

1982

KASSEM MUSTAPHA AND WILLIAM MCLEAN

with Π𝑒(0) = 𝑒(0). Explicitly, we find that (3.7)

Π𝑒(𝑑) = 𝑒(𝑑𝑛 ) +

where 𝑒 ¯𝑛 = π‘˜π‘›βˆ’1

∫ 𝑑𝑛

π‘‘π‘›βˆ’1

¯𝑛 𝑒(𝑑𝑛 ) βˆ’ 𝑒 (𝑑 βˆ’ 𝑑𝑛 ) π‘˜π‘› /2

for 𝑑 ∈ 𝐼𝑛 ,

𝑒(𝑑) 𝑑𝑑, and elementary calculations then show that for 𝑑 ∈ 𝐼𝑛 , ∫

Π𝑒(𝑑) βˆ’ 𝑒(𝑑) = (3.8)

𝑑𝑛

𝑑

∫ =

𝑑𝑛

𝑑

𝑒′ (𝑠) 𝑑𝑠 βˆ’ 2

𝑑𝑛 βˆ’ 𝑑 π‘˜π‘›2

∫

𝑑𝑛 π‘‘π‘›βˆ’1

(𝑠 βˆ’ π‘‘π‘›βˆ’1 )𝑒′ (𝑠) 𝑑𝑠

𝑑𝑛 βˆ’ 𝑑 (𝑑𝑛 βˆ’ 𝑠)𝑒 (𝑠) 𝑑𝑠 + π‘˜π‘›2 β€²β€²

∫

𝑑𝑛 π‘‘π‘›βˆ’1

(𝑠 βˆ’ π‘‘π‘›βˆ’1 )2 𝑒′′ (𝑠) 𝑑𝑠.

Using Ξ , we decompose the error into two terms, (3.9)

π‘ˆ βˆ’ 𝑒 = (π‘ˆ βˆ’ Π𝑒) + (Π𝑒 βˆ’ 𝑒)

and estimate each term separately. The representations (3.5) and (3.8) immediately yield bounds for the second term, ∫ 𝑑𝑛 π‘Ÿβˆ’1 (3.10) βˆ₯Π𝑒 βˆ’ 𝑒βˆ₯𝐼𝑛 ≀ πΆπ‘˜π‘› βˆ₯𝑒(π‘Ÿ) (𝑑)βˆ₯ 𝑑𝑑 for 1 ≀ π‘Ÿ ≀ π‘ž ≀ 2, π‘‘π‘›βˆ’1

and we handle the first term as follows. Theorem 3.1. Let π‘ž ∈ {1, 2}. If 𝑒 is the solution of the initial value problem (1.1) and if π‘ˆ is the approximate solution obtained by the discontinuous Galerkin method (1.6), then βˆ₯π‘ˆ βˆ’ Π𝑒βˆ₯𝐽𝑛 ≀ 𝐢βˆ₯π‘ˆ 0 βˆ’ 𝑒0 βˆ₯ + 𝐢𝑑𝛼 𝑛

∫ 0

𝑑1

𝑑βˆ₯𝐴𝑒′ (𝑑)βˆ₯ 𝑑𝑑 +

𝐢𝑑𝛼 𝑛

𝑛 βˆ‘ 𝑗=2

π‘˜π‘—π‘ž

∫

𝑑𝑛 π‘‘π‘›βˆ’1

βˆ₯𝐴𝑒(π‘ž) (𝑑)βˆ₯ 𝑑𝑑.

Proof. For brevity, we put πœƒ = π‘ˆ βˆ’ Π𝑒 and

πœ‚ = Π𝑒 βˆ’ 𝑒.

The Galerkin orthogonality relation (3.3) implies that 0 ⟩ βˆ’ 𝐺𝑁 (πœ‚, 𝑋) for all 𝑋 ∈ π’²π‘ž , 𝐺𝑁 (πœƒ, 𝑋) = βŸ¨π‘ˆ 0 βˆ’ 𝑒0 , 𝑋+

and by the construction of the interpolant we have πœ‚ 𝑛 = 0 for all 𝑛 β‰₯ 1. Hence, using the alternative expression (3.4) for 𝐺𝑁 , 𝐺𝑁 (πœ‚, 𝑋) =

𝑁 ∫ βˆ‘ 𝑛=1

𝑑𝑛

π‘‘π‘›βˆ’1

[ ( )] βˆ’βŸ¨πœ‚(𝑑), 𝑋 β€² (𝑑)⟩ + 𝐴 β„¬πœ‚(𝑑), 𝑋(𝑑) 𝑑𝑑.

∫ 𝑑𝑛 βŸ¨πœ‚(𝑑), 𝑋 β€² (𝑑)⟩ 𝑑𝑑 = 0 if π‘ž = 1, because 𝑋 β€² (𝑑) is identically zero on 𝐼𝑛 . Moreover, π‘‘π‘›βˆ’1 The same conclusion holds if π‘ž = 2, because 𝑋 β€² (𝑑) is constant on 𝐼𝑛 and hence is orthogonal to the interpolation error. Therefore, πœƒ ∈ π’²π‘ž satisfies ∫ 𝑇 0 0 βŸ¨β„¬π΄πœ‚(𝑑), 𝑋(𝑑)⟩ 𝑑𝑑 for all 𝑋 ∈ π’²π‘ž , (3.11) 𝐺𝑁 (πœƒ, 𝑋) = βŸ¨π‘ˆ βˆ’ 𝑒0 , 𝑋+ ⟩ βˆ’ 0

DISCONTINUOUS GALERKIN METHOD

1983

which has the same form as the equation (3.2) satisfied by π‘ˆ , so we may apply the stability result of Theorem 2.1 and conclude that ( ) ∫ 𝑑𝑛 0 βˆ₯πœƒβˆ₯𝐽𝑛 ≀ 𝐢 βˆ₯π‘ˆ βˆ’ 𝑒0 βˆ₯ + βˆ₯β„¬π΄πœ‚(𝑑)βˆ₯ 𝑑𝑑 for 1 ≀ 𝑛 ≀ 𝑁 . 0

Reversing the order of integration, we find that ∫ 𝑑𝑛 ∫ 𝑑𝑛 ∫ 𝑑 βˆ₯β„¬π΄πœ‚(𝑑)βˆ₯ 𝑑𝑑 ≀ βˆ£π›½(𝑑, 𝑠)∣βˆ₯π΄πœ‚(𝑠)βˆ₯ 𝑑𝑠 𝑑𝑑 0 0 0 ∫ 𝑑𝑛 ∫ 𝑑𝑛 (𝑑 βˆ’ 𝑠)π›Όβˆ’1 𝑑𝑑 βˆ₯π΄πœ‚(𝑠)βˆ₯ 𝑑𝑠 ≀𝐢 0 𝑠 ∫ 𝑑𝑛 ∫ (𝑑𝑛 βˆ’ 𝑠)𝛼 βˆ₯π΄πœ‚(𝑠)βˆ₯ 𝑑𝑠 ≀ 𝐢𝛼 𝑑𝛼 = 𝐢𝛼 𝑛 0

so

(

𝑑𝑛

0

0

βˆ₯π‘ˆ βˆ’ Π𝑒βˆ₯𝐽𝑛 ≀ 𝐢𝛼 βˆ₯π‘ˆ βˆ’ 𝑒0 βˆ₯ +

𝑑𝛼 𝑛

∫

𝑑𝑛 0

βˆ₯π΄πœ‚(𝑠)βˆ₯ 𝑑𝑠,

) βˆ₯π΄πœ‚(𝑑)βˆ₯ 𝑑𝑑

for 1 ≀ 𝑛 ≀ 𝑁 .

When π‘ž = 2, the desired bound follows by using the formula (3.8): ) ∫ 𝑑1 ∫ 𝑑1 (∫ 𝑑1 ∫ 𝑑1 βˆ’ 𝑑 𝑑1 β€² β€² βˆ₯π΄πœ‚(𝑑)βˆ₯ 𝑑𝑑 ≀ βˆ₯𝐴𝑒 (𝑠)βˆ₯ 𝑑𝑠 + 2 2 𝑠βˆ₯𝐴𝑒 (𝑠)βˆ₯ 𝑑𝑠 𝑑𝑑 π‘˜1 0 0 𝑑 0 ∫ 𝑑1 =2 𝑠βˆ₯𝐴𝑒′ (𝑠)βˆ₯ 𝑑𝑠 0

and

∫

𝑑𝑛

𝑑1

βˆ₯π΄πœ‚(𝑑)βˆ₯ 𝑑𝑑 ≀

𝑛 βˆ‘

π‘˜π‘— βˆ₯𝐴𝑒 βˆ’ Π𝐴𝑒βˆ₯𝐼𝑗 ≀ 𝐢

𝑗=2

𝑛 βˆ‘

π‘˜π‘—2

∫

𝑗=2

𝑑𝑗

π‘‘π‘—βˆ’1

βˆ₯𝐴𝑒′′ (𝑑)βˆ₯ 𝑑𝑑.

Similar, but simpler, estimates lead to the result for π‘ž = 1.

β–‘

The next theorem shows that we can obtain 𝑂(π‘˜π‘ž ) accuracy for all 𝑑 ∈ [0, 𝑇 ] provided the mesh grading, as determined by the parameter 𝛾 β‰₯ 1, is sufficiently strong. Theorem 3.2. Let π‘ž ∈ {1, 2} and assume that the step sizes are such that (1.11) and (1.12) hold. If the exact solution 𝑒 satisfies the regularity estimates (1.9) and (1.10), then ⎧ π›ΎπœŽ  1 ≀ 𝛾 < π‘ž/𝜎, βŽ¨π‘˜ , 0 βˆ₯π‘ˆ βˆ’ 𝑒βˆ₯𝐽𝑛 ≀ 𝐢βˆ₯π‘ˆ βˆ’ 𝑒0 βˆ₯ + 𝐢𝑀 Γ— π‘˜π‘ž log(𝑑𝑛 /𝑑1 ), 𝛾 = π‘ž/𝜎,  ⎩ πœŽβˆ’π‘ž/𝛾 π‘ž 𝑑𝑛 π‘˜ , 𝛾 > π‘ž/𝜎. Proof. From (3.10), the assumptions (1.10) and (1.12) give ∫ 𝑑1 ∫ 𝑑1 β€² (3.12) βˆ₯Π𝑒 βˆ’ 𝑒βˆ₯𝐼1 ≀ 𝐢 βˆ₯𝑒 (𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢𝑀 π‘‘πœŽβˆ’1 𝑑𝑑 ≀ 𝐢𝑀 π‘‘πœŽ1 ≀ 𝐢𝑀 π‘˜π›ΎπœŽ 0

0

and, using (1.11) for 𝑛 β‰₯ 2, (3.13)

βˆ₯Π𝑒 βˆ’ 𝑒βˆ₯𝐼𝑛 ≀

πΆπ‘˜π‘›π‘žβˆ’1

∫

𝑑𝑛 π‘‘π‘›βˆ’1

βˆ₯𝑒

(π‘ž)

(𝑑)βˆ₯ 𝑑𝑑 ≀

𝐢𝑀 π‘˜π‘›π‘žβˆ’1

∫

𝑑𝑛

π‘‘π‘›βˆ’1

π‘‘πœŽβˆ’π‘ž 𝑑𝑑

≀ 𝐢𝑀 π‘˜π‘ž π‘‘πœŽβˆ’π‘ž/𝛾 , ≀ 𝐢𝑀 π‘˜π‘›π‘ž π‘‘πœŽβˆ’π‘ž 𝑛 𝑛

1984

KASSEM MUSTAPHA AND WILLIAM MCLEAN

so we may bound the interpolation error as follows: { 1 ≀ 𝛾 ≀ π‘ž/𝜎, π‘˜π›ΎπœŽ , βˆ₯Π𝑒 βˆ’ 𝑒βˆ₯𝐽𝑛 = max βˆ₯Π𝑒 βˆ’ 𝑒βˆ₯𝐼𝑛 ≀ 𝐢𝑀 Γ— πœŽβˆ’π‘ž/𝛾 π‘ž 1≀𝑗≀𝑛 𝑑𝑛 π‘˜ , 𝛾 β‰₯ π‘ž/𝜎. Next, by (1.9) and (1.12), ∫ ∫ 𝑑1 β€² 𝑑βˆ₯𝐴𝑒 (𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢𝑀 0

0

𝑑1

π‘‘πœŽβˆ’1 𝑑𝑑 ≀ 𝐢𝑀 π‘˜π›ΎπœŽ ,

and, using (1.11), ∫ 𝑑𝑗 ∫ 𝑛 𝑛 βˆ‘ βˆ‘ π‘˜π‘—π‘ž βˆ₯𝐴𝑒(π‘ž) (𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢𝑀 π‘˜π‘—π‘ž 𝑗=2

π‘‘π‘—βˆ’1

≀ 𝐢𝑀 π‘˜π‘ž

𝑛 βˆ‘ 𝑗=2

(1βˆ’1/𝛾)π‘ž

𝑗=2

∫

𝑑𝑗

𝑑𝑗

π‘‘π‘—βˆ’1

𝑑𝑗

π‘‘π‘—βˆ’1

π‘‘πœŽβˆ’1βˆ’π‘ž 𝑑𝑑

π‘‘πœŽβˆ’1βˆ’π‘ž 𝑑𝑑 ≀ 𝐢𝑀 π‘˜π‘ž

∫

𝑑𝑛

𝑑1

π‘‘πœŽβˆ’π‘ž/π›Ύβˆ’1 𝑑𝑑,

and the result follows from (3.9) and Theorem 3.1, after noting that ⎧ βˆ’(π‘ž/π›Ύβˆ’πœŽ)  ≀ πΆπ‘˜βˆ’(π‘žβˆ’π›ΎπœŽ) , 1 ≀ 𝛾 < π‘ž/𝜎, ∫ 𝑑𝑛 βŽ¨πΆπ‘‘1 πœŽβˆ’π‘ž/π›Ύβˆ’1 𝑑 𝑑𝑑 ≀ 𝐢 log(𝑑𝑛 /𝑑1 ), 𝛾 = π‘ž/𝜎,  𝑑1 ⎩ πœŽβˆ’π‘ž/𝛾 𝐢𝑑𝑛 , 𝛾 > π‘ž/𝜎. β–‘ 4. Superconvergence at the nodes We now show that for π‘ž = 2 the numerical solution achieves a faster convergence rate at 𝑑 = 𝑑𝑛 , depending on the quantities ) (∫ 𝑑𝑗 ∫ 𝑑𝑛     βˆ£π›½(𝑠, 𝑑)∣ 𝑑𝑠 + for 1 ≀ 𝑗 ≀ 𝑛 ≀ 𝑁 . 𝛽(𝑠, 𝑑) βˆ’ 𝛽(𝑠, 𝑑𝑗 ) 𝑑𝑠 (4.1) πœ–π‘›π‘— = max π‘‘βˆˆπΌπ‘—

𝑑

𝑑𝑗

Theorem 4.1. If 𝑒 is the solution of the initial value problem (1.1) and if π‘ˆ is the approximate solution obtained by the piecewise-linear (π‘ž = 2) discontinuous Galerkin method (1.6), then ( ) ∫ 𝑑1 ∫ 𝑑𝑗 𝑛 βˆ‘ 𝑑βˆ₯𝐴𝑒′ (𝑑)βˆ₯ 𝑑𝑑 + πœ–π‘›π‘— π‘˜π‘—2 βˆ₯𝐴𝑒′′ (𝑑)βˆ₯ 𝑑𝑑 . βˆ₯π‘ˆ 𝑛 βˆ’ 𝑒(𝑑𝑛 )βˆ₯ ≀ 𝐢 βˆ₯π‘ˆ 0 βˆ’ 𝑒0 βˆ₯ + πœ–π‘›1 0

𝑗=2

π‘‘π‘—βˆ’1

Proof. Let 𝑧 be the solution of the dual problem βˆ’π‘§ β€² + ℬ βˆ— 𝐴𝑧 = 0 for 0 ≀ 𝑑 ≀ 𝑇 , with 𝑧(𝑇 ) = 𝑧𝑇 , βˆ«π‘‡ where ℬ βˆ— 𝑣(𝑑) = 𝑑 𝛽(𝑠, 𝑑)𝑣(𝑠) 𝑑𝑠. Since 𝑧 has no jumps and since ∫ 𝑇 ∫ 𝑇 [ ( )] β€² βŸ¨βˆ’π‘£(𝑑), 𝑧 (𝑑)⟩ + 𝐴 ℬ𝑣(𝑑), 𝑧(𝑑) 𝑑𝑑 = βŸ¨π‘£(𝑑), βˆ’π‘§ β€² (𝑑) + ℬ βˆ— 𝐴𝑧(𝑑)⟩ 𝑑𝑑 = 0, (4.2)

0

0

the formula (3.4) yields the identity 𝐺𝑁 (𝑣, 𝑧) = βŸ¨π‘£(𝑇 ), 𝑧𝑇 ⟩ for all piecewise-continuous 𝑣(𝑑). Let 𝑍 ∈ 𝒲2 denote the approximate solution of (4.2) given by the discontinuous Galerkin method 𝐺𝑁 (𝑉, 𝑍) = βŸ¨π‘‰ 𝑁 , 𝑧𝑇 ⟩ for all 𝑉 ∈ 𝒲2 ,

DISCONTINUOUS GALERKIN METHOD

1985

and let πœƒ = π‘ˆ βˆ’ Π𝑒 and πœ‚ = Π𝑒 βˆ’ 𝑒, as before, so that π‘ˆ βˆ’ 𝑒 = πœƒ + πœ‚. Since 𝑒(𝑑𝑁 ) = Π𝑒(𝑑𝑁 ), by taking 𝑉 = πœƒ we see from (3.3) that 0 βŸ¨π‘ˆ 𝑁 βˆ’ 𝑒(𝑑𝑁 ), 𝑧𝑇 ⟩ = βŸ¨πœƒ 𝑁 , 𝑧𝑇 ⟩ = 𝐺𝑁 (πœƒ, 𝑍) = βŸ¨π‘ˆ 0 βˆ’ 𝑒0 , 𝑍+ ⟩ βˆ’ 𝐺𝑁 (πœ‚, 𝑍). ∫ 𝑑 𝑛 βŸ¨πœ‚(𝑑), 𝑍 β€² (𝑑)⟩ 𝑑𝑑 = 0 for all 𝑛, so the formula (3.4) shows Moreover, πœ‚ 𝑛 = 0 and π‘‘π‘›βˆ’1 that ∫ 𝑑𝑛 𝑁 βˆ‘ 𝛿𝑛 , where 𝛿𝑛 = βŸ¨π΄πœ‚(𝑑), ℬ βˆ— 𝑍(𝑑)⟩ 𝑑𝑑. 𝐺𝑁 (πœ‚, 𝑍) =

(4.3)

π‘‘π‘›βˆ’1

𝑛=1

The orthogonality property of Ξ  implies that ∫ 𝑑𝑛 𝛿𝑛 = βŸ¨π΄πœ‚(𝑑), ℬ βˆ— 𝑍(𝑑) βˆ’ ℬ βˆ— 𝑍(𝑑𝑛 )⟩ 𝑑𝑑, π‘‘π‘›βˆ’1

and for 𝑑 ∈ 𝐼𝑛 ,

∫ 𝑇  ∫ 𝑇    βˆ₯ℬ 𝑍(𝑑) βˆ’ ℬ 𝑍(𝑑𝑛 )βˆ₯ =  𝛽(𝑠, 𝑑)𝑍(𝑠) 𝑑𝑠 βˆ’ 𝛽(𝑠, 𝑑𝑛 )𝑍(𝑠) 𝑑𝑠  𝑑 𝑑𝑛 ∫ 𝑑𝑛  ∫ 𝑇   [ ] = 𝛽(𝑠, 𝑑) βˆ’ 𝛽(𝑠, 𝑑𝑛 ) 𝑍(𝑠) 𝑑𝑠 𝛽(𝑠, 𝑑)𝑍(𝑠) 𝑑𝑠 +   ≀ πœ–π‘ 𝑛 βˆ₯𝑍βˆ₯𝐽𝑁 , βˆ—

so

βˆ—

𝑑

𝑑𝑛

∫ βˆ₯𝛿𝑛 βˆ₯ ≀ πœ–π‘ 𝑛 βˆ₯𝑍βˆ₯𝐽𝑁

Using (3.10) we see that ∫ 𝑑𝑛 ∫ βˆ₯π΄πœ‚(𝑑)βˆ₯ 𝑑𝑑 ≀ πΆπ‘˜π‘›2 π‘‘π‘›βˆ’1

and using (3.8) we find ∫

𝑑1 0

𝑑𝑛

π‘‘π‘›βˆ’1

𝑑𝑛

βˆ₯𝐴𝑒′′ (𝑑)βˆ₯ 𝑑𝑑 for 𝑛 β‰₯ 2,

π‘‘π‘›βˆ’1

∫ βˆ₯π΄πœ‚(𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢

βˆ₯π΄πœ‚(𝑑)βˆ₯ 𝑑𝑑.

𝑑1

0

𝑑βˆ₯𝐴𝑒′ (𝑑)βˆ₯ 𝑑𝑑.

Stability of the discontinuous Galerkin method for the dual problem means that 0 βˆ₯ ≀ βˆ₯𝑍βˆ₯𝐽𝑁 ≀ 𝐢βˆ₯𝑧𝑇 βˆ₯. Thus, βˆ₯𝑍+ ( ∫ 𝑑1 𝑁 𝑑βˆ₯𝐴𝑒′ (𝑑)βˆ₯ 𝑑𝑑 βˆ£βŸ¨π‘ˆ βˆ’ 𝑒(𝑑𝑁 ), 𝑧𝑇 ⟩∣ ≀ 𝐢 βˆ₯π‘ˆ 0 βˆ’ 𝑒0 βˆ₯ + πœ–π‘ 1 0

+

𝑁 βˆ‘ 𝑛=2

πœ–π‘ 𝑛 π‘˜π‘›2

∫

𝑑𝑛

π‘‘π‘›βˆ’1

) βˆ₯𝐴𝑒 (𝑑)βˆ₯ 𝑑𝑑 βˆ₯𝑧𝑇 βˆ₯, β€²β€²

and since 𝑧𝑇 ∈ ℍ is arbitrary we obtain the desired bound for βˆ₯π‘ˆ 𝑁 βˆ’ 𝑒(𝑑𝑁 )βˆ₯.

β–‘

If 𝛽(𝑑, 𝑠) and 𝑒(𝑑) are smooth, then πœ–π‘›π‘— = 𝑂(π‘˜) and so βˆ₯π‘ˆ 𝑛 βˆ’π‘’(𝑑𝑛 )βˆ₯ = 𝑂(π‘˜3 ). For the specific non-smooth kernel (1.3), we have the same convergence rate provided the mesh grading is sufficiently strong. Corollary 4.2. Let π‘ž = 2 and 𝛽(𝑑, 𝑠) = (𝑑 βˆ’ 𝑠)π›Όβˆ’1 /𝛀 (𝛼), with 0 < 𝛼 < 1. If 𝑒 satisfies the regularity assumption (1.9), and if the time mesh satisfies the conditions (1.11) and (1.12), then, with 𝛾 βˆ— = 3/(𝜎 + 𝛼), { π‘˜π›Ύ(𝜎+𝛼) , 1 ≀ 𝛾 < 𝛾 βˆ— , 𝑛 0 βˆ₯π‘ˆ βˆ’ 𝑒(𝑑𝑛 )βˆ₯ ≀ 𝐢βˆ₯π‘ˆ βˆ’ 𝑒0 βˆ₯ + 𝐢𝑀 Γ— 𝛾 β‰₯ π›Ύβˆ—. π‘˜3 ,

1986

KASSEM MUSTAPHA AND WILLIAM MCLEAN

Proof. Noting that 𝛽(𝑠, 𝑑) β‰₯ 𝛽(𝑠, 𝑑𝑗 ) for 𝑑 ≀ 𝑑𝑗 ≀ 𝑠, we have ∫ 𝑑𝑛 ∫ 𝑑𝑗   𝛽(𝑠, 𝑑) βˆ’ 𝛽(𝑠, 𝑑𝑗 ) 𝑑𝑠 βˆ£π›½(𝑠, 𝑑)∣ 𝑑𝑠 + 𝑑

𝑑𝑗

∫ = ∫

𝑑𝑗 𝑑

𝛽(𝑠, 𝑑) 𝑑𝑠 +

𝑑𝑛

𝑑𝑛 (

𝑑𝑗

) 𝛽(𝑠, 𝑑) βˆ’ 𝛽(𝑠, 𝑑𝑗 ) 𝑑𝑠

∫

𝑑𝑛

(𝑠 βˆ’ 𝑑𝑗 )π›Όβˆ’1 (𝑑𝑛 βˆ’ 𝑑)𝛼 βˆ’ (𝑑𝑛 βˆ’ 𝑑𝑗 )𝛼 𝑑𝑠 = , 𝛀 (𝛼) 𝛀 (𝛼 + 1) 𝑑 𝑑𝑗 ] [ and so πœ–π‘›π‘— = (𝑑𝑛 βˆ’ π‘‘π‘—βˆ’1 )𝛼 βˆ’ (𝑑𝑛 βˆ’ 𝑑𝑗 )𝛼 /𝛀 (𝛼 + 1). Since 𝑋 𝛼 βˆ’ π‘Œ 𝛼 ≀ (𝑋 βˆ’ π‘Œ )𝛼 for any 𝑋 β‰₯ π‘Œ β‰₯ 0, we see that πœ–π‘›π‘— ≀ π‘˜π‘—π›Ό /𝛀 (𝛼 + 1), with equality when 𝑗 = 𝑛. However, for 𝑗 < 𝑛 we obtain a sharper bound by applying the mean value theorem: πœ–π‘›π‘— ≀ (𝑑𝑛 βˆ’ 𝑑𝑗 )π›Όβˆ’1 π‘˜π‘— /𝛀 (𝛼). Thus, using (1.9), (1.11) and (1.12), we have ∫ 𝑑1 ∫ 𝑑1 β€² 𝛼 πœ–π‘›1 𝑑βˆ₯𝐴𝑒 (𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢𝑀 π‘˜1 π‘‘πœŽβˆ’1 𝑑𝑑 ≀ 𝐢𝑀 π‘˜1𝛼+𝜎 ≀ 𝐢𝑀 π‘˜π›Ύ(𝛼+𝜎) =

π›Όβˆ’1

∫

(𝑠 βˆ’ 𝑑) 𝛀 (𝛼)

𝑑𝑠 βˆ’

0

0

and, for 2 ≀ 𝑗 ≀ 𝑛 βˆ’ 1, ∫ 𝑑𝑗 ∫ 2 β€²β€² 3 π›Όβˆ’1 πœ–π‘›π‘— π‘˜π‘— βˆ₯𝐴𝑒 (𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢𝑀 π‘˜π‘— (𝑑𝑛 βˆ’ 𝑑𝑗 ) π‘‘π‘—βˆ’1

≀ 𝐢𝑀 π‘˜3 (𝑑𝑗 )3(1βˆ’1/𝛾) (𝑑𝑛 βˆ’ 𝑑𝑗 )π›Όβˆ’1 with πœ–π‘›π‘› π‘˜π‘›2

∫

𝑑𝑛

π‘‘π‘›βˆ’1

∫

𝑑𝑗

π‘‘π‘—βˆ’1

𝑑𝑗

π‘‘π‘—βˆ’1

π‘‘πœŽβˆ’3 𝑑𝑑

π‘‘πœŽβˆ’3 𝑑𝑑 ≀ 𝐢𝑀 π‘˜3

βˆ₯𝐴𝑒′′ (𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢𝑀 π‘˜π‘›2+𝛼

∫

𝑑𝑛

π‘‘π‘›βˆ’1

∫

𝑑𝑗 π‘‘π‘—βˆ’1

(𝑑𝑛 βˆ’ 𝑑)π›Όβˆ’1 π‘‘πœŽβˆ’3/𝛾 𝑑𝑑,

π‘‘πœŽβˆ’3 𝑑𝑑 ≀ 𝐢𝑀 π‘˜π‘›3+𝛼 π‘‘πœŽβˆ’3 𝑛

( )𝛼 ≀ 𝐢𝑀 π‘˜3 π‘˜π‘› /𝑑𝑛 𝑑𝑛𝛼+πœŽβˆ’3/𝛾 ≀ 𝐢𝑀 𝑑𝛼+πœŽβˆ’3/𝛾 π‘˜3 . 𝑛

Using the substitution 𝑑 = 𝑑𝑛 𝑧, we find that ∫ 𝑑𝑗 ∫ π‘‘π‘›βˆ’1 π‘›βˆ’1 βˆ‘ πœ–π‘›π‘— π‘˜π‘—2 βˆ₯𝐴𝑒′′ (𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢𝑀 π‘˜3 (𝑑𝑛 βˆ’ 𝑑)π›Όβˆ’1 π‘‘πœŽβˆ’3/𝛾 𝑑𝑑 π‘‘π‘—βˆ’1

𝑗=2

𝑑1

=

𝐢𝑀 π‘˜3 𝑑𝛼+πœŽβˆ’3/𝛾 𝑛

∫

π‘‘π‘›βˆ’1 /𝑑𝑛

𝑑1 /𝑑𝑛

(1 βˆ’ 𝑧)π›Όβˆ’1 𝑧 πœŽβˆ’3/𝛾 𝑑𝑧,

and an elementary calculation yields ∫

π‘‘π‘›βˆ’1 /𝑑𝑛

𝑑1 /𝑑𝑛

⎧ 1+πœŽβˆ’3/𝛾  , ⎨(𝑑1 /𝑑𝑛 ) π›Όβˆ’1 πœŽβˆ’3/𝛾 (1 βˆ’ 𝑧) 𝑧 𝑑𝑧 ≀ 𝐢 Γ— log(𝑑𝑛 /𝑑1 ),  ⎩ 1,

𝜎 βˆ’ 3/𝛾 < βˆ’1, 𝜎 βˆ’ 3/𝛾 = βˆ’1, 𝜎 βˆ’ 3/𝛾 > βˆ’1.

Theorem 4.1 now shows that the nodal error βˆ₯π‘ˆ 𝑛 βˆ’π‘’(𝑑𝑛 )βˆ₯ is bounded by 𝐢βˆ₯π‘ˆ 0 βˆ’π‘’0 βˆ₯ plus ⎧ π›Όβˆ’1 𝛾(1+𝜎)  , 1 ≀ 𝛾 < 3/(1 + 𝜎), ⎨ 𝑑𝑛 π‘˜ 𝛾(𝛼+𝜎) π›Όβˆ’1 3 𝐢𝑀 π‘˜ + 𝐢𝑀 Γ— 𝑑𝑛 π‘˜ log(𝑑𝑛 /𝑑1 ), 𝛾 = 3/(1 + 𝜎),  ⎩ 𝛼+πœŽβˆ’3/𝛾 3 𝑑𝑛 π‘˜ , 𝛾 > 3/(1 + 𝜎), which is 𝑂(π‘˜3 ) for 𝛾 β‰₯ 𝛾 βˆ— = 3/(𝛼 + 𝜎) > 3/(1 + 𝜎). If 1 ≀ 𝛾 < 3/(1 + 𝜎), then π‘‘π›Όβˆ’1 π‘˜π›Ύ(1+𝜎) = π‘˜π›Ύ(𝛼+𝜎) (π‘˜π›Ύ /𝑑𝑛 )1βˆ’π›Ό ≀ πΆπ‘˜π›Ύ(𝛼+𝜎) (𝑑1 /𝑑𝑛 )1βˆ’π›Ό ≀ πΆπ‘˜π›Ύ(𝛼+𝜎) . 𝑛

DISCONTINUOUS GALERKIN METHOD

1987

Likewise, if 𝛾 = 3/(1 + 𝜎), then π‘˜3 log(𝑑𝑛 /𝑑1 ) = π‘˜π›Ύ(𝛼+𝜎) (π‘˜π›Ύ /𝑑𝑛 )1βˆ’π›Ό log(𝑑𝑛 /𝑑1 ) π‘‘π›Όβˆ’1 𝑛 ≀ πΆπ‘˜π›Ύ(𝛼+𝜎) (𝑑1 /𝑑𝑛 )1βˆ’π›Ό log(𝑑𝑛 /𝑑1 ) ≀ πΆπ‘˜π›Ύ(𝛼+𝜎) , and in the remaining case, 3/(1 + 𝜎) < 𝛾 < 𝛾 βˆ— = 3/(𝛼 + 𝜎), we have 𝑑𝑛𝛼+πœŽβˆ’3/𝛾 π‘˜3 = π‘˜π›Ύ(𝛼+𝜎) (π‘˜π›Ύ /𝑑𝑛 )3/π›Ύβˆ’(𝛼+𝜎) ≀ πΆπ‘˜π›Ύ(𝛼+𝜎) (𝑑1 /𝑑𝑛 )3/π›Ύβˆ’(𝛼+𝜎) ≀ πΆπ‘˜π›Ύ(𝛼+𝜎) . β–‘ 5. Space discretization We assume now that ℍ = 𝐿2 (Ξ©) for a bounded, convex polyhedral domain Ξ©, and that 𝐴 is a strongly-elliptic, second-order, selfadjoint partial differential operator. In the case of homogeneous Dirichlet boundary conditions, we have 𝐷(π΄π‘Ÿ/2 ) = { 𝑣 ∈ 𝐻 π‘Ÿ (Ξ©) : 𝑣 = 0 on βˆ‚Ξ© } for 1/2 < π‘Ÿ ≀ 2, whereas for homogeneous Neumann boundary conditions, 𝐷(π΄π‘Ÿ/2 ) = 𝐻 π‘Ÿ (Ξ©). Construct a continuous, piecewise-linear finite element space π‘†β„Ž βŠ† 𝐷(𝐴1/2 ) on a quasi-uniform partition of the domain Ξ©, with β„Ž denoting the maximum diameter of the elements. We then have the approximation property ( ) min βˆ₯𝑣 βˆ’ πœ’βˆ₯ + β„Žβˆ₯βˆ‡(𝑣 βˆ’ πœ’)βˆ₯ ≀ πΆβ„Ž2 βˆ₯𝑣βˆ₯2 for 𝑣 ∈ 𝐷(𝐴), πœ’βˆˆπ‘†β„Ž

where we use the abbreviation βˆ₯𝑣βˆ₯π‘Ÿ = βˆ₯𝑣βˆ₯𝐻 π‘Ÿ (Ξ©) . Based on the weak formulation of the initial value problem (1.1), we define a spatially-discrete, approximate solution π‘’β„Ž : [0, 𝑇 ] β†’ π‘†β„Ž by requiring ∫ 𝑑 ( ) βŸ¨π‘’β€²β„Ž (𝑑), πœ’βŸ© + 𝛽(𝑑, 𝑠)𝐴 π‘’β„Ž (𝑠), πœ’ 𝑑𝑠 = βŸ¨π‘“ (𝑑), πœ’βŸ© for 0 ≀ 𝑑 ≀ 𝑇 and all πœ’ ∈ π‘†β„Ž , 0

with π‘’β„Ž (0) = 𝑒0β„Ž β‰ˆ 𝑒0 for a suitable 𝑒0β„Ž ∈ π‘†β„Ž . This semi-discrete solution satisfies the error bound [12, Theorem 2.1] ∫ 𝑑 2 βˆ₯π‘’β„Ž (𝑑) βˆ’ 𝑒(𝑑)βˆ₯ ≀ βˆ₯𝑒0β„Ž βˆ’ 𝑒0 βˆ₯ + πΆβ„Ž βˆ₯𝑒′ (𝑠)βˆ₯2 𝑑𝑠 for 0 ≀ 𝑑 ≀ 𝑇 . 0

Let β„™π‘ž (π‘†β„Ž ) denote the space of polynomials of degree strictly less than π‘ž with coefficients in π‘†β„Ž , and define the corresponding trial space of piecewise-polynomials π’²π‘ž (π‘†β„Ž ). Thus, a function 𝑋(π‘₯, 𝑑) in π’²π‘ž (π‘†β„Ž ) is continuous in π‘₯ but may be discontinuous at 𝑑 = 𝑑𝑛 . Applying the discontinuous Galerkin method in time, we arrive at a fully-discrete numerical solution π‘ˆβ„Ž : [0, 𝑇 ] β†’ π’²π‘ž (π‘†β„Ž ) defined by ∫ 𝑑𝑁 0 ⟩+ βŸ¨π‘“ (𝑑), 𝑋(𝑑)⟩ 𝑑𝑑 for all 𝑋 ∈ π’²π‘ž (π‘†β„Ž ), 𝐺𝑁 (π‘ˆβ„Ž , 𝑋) = βŸ¨π‘ˆβ„Ž0 , 𝑋+ (5.1) 0 π‘ˆβ„Ž (0) = π‘ˆβ„Ž0 , for a suitable π‘ˆβ„Ž0 ∈ π‘†β„Ž with π‘ˆβ„Ž0 β‰ˆ 𝑒0 ; cf. (3.2). In place of (3.9), we now decompose the error as (5.2)

π‘ˆβ„Ž βˆ’ 𝑒 = (π‘ˆβ„Ž βˆ’ Ξ π‘…β„Ž 𝑒) + (Ξ π‘…β„Ž 𝑒 βˆ’ 𝑒),

1988

KASSEM MUSTAPHA AND WILLIAM MCLEAN

where π‘…β„Ž : 𝐷(𝐴1/2 ) β†’ π‘†β„Ž is the Ritz projector for the (strictly) positive-definite bilinear form 𝐴(𝑒, 𝑣) + βŸ¨π‘’, π‘£βŸ©; thus, 𝐴(π‘…β„Ž 𝑣, πœ’) + βŸ¨π‘…β„Ž 𝑣, πœ’βŸ© = 𝐴(𝑣, πœ’) + βŸ¨π‘£, πœ’βŸ© for all πœ’ ∈ π‘†β„Ž .

(5.3)

(The term βŸ¨π‘’, π‘£βŸ© in the bilinear form is needed only if 𝐴 has a zero eigenvalue.) Theorem 5.1. Let π‘ž ∈ {1, 2}. If 𝑒 is the solution of the initial value problem (1.1), and if π‘ˆβ„Ž ∈ π’²π‘ž (π‘†β„Ž ) is the approximate solution defined by (5.1), then ( ∫ 𝑑𝑛 βˆ₯π‘ˆβ„Ž βˆ’ Ξ π‘…β„Ž 𝑒βˆ₯𝐽𝑛 ≀ 𝐢𝑇 βˆ₯π‘ˆβ„Ž0 βˆ’ π‘…β„Ž 𝑒0 βˆ₯ + βˆ₯𝑒0 βˆ’ π‘…β„Ž 𝑒0 βˆ₯ + βˆ₯𝑒′ (𝑑) βˆ’ π‘…β„Ž 𝑒′ (𝑑)βˆ₯ 𝑑𝑑 ∫ +

𝑑1 0

β€²

𝑑βˆ₯𝐴𝑒 (𝑑)βˆ₯ 𝑑𝑑 +

𝑛 βˆ‘ 𝑗=2

∫

π‘˜π‘—π‘ž

0

𝑑𝑗

π‘‘π‘—βˆ’1

βˆ₯𝐴𝑒

(π‘ž)

)

(𝑑)βˆ₯ 𝑑𝑑

for 1 ≀ 𝑛 ≀ 𝑁 .

Proof. The Galerkin orthogonality property (3.3) now takes the form 0 ⟩ 𝐺𝑁 (π‘ˆβ„Ž βˆ’ 𝑒, 𝑋) = βŸ¨π‘ˆβ„Ž0 βˆ’ 𝑒0 , 𝑋+

(5.4)

for all 𝑋 ∈ π’²π‘ž (π‘†β„Ž ),

and for brevity we let π‘Š = Ξ π‘…β„Ž 𝑒 and

πœ‰ = π‘…β„Ž 𝑒 βˆ’ 𝑒.

Adapting the proof of Theorem 3.1, we see from (5.4) that 0 ⟩ βˆ’ 𝐺𝑁 (π‘Š βˆ’ 𝑒, 𝑋) for all 𝑋 ∈ π’²π‘ž (π‘†β„Ž ), (5.5) 𝐺𝑁 (π‘ˆβ„Ž βˆ’ π‘Š, 𝑋) = βŸ¨π‘ˆβ„Ž0 βˆ’ 𝑒0 , 𝑋+

and, because π‘Š 𝑛 = π‘…β„Ž 𝑒(𝑑𝑛 ), the formula (3.4) gives 𝐺𝑁 (π‘Š βˆ’ 𝑒, 𝑋) = βŸ¨πœ‰ 𝑁 , 𝑋 𝑁 ⟩ βˆ’

𝑁 βˆ’1 βˆ‘

βŸ¨πœ‰ 𝑛 , [𝑋]𝑛 ⟩

𝑛=1

+

𝑁 ∫ βˆ‘ 𝑛=1

∫ 𝑑𝑛

∫ 𝑑𝑛

𝑑𝑛 π‘‘π‘›βˆ’1

[ ( )] βˆ’βŸ¨π‘Š βˆ’ 𝑒, 𝑋 β€² ⟩ + 𝐴 ℬ(π‘Š βˆ’ 𝑒), 𝑋 𝑑𝑑.

Since π‘‘π‘›βˆ’1 βŸ¨π‘Š βˆ’ π‘…β„Ž 𝑒, 𝑋 β€² ⟩ 𝑑𝑑 = π‘‘π‘›βˆ’1 ⟨Π(π‘…β„Ž 𝑒) βˆ’ (π‘…β„Ž 𝑒), 𝑋 β€² ⟩ 𝑑𝑑 = 0, an integration by parts shows that ∫ 𝑑𝑛 ∫ 𝑑𝑛 ∫ 𝑑𝑛 βˆ’βŸ¨π‘Š βˆ’ 𝑒, 𝑋 β€² ⟩ 𝑑𝑑 = βˆ’βŸ¨π‘…β„Ž 𝑒 βˆ’ 𝑒, 𝑋 β€² ⟩ 𝑑𝑑 = βˆ’βŸ¨πœ‰, 𝑋 β€² ⟩ 𝑑𝑑 π‘‘π‘›βˆ’1

π‘‘π‘›βˆ’1

π‘‘π‘›βˆ’1 ∫ 𝑑𝑛

π‘›βˆ’1 = βˆ’βŸ¨πœ‰ 𝑛 , 𝑋 𝑛 ⟩ + βŸ¨πœ‰ π‘›βˆ’1 , 𝑋+ ⟩+

π‘‘π‘›βˆ’1

βŸ¨πœ‰ β€² , π‘‹βŸ© 𝑑𝑑,

and, with πœ‚ = Π𝑒 βˆ’ 𝑒, the definition of the Ritz projector gives ) ( ) ( 𝐴 (π‘Š βˆ’ 𝑒)(𝑠), 𝑋(𝑑) = 𝐴 π‘…β„Ž Π𝑒(𝑠) βˆ’ 𝑒(𝑠), 𝑋(𝑑) ( ) = 𝐴 (Π𝑒 βˆ’ 𝑒)(𝑠), 𝑋(𝑑) + ⟨Π(𝑒 βˆ’ π‘…β„Ž 𝑒)(𝑠), 𝑋(𝑑)⟩ = βŸ¨π΄πœ‚(𝑠) βˆ’ Ξ πœ‰(𝑠), 𝑋(𝑑)⟩, so 𝐺𝑁 (π‘Š βˆ’ 𝑒, 𝑋) = βŸ¨πœ‰

0

Thus, from (5.5), 𝐺𝑁 (π‘ˆβ„Ž βˆ’ π‘Š, 𝑋) =

βŸ¨π‘ˆβ„Ž0

βˆ’

0 , 𝑋+ ⟩

∫ +

𝑑𝑁

0

0 π‘…β„Ž 𝑒0 , 𝑋+ ⟩

βŸ¨πœ‰ β€² + β„¬π΄πœ‚ βˆ’ β„¬Ξ πœ‰, π‘‹βŸ© 𝑑𝑑. ∫

βˆ’

𝑑𝑁 0

βŸ¨πœ‰ β€² + β„¬π΄πœ‚ βˆ’ β„¬Ξ πœ‰, π‘‹βŸ© 𝑑𝑑

DISCONTINUOUS GALERKIN METHOD

1989

for all 𝑋 ∈ π’²π‘ž (π‘†β„Ž ); cf. (3.11). Stability of the discontinuous Galerkin method (Theorem 2.1 with ℍ = π‘†β„Ž ) now yields the estimate ( ) ∫ 𝑑𝑛 0 β€² βˆ₯πœ‰ + β„¬π΄πœ‚ βˆ’ β„¬Ξ πœ‰βˆ₯ 𝑑𝑑 . βˆ₯π‘ˆβ„Ž βˆ’ π‘Š βˆ₯𝐽𝑛 ≀ 𝐢 βˆ₯π‘ˆβ„Ž βˆ’ π‘…β„Ž 𝑒0 βˆ₯ + 0

∫ 𝑑𝑛

We already estimated the term 0 βˆ₯β„¬π΄πœ‚βˆ₯ 𝑑𝑑 in Theorem 3.1 and, for the remaining terms in the integral, we apply the bound βˆ₯Π𝑣βˆ₯𝐼𝑛 ≀ 𝐢βˆ₯𝑣βˆ₯𝐼𝑛 and arrive at ) ( ∫ 𝑑𝑛 ∫ 𝑑𝑛 ∫ 𝑑𝑛 β€² β€² 𝛼+1 β€² βˆ₯πœ‰ (𝑑) βˆ’ β„¬Ξ πœ‰βˆ₯ 𝑑𝑑 ≀ βˆ₯πœ‰ βˆ₯ 𝑑𝑑 + 𝐢𝑑𝑛 βˆ₯πœ‰βˆ₯𝐽𝑛 ≀ 𝐢𝑇 βˆ₯πœ‰(0)βˆ₯ + βˆ₯πœ‰ βˆ₯ 𝑑𝑑 . 0

0

0

β–‘ We can now show that the space discretisation leads to an additional error of order β„Ž2 β„“(π‘˜) compared with the error bound of Theorem 3.2; recall from (1.15) that β„“(π‘˜) = max(1, log π‘˜βˆ’1 ). Theorem 5.2. Let π‘ž ∈ {1, 2} and assume that the time mesh is such that (1.11) and (1.12) hold. If the exact solution 𝑒 satisfies the regularity estimates (1.9), (1.10) and (1.14), then, for 1 ≀ 𝑛 ≀ 𝑁 and with 𝐢 = 𝐢𝑇 , ⎧ π›ΎπœŽ  1 ≀ 𝛾 < π‘ž/𝜎, βŽ¨π‘˜ , 0 2 βˆ₯π‘ˆβ„Ž βˆ’ 𝑒βˆ₯𝐽𝑛 ≀ 𝐢βˆ₯π‘ˆβ„Ž βˆ’ 𝑒0 βˆ₯ + 𝐢𝑀 β„Ž β„“(𝑑𝑛 /𝑑1 ) + 𝐢𝑀 Γ— π‘˜π‘ž β„“(𝑑𝑛 /𝑑1 ), 𝛾 = π‘ž/𝜎,  ⎩ π‘ž 𝛾 > π‘ž/𝜎. π‘˜ , Proof. Recall that

βˆ₯𝑣 βˆ’ π‘…β„Ž 𝑣βˆ₯ ≀ πΆβ„Ž2 βˆ₯𝑣βˆ₯2 . To estimate the second term Ξ π‘…β„Ž 𝑒 βˆ’ 𝑒 in the decomposition (5.2), we again write πœ‰ = π‘…β„Ž 𝑒 βˆ’ 𝑒 and then use βˆ₯Π𝑣βˆ₯𝐽𝑛 ≀ 𝐢βˆ₯𝑣βˆ₯𝐽𝑛 to obtain ∫ 𝑑𝑛 βˆ₯πœ‰ β€² βˆ₯ 𝑑𝑑. βˆ₯Ξ π‘…β„Ž 𝑒 βˆ’ 𝑒βˆ₯𝐽𝑛 = βˆ₯Π𝑒 βˆ’ 𝑒 + Ξ πœ‰βˆ₯𝐽𝑛 ≀ βˆ₯Π𝑒 βˆ’ 𝑒βˆ₯𝐽𝑛 + 𝐢βˆ₯πœ‰(0)βˆ₯ + 𝐢 0

In view of Theorems 3.2 and 5.1, and the fact that βˆ₯π‘ˆβ„Ž0 βˆ’ π‘…β„Ž 𝑒0 βˆ₯ ≀ βˆ₯π‘ˆβ„Ž0 βˆ’ 𝑒0 βˆ₯ + βˆ₯𝑒0 βˆ’ π‘…β„Ž 𝑒0 βˆ₯, it suffices to note that βˆ₯πœ‰(0)βˆ₯ ≀ πΆβ„Ž2 βˆ₯𝑒0 βˆ₯2 and, using (1.10), (1.11), (1.12) and (1.14), ∫ 𝑑1 ∫ 𝑑𝑛 ∫ 𝑑𝑛 β€² β€² βˆ₯πœ‰ (𝑑)βˆ₯ 𝑑𝑑 ≀ 𝐢 βˆ₯𝑒 (𝑑)βˆ₯ 𝑑𝑑 + πΆβ„Ž2 βˆ₯𝑒′ (𝑑)βˆ₯2 𝑑𝑑 0

0

∫

≀ 𝐢𝑀 ≀ 𝐢𝑀 π‘˜

𝑑1

0 π›ΎπœŽ

𝑑1

π‘‘πœŽβˆ’1 𝑑𝑑 + 𝐢𝑀 β„Ž2

∫

𝑑𝑛

𝑑1

π‘‘βˆ’1 𝑑𝑑

+ 𝐢𝑀 β„Ž2 β„“(𝑑𝑛 /𝑑1 ).

β–‘

Next, we prove a spatially-discrete version of Theorem 4.1, showing superconvergence at 𝑑 = 𝑑𝑛 . Theorem 5.3. Let π‘ž = 2 and define πœ–π‘›π‘— by (4.1). If 𝑒 is the solution of (1.1) and if π‘ˆβ„Ž ∈ 𝒲2 (π‘†β„Ž ) is the approximate solution given by (5.1), then ( ∫ 𝑑𝑛 𝑛 βˆ₯𝑒′ (𝑑) βˆ’ π‘…β„Ž 𝑒′ (𝑑)βˆ₯ 𝑑𝑑 βˆ₯π‘ˆβ„Ž βˆ’ 𝑒(𝑑𝑛 )βˆ₯ ≀ 𝐢𝑇 βˆ₯π‘ˆβ„Ž0 βˆ’ 𝑒0 βˆ₯ + βˆ₯𝑒0 βˆ’ π‘…β„Ž 𝑒0 βˆ₯ + ∫ + πœ–π‘›1

0

𝑑1

𝑑βˆ₯𝐴𝑒′ (𝑑)βˆ₯ 𝑑𝑑 +

𝑛 βˆ‘ 𝑗=2

πœ–π‘›π‘— π‘˜π‘—2

∫

0

𝑑𝑛

π‘‘π‘›βˆ’1

βˆ₯𝐴𝑒′′ (𝑑)βˆ₯ 𝑑𝑑

) for 1 ≀ 𝑛 ≀ 𝑁 .

1990

KASSEM MUSTAPHA AND WILLIAM MCLEAN

Proof. We adapt the proof of Theorem 4.1, letting 𝑍 ∈ 𝒲2 (π‘†β„Ž ) denote the solution of 𝐺𝑁 (𝑉, 𝑍) = βŸ¨π‘‰ 𝑁 , 𝑧𝑇 ⟩ for all 𝑉 ∈ 𝒲2 (π‘†β„Ž ), and writing π‘Š = Ξ π‘…β„Ž 𝑒, πœ‚ = Π𝑒 βˆ’ 𝑒, πœ‰ = π‘…β„Ž 𝑒 βˆ’ 𝑒. The Galerkin orthogonality (5.4) implies, cf. (4.3), βŸ¨π‘ˆβ„Žπ‘ βˆ’ π‘…β„Ž 𝑒(𝑑𝑁 ), 𝑧𝑇 ⟩ = βŸ¨π‘ˆβ„Žπ‘ βˆ’ π‘Š 𝑁 , 𝑧𝑇 ⟩ = 𝐺𝑁 (π‘ˆβ„Ž βˆ’ π‘Š, 𝑍) = 𝐺𝑁 (π‘ˆβ„Ž βˆ’ 𝑒, 𝑍) + 𝐺𝑁 (𝑒 βˆ’ π‘Š, 𝑍) 0 ⟩ βˆ’ 𝐺𝑁 (πœ‚, 𝑍) βˆ’ 𝐺𝑁 (Ξ πœ‰, 𝑍), = βŸ¨π‘ˆβ„Ž0 βˆ’ 𝑒0 , 𝑍+

and by the triangle inequality, βˆ₯π‘ˆβ„Žπ‘ βˆ’ 𝑒(𝑑𝑁 )βˆ₯ ≀ βˆ₯π‘ˆβ„Žπ‘ βˆ’ π‘…β„Ž 𝑒(𝑑𝑁 )βˆ₯ + βˆ₯πœ‰(0)βˆ₯ + so it suffices to prove that (5.6)

( ∫ βˆ£πΊπ‘ (Ξ πœ‰, 𝑍)∣ ≀ 𝐢𝑇 βˆ₯𝑧𝑇 βˆ₯ βˆ₯πœ‰(0)βˆ₯ +

∫

𝑑𝑁

βˆ₯πœ‰ β€² (𝑑)βˆ₯ 𝑑𝑑,

0

) βˆ₯πœ‰ (𝑑)βˆ₯ 𝑑𝑑 .

𝑑𝑁

β€²

0

From the definition (3.1) of 𝐺𝑁 , 0 0 𝐺𝑁 (Ξ πœ‰, 𝑍) = βŸ¨Ξ πœ‰+ , 𝑍+ ⟩+

𝑁 βˆ’1 βˆ‘

𝑛 ⟨[Ξ πœ‰]𝑛 , 𝑍+ ⟩

𝑛=1

+

𝑁 ∫ βˆ‘

𝑛=1

𝑑𝑛

[

π‘‘π‘›βˆ’1

( )] ⟨(Ξ πœ‰)β€² (𝑑), 𝑍(𝑑)⟩ + 𝐴 β„¬Ξ πœ‰(𝑑), 𝑍(𝑑) 𝑑𝑑,

and from the definition (5.3) of π‘…β„Ž , ( ) 𝐴 β„¬Ξ πœ‰(𝑑), 𝑍(𝑑) = βˆ’βŸ¨β„¬Ξ πœ‰(𝑑), 𝑍(𝑑)⟩. Integrating by parts, applying the orthogonality and interpolation propertes of Ξ  π‘›βˆ’1 and noting that πœ‰+ = πœ‰(π‘‘π‘›βˆ’1 ) = (Ξ πœ‰)π‘›βˆ’1 , we have ∫ 𝑑𝑛 ∫ 𝑑𝑛 π‘›βˆ’1 π‘›βˆ’1 β€² 𝑛 𝑛 ⟨(Ξ πœ‰) (𝑑), 𝑍(𝑑)⟩ 𝑑𝑑 = ⟨(Ξ πœ‰) , 𝑍 ⟩ βˆ’ ⟨(Ξ πœ‰)+ , 𝑍+ ⟩ βˆ’ βŸ¨Ξ πœ‰(𝑑), 𝑍 β€² (𝑑)⟩ 𝑑𝑑 π‘‘π‘›βˆ’1

π‘›βˆ’1 = βŸ¨πœ‰ 𝑛 , 𝑍 𝑛 ⟩ βˆ’ ⟨(Ξ πœ‰)π‘›βˆ’1 + , 𝑍+ ⟩ βˆ’

=

π‘›βˆ’1 βŸ¨πœ‰+

βˆ’

π‘›βˆ’1 (Ξ πœ‰)π‘›βˆ’1 + , 𝑍+ ⟩

π‘›βˆ’1 ⟩+ = βˆ’βŸ¨[Ξ πœ‰]π‘›βˆ’1 , 𝑍+

Thus, 0 𝐺𝑁 (Ξ πœ‰, 𝑍) = βŸ¨πœ‰(0), 𝑍+ ⟩+

∫

𝑑𝑛

π‘‘π‘›βˆ’1

∫

∫ +

𝑑𝑛 π‘‘π‘›βˆ’1

π‘‘π‘›βˆ’1

∫

𝑑𝑛 π‘‘π‘›βˆ’1

𝑑𝑛

π‘‘π‘›βˆ’1

βŸ¨πœ‰(𝑑), 𝑍 β€² (𝑑)⟩ 𝑑𝑑

βŸ¨πœ‰ β€² (𝑑), 𝑍(𝑑)⟩ 𝑑𝑑

βŸ¨πœ‰ β€² (𝑑), 𝑍(𝑑)⟩ 𝑑𝑑.

βŸ¨πœ‰ β€² (𝑑) βˆ’ β„¬Ξ πœ‰(𝑑), 𝑍(𝑑)⟩ 𝑑𝑑,

and hence, noting that βˆ₯𝑍βˆ₯𝐽𝑁 ≀ 𝐢βˆ₯𝑧𝑇 βˆ₯ by stability of the dual problem, ( ) ∫ 𝑑𝑁 [ β€² ] βˆ₯πœ‰ (𝑑)βˆ₯ + βˆ₯β„¬Ξ πœ‰(𝑑)βˆ₯ 𝑑𝑑 . βˆ£πΊπ‘ (Ξ πœ‰, 𝑍)∣ ≀ 𝐢βˆ₯𝑧𝑇 βˆ₯ βˆ₯πœ‰(0)βˆ₯ + 0

DISCONTINUOUS GALERKIN METHOD

1991

The representation (3.7) implies that βˆ₯Π𝑒βˆ₯𝐼𝑛 ≀ 𝐢βˆ₯𝑒βˆ₯𝐼𝑛 . Thus, ∫ 𝑑𝑁 ∫ 𝑑𝑁 ∫ 𝑑 βˆ₯β„¬Ξ πœ‰(𝑑)βˆ₯ 𝑑𝑑 ≀ βˆ£π›½(𝑑, 𝑠)∣βˆ₯Ξ πœ‰(𝑠)βˆ₯ 𝑑𝑠 𝑑𝑑 ≀ 𝐢𝑇 βˆ₯πœ‰βˆ₯𝐽𝑁 , 0

0

0

so (5.6) follows using the bound βˆ₯πœ‰βˆ₯𝐽𝑁 ≀ βˆ₯πœ‰(0)βˆ₯ +

∫ 𝑑𝑁 0

βˆ₯πœ‰ β€² (𝑑)βˆ₯ 𝑑𝑑.

β–‘

Corollary 5.4. Let π‘ž = 2, assume 𝛽 is the weakly singular kernel (1.3) and suppose that the time mesh satisfies (1.11) and (1.12). If the regularity estimates (1.9), (1.10) and (1.14) hold, then, with 𝛾 βˆ— = 3/(𝜎 + 𝛼) and 𝐢 = 𝐢𝑇 , { π‘˜π›Ύ(𝜎+𝛼) , 1 ≀ 𝛾 < 𝛾 βˆ— , 𝑛 0 2 βˆ₯π‘ˆβ„Ž βˆ’ 𝑒(𝑑𝑛 )βˆ₯ ≀ 𝐢βˆ₯π‘ˆβ„Ž βˆ’ 𝑒0 βˆ₯ + 𝐢𝑀 β„Ž β„“(π‘˜) + 𝐢𝑀 Γ— 𝛾 β‰₯ π›Ύβˆ—, π‘˜3 , for 1 ≀ 𝑛 ≀ 𝑁 . Proof. Use Theorem 5.3 and apply the estimates from the proofs of Theorem 5.2 and Corollary 4.2. β–‘ 6. Numerical experiments We now apply the discontinuous Galerkin method (1.6) and its spatially-discrete version (5.1) to some problems of the form (1.1). In each case the time interval is [0, 𝑇 ] = [0, 1] and we employ a time mesh of the form (1.13) for various choices of the mesh grading parameter 𝛾 β‰₯ 1. We consider only the piecewise-linear case π‘ž = 2. 6.1. Scalar examples. To demonstrate the effect of the time discretization by itself, with no additional errors arising from a spatial discretization, we first consider a purely time-dependent problem ∫ 𝑑 𝑑𝑒 + 𝛽(𝑑 βˆ’ 𝑠)𝑒(𝑠) 𝑑𝑠 = 𝑓 (𝑑) for 0 < 𝑑 < 𝑇 with 𝑒(0) = 𝑒0 , 𝑑𝑑 0 with the weakly singular kernel = π‘‘π›Όβˆ’1 /𝛀 (𝛼) for 0 < 𝛼 < 1. Using the Mittag– βˆ‘βˆž 𝛽(𝑑) 𝑝 Leffler function πΈπœ‡ (π‘₯) = 𝑝=0 π‘₯ /Ξ“(1 + π‘πœ‡), we may write the exact solution as ∫ 𝑑 𝑒(𝑑) = 𝐸𝛼+1 (βˆ’π‘‘π›Ό+1 )𝑒0 + 𝐸𝛼+1 (βˆ’π‘ π›Ό+1 )𝑓 (𝑑 βˆ’ 𝑠) 𝑑𝑠; 0

see [11]. Choosing initial data 𝑒0 = 0 and a source term 𝑓 (𝑑) = (𝛼 + 1)𝑑𝛼 , we find that ∞ βˆ‘ ) ( (βˆ’π‘‘)(𝛼+1)𝑝 (6.1) 𝑒(𝑑) = βˆ’π›€ (𝛼 + 2) = 𝛀 (𝛼 + 2) 1 βˆ’ 𝐸𝛼+1 (βˆ’π‘‘π›Ό+1 ) . 𝛀 (1 + (𝛼 + 1)𝑝) 𝑝=1 To tabulate our numerical results, we introduce a finer grid (6.2)

𝒒 𝑁,π‘š = { π‘‘π‘—βˆ’1 + β„“π‘˜π‘— /π‘š : 𝑗 = 1, 2, . . . , 𝑁 and β„“ = 0, 1, . . . , π‘š }

and an associated norm βˆ₯𝑣βˆ₯𝑁,π‘š = maxπ‘‘βˆˆπ’’ 𝑁,π‘š βˆ£π‘£(𝑑)∣. Thus, βˆ₯π‘ˆ βˆ’ 𝑒βˆ₯𝑁,1 is the ∞ ∞ maximum error at the nodes whereas, for larger values of π‘š, the norm βˆ₯π‘ˆ βˆ’ 𝑒βˆ₯𝑁,π‘š ∞ approximates the uniform error βˆ₯π‘ˆ βˆ’ 𝑒βˆ₯𝐿∞ (0,𝑇 ) . Since the exact solution (6.1) behaves like 𝑑𝛼+1 as 𝑑 β†’ 0+ , we see that the first regularity condition (1.9) holds for any 𝜎 ≀ 𝛼 + 2 and the second condition (1.10) holds for any 𝜎 ≀ 𝛼+1. Thus, from Theorem 3.2 we expect βˆ₯π‘ˆ βˆ’π‘’βˆ₯𝐽𝑛 to be 𝑂(π‘˜π›ΎπœŽ ) for 1 ≀ 𝛾 < 2/(𝛼 + 1), and 𝑂(π‘˜2 ) for 𝛾 > 2/(𝛼 + 1). Results for 𝛼 = 0.4, shown in Table 1, are consistent with these error bounds.

1992

KASSEM MUSTAPHA AND WILLIAM MCLEAN

Table 1. The error βˆ₯π‘ˆ βˆ’π‘’βˆ₯𝑁,5 ∞ with different mesh gradings, when 𝛼 = 0.4. We observe 𝑂(π‘˜(𝛼+1)𝛾 ) convergence if 1 ≀ 𝛾 < 2/(𝛼+1) β‰ˆ 1.4286, and 𝑂(π‘˜2 ) convergence if 𝛾 > 2/(𝛼 + 1). 𝑁 40 80 160 320 640

𝛾=1 2.26e-04 8.61e-05 1.39 3.26e-05 1.39 1.23e-05 1.39 4.69e-06 1.39

𝛾 = 1.25 6.25e-05 1.86e-05 1.74 5.53e-06 1.74 1.64e-06 1.74 4.89e-07 1.74

𝛾 = 1.45 3.38e-05 8.59e-06 1.97 2.16e-06 1.98 5.55e-07 1.99 1.36e-07 1.99

𝛾=2 4.27e-05 1.09e-05 1.96 2.77e-06 1.98 6.96e-07 1.99 1.74e-07 1.99

Table 2. The nodal error βˆ₯π‘ˆ βˆ’π‘’βˆ₯𝑁,1 ∞ with different mesh gradings, when 𝛼 = 0.2. We observe 𝑂(π‘˜π›Ύ(2𝛼+2) ) convergence for 1 ≀ 𝛾 < 𝛾 βˆ— = 3/(2𝛼 + 2) = 1.25, and 𝑂(π‘˜3 ) convergence for 𝛾 β‰₯ 𝛾 βˆ— . 𝑁 40 80 160 320 640 1280

𝛾=1 2.73e-07 5.37e-08 1.34 1.03e-08 1.37 1.97e-09 2.39 3.74e-10 2.39 7.11e-11 2.39

𝛾 = 1.25 6.34e-08 9.06e-09 2.80 1.25e-09 2.85 1.69e-10 2.88 2.26e-11 2.90 2.98e-12 2.93

𝛾 = 1.5 9.51e-08 1.38e-08 2.78 1.94e-09 2.84 2.65e-10 2.87 3.57e-11 2.90 4.73e-12 2.92

In Corollary 4.2 we may take 𝜎 = 𝛼 + 2, leading to 𝛾 βˆ— = 3/(2𝛼 + 2) and an expected nodal error of order π‘˜3 for any 𝛾 β‰₯ 𝛾 βˆ— . This predicted behaviour is consistent with the numerical results in Table 2, where 𝛼 = 0.2. We also consider an example with the smooth kernel 𝛽(𝑑) = π‘’βˆ’2𝑑 . The exact solution has the form ∫ 𝑑 π‘Š (𝑑 βˆ’ 𝑠)𝑓 (𝑠) 𝑑𝑠, where π‘Š (𝑑) = (1 + 𝑑)π‘’βˆ’π‘‘ , 𝑒(𝑑) = π‘Š (𝑑)𝑒0 + 0

see [12, Section 6], so for the particular choices 𝑒0 = 1 and 𝑓 (𝑑) = 𝑑𝑒𝑑 we have ∫ 𝑑 3𝑑 (6.3) 𝑒(𝑑) = (1+𝑑)π‘’βˆ’π‘‘ + (1+𝑠)π‘’βˆ’π‘  (π‘‘βˆ’π‘ )π‘’π‘‘βˆ’π‘  𝑑𝑠 = cosh π‘‘βˆ’sinh 𝑑+(1+𝑑/2)π‘’βˆ’π‘‘ . 2 0 Table 3 shows that, for a uniform mesh, we obtain 𝑂(π‘˜2 ) convergence globally and 𝑂(π‘˜3 ) convergence at the nodes, as expected from the error bounds in Theorems 3.1 and 4.1. 6.2. A problem in one space dimension. Let 𝛽(𝑑) =

π‘‘π›Όβˆ’1 , 𝛀 (𝛼)

Ξ© = (0, 1),

𝐴𝑒 = βˆ’π‘’π‘₯π‘₯ ,

and assume that 𝑒 = 𝑒(π‘₯, 𝑑) satisfies the homogeneous Dirichlet boundary conditions 𝑒(0, 𝑑) = 0 = 𝑒(1, 𝑑) for all 𝑑 ∈ [0, 𝑇 ] = [0, 1]. The solution operator for the

DISCONTINUOUS GALERKIN METHOD

1993

Table 3. Global and nodal errors for a uniform mesh (𝛾 = 1) when 𝛽(𝑑) = π‘’βˆ’2𝑑 . We observe 𝑂(π‘˜2 ) and 𝑂(π‘˜3 ) convergence, respectively. 𝑁 40 80 160 320 640

βˆ₯π‘ˆ βˆ’ 𝑒βˆ₯𝑁,5 ∞ 1.56e-04 3.92e-05 1.991 9.83e-06 1.995 2.46e-06 1.997 6.16e-07 1.998

βˆ₯π‘ˆ βˆ’ 𝑒βˆ₯𝑁,1 ∞ 2.55e-07 3.20e-08 2.998 4.00e-09 2.999 5.00e-10 2.999 6.25e-11 3.000

homogeneous problem (𝑓 ≑ 0) is given in terms of the Mittag–Leffler function and the eigensystem of 𝐴 by β„°(𝑑)𝑣 =

∞ βˆ‘

βŸ¨π‘£, πœ™π‘š βŸ©πΈπ›Ό+1 (βˆ’πœ†π‘š 𝑑𝛼+1 )πœ™π‘š ,

πœ†π‘š = (π‘šπœ‹)2 ,

πœ™π‘š (π‘₯) =

√ 2 sin(π‘šπœ‹π‘₯),

π‘š=1

and for the inhomogeneous problem a Duhamel principle yields an integral representation ∫ 𝑒(𝑑) = β„°(𝑑)𝑒0 +

𝑑 0

β„°(𝑑 βˆ’ 𝑠)𝑓 (𝑠) 𝑑𝑠;

√ see [11] or [12]. We choose 𝑒0 (π‘₯) = πœ™1 (π‘₯)/ 2 = sin(πœ‹π‘₯) for the initial data and 𝑓 (𝑑, π‘₯) = (𝛼 + 1) 𝑑𝛼 sin(πœ‹π‘₯) for the inhomogeneous term, and we find that { (6.4)

𝑒(𝑑) =

( ) } 𝛀 (𝛼 + 2) Ξ“(𝛼 + 2) 𝐸𝛼+1 (βˆ’πœ‹ 2 𝑑𝛼+1 ) 1 βˆ’ + sin(πœ‹π‘₯). πœ‹2 πœ‹2

Thus, the first regularity condition (1.9) holds for 𝜎 ≀ 𝛼 + 2, the second condition (1.10) holds for 𝜎 ≀ 𝛼 + 1, and the additional assumption (1.14) is also satisfied. We apply our fully discrete scheme (5.1) with a time mesh of the form (1.13) and a uniform spatial mesh with 𝑁π‘₯ subintervals, each of length β„Ž = 1/𝑁π‘₯ . We choose π‘ˆβ„Ž0 to be the 𝐿2 projection of the initial data 𝑒0 onto the space of continuous, piecewise-linear functions π‘†β„Ž . Taking 𝜎 = 𝛼 + 1 in Theorem 5.2 we see that the global error βˆ₯π‘ˆβ„Ž βˆ’ 𝑒βˆ₯𝐿∞ (𝐿2 ) is of order β„Ž2 β„“(π‘˜) + π‘˜π›Ύ(𝛼+1) for 1 ≀ 𝛾 < 2/(𝛼 + 1), and of order β„Ž2 β„“(π‘˜) + π‘˜2 for 𝛾 > 2/(𝛼 + 1). With 𝛼 = 0.4 and defining the norm = maxπ‘‘βˆˆπ’’ 𝑁,π‘š βˆ₯𝑣βˆ₯𝐿2 (Ξ©) , we obtain the results shown in Table 4, which are βˆ₯𝑣βˆ₯𝑁,π‘š ∞ consistent with our theoretical error bounds. Putting 𝜎 = 𝛼 + 2 in Corollary 5.4 gives 𝛾 βˆ— = 3/(2𝛼 + 2), so we expect the nodal error βˆ₯π‘ˆβ„Ž (𝑑𝑛 ) βˆ’ 𝑒(𝑑𝑛 )βˆ₯ to be of order β„Ž2 β„“(π‘˜) + π‘˜π›Ύ(2𝛼+2)𝛾 for 1 ≀ 𝛾 < 𝛾 βˆ— and of order β„Ž2 β„“(π‘˜) + π‘˜3 for 𝛾 β‰₯ 𝛾 βˆ— . We observe this behaviour in Table 5 for the case 𝛼 = 0.3.

1994

KASSEM MUSTAPHA AND WILLIAM MCLEAN

Table 4. The error βˆ₯π‘ˆβ„Ž βˆ’ 𝑒βˆ₯𝑁,5 ∞ with different mesh gradings, when 𝛼 = 0.4. Taking 𝑁π‘₯ = 𝑁 , we observe convergence of order β„Ž2 β„“(π‘˜) + π‘˜(𝛼+1)𝛾 for 1 ≀ 𝛾 ≀ 2/(𝛼 + 1) β‰ˆ 1.4286, and of order β„Ž2 β„“(π‘˜) + π‘˜2 for 𝛾 > 2/(𝛼 + 1). 𝑁 = 𝑁π‘₯ 20 40 80 160 320

𝛾=1 2.69e-03 1.07e-03 1.31 4.17e-04 1.36 1.59e-04 1.38 6.07e-05 1.39

𝛾 = 1.45 1.26e-03 3.23e-04 1.96 8.15e-05 1.98 2.04e-05 1.99 5.12e-06 1.99

𝛾=2 1.38e-03 3.54e-04 1.96 8.97e-05 1.98 2.25e-05 1.99 5.65e-06 1.99

Table 5. The nodal error βˆ₯π‘ˆβ„Ž βˆ’ 𝑒βˆ₯𝑁,1 ∞ for various mesh gradings, when 𝛼 = 0.3. We observe convergence of order β„Ž2 β„“(π‘˜) + π‘˜π›Ύ(2𝛼+1) for 1 ≀ 𝛾 < 𝛾 βˆ— = 3/(2𝛼 + 2) β‰ˆ 1.1538, and of order β„Ž2 β„“(π‘˜) + π‘˜3 for 𝛾 β‰₯ π›Ύβˆ—.

𝑁 36 49 64 81 100 121

𝑁π‘₯ = 𝑁 𝛾=1 2.25e-04 1.22e-04 1.98 7.23e-05 1.98 4.53e-05 1.96 2.98e-05 2.00 2.04e-05 1.99

𝛾=1 1.67e-05 8.03e-06 2.37 4.18e-06 2.44 2.33e-06 2.48 1.37e-06 2.51 8.34e-07 2.61

𝑁 π‘₯ = 𝑁 3/2 𝛾 = 1.2 6.67e-06 2.71e-06 2.91 1.25e-06 2.90 6.30e-07 2.91 3.40e-07 2.91 1.95e-07 2.92

𝛾 = 1.4 6.14e-06 2.40e-06 3.03 1.07e-06 3.03 5.25e-07 3.02 2.77e-07 3.02 1.56e-07 3.02

References 1. K. Adolfsson, M. Enelund and S. Larsson, Adaptive discretization of an integro-differential equation with a weakly singluar kernel, Comput. Methods Appl. Mech. Engrg., 192, 5285–5304 (2003). MR2023899 (2004j:65218) 2. B. Cockburn, G. E. Karniadakis and C.-W. Shu (Eds.), Discontinuous Galerkin Methods: Theory, Computation and Algorithms, Lecture Notes in Computational Science and Engineering 11, Springer 2000. MR1842160 (2002b:65004) 3. E. Cuesta, C. H. Lubich and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75, 673–696 (2006). MR2196986 (2006j:65404) 4. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal., 28, 199–208 (1991). MR1083324 (91m:65274) 5. K. Eriksson, C. Johnson and ThomΒ΄ee, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO ModΒ΄ el. Math. Anal. NumΒ΄ er., 19, 611–643 (1985). MR826227 (87e:65073) 6. S. Larsson, V. ThomΒ΄ee and L. B. Wahlbin, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method, Math. Comp., 67, 45–71 (1998). MR1432129 (98d:65168) 7. M. LΒ΄ opez-FernΒ΄ andez and C. Palencia, On the numerical inversion of the Laplace transform of certain holomorphic functions, Appl. Numer. Math., 51, 289–303 (2004). MR2091405 (2005e:65210)

DISCONTINUOUS GALERKIN METHOD

1995

8. M. LΒ΄ opez-Fernandez, C. Palencia and A. SchΒ¨ adle, A spectral order method for inverting sectorial Laplace transforms, SIAM J. Numer. Anal. 44, 1332–1350 (2006). MR2231867 (2007e:65138) 9. J.-C. LΒ΄ opez Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27, 20–31 (1990). MR1034918 (91e:65160) 10. C. H. Lubich, I. H. Sloan and V. ThomΒ΄ ee, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp., 65, 1–17 (1996). MR1322891 (96d:65207) 11. W. McLean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105, 481–510 (2007). MR2266834 (2008d:65097) 12. W. McLean and V. ThomΒ΄ ee, Numerical solution of an evolution equation with a positive-type memory term, J. Austral. Math. Soc. Ser. B, 35, 23–70 (1993). MR1225703 (94e:65094) 13. W. McLean and V. ThomΒ΄ ee, Time discretization of an evolution equation via Laplace transforms, IMA. J. Numer. Anal., 24, 439–463 (2004). MR2068831 (2005d:47072) 14. W. McLean and V. ThomΒ΄ ee, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equations Appl., to appear. 15. W. McLean, V. ThomΒ΄ ee and L. B. Wahlbin, Discretization with variable time steps of an evolution equation with a positive-type memory term, J. Comput. Appl. Math., 69, 49–69 (1996). MR1391611 (97b:65073) 16. M. J. Sanz-Serna, A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal., 25, 319–327 (1988). MR933727 (89d:65113) 17. Achim SchΒ¨ adle, MarΒ΄Δ±a LΒ΄ opez-FernΒ΄ andez and Christian Lubich, Fast and oblivious convolution quadrature, SIAM J. Sci. Comput., 28, 421–438 (2006). MR2231714 (2007b:65142) 18. W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30, 134–144 (1989). MR974464 (89m:45017) Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia E-mail address: [email protected] School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia E-mail address: [email protected]