MATHEMATICS OF COMPUTATION Volume 78, Number 268, October 2009, Pages 1975β1995 S 0025-5718(09)02234-0 Article electronically published on February 23, 2009
DISCONTINUOUS GALERKIN METHOD FOR AN EVOLUTION EQUATION WITH A MEMORY TERM OF POSITIVE TYPE KASSEM MUSTAPHA AND WILLIAM MCLEAN Abstract. We consider an initial value problem for a class of evolution equations incorporating a memory term with a weakly singular kernel bounded by πΆ(π‘ β π )πΌβ1 , where 0 < πΌ < 1. For the time discretization we apply the discontinuous Galerkin method using piecewise polynomials of degree at most π β 1, for π = 1 or 2. For the space discretization we use continuous piecewise-linear ο¬nite elements. The discrete solution satisο¬es an error bound of order ππ + β2 β(π), where π and β are the mesh sizes in time and space, respectively, and β(π) = max(1, log πβ1 ). In the case π = 2, we prove a higher convergence rate of order π3 + β2 β(π) at the nodes of the time mesh. Typically, the partial derivatives of the exact solution are singular at π‘ = 0, necessitating the use of non-uniform time steps. We compare our theoretical error bounds with the results of numerical computations.
1. Introduction We study the discretization in time and space of an initial value problem [1, 3, 9, 11, 12, 18, 16] βπ’ + β¬π΄π’ = π (π‘) for 0 < π‘ < π , with π’(0) = π’0 , βπ‘ where β¬ denotes a Volterra integral operator β« π‘ π½(π‘, π )π£(π ) ππ β¬π£(π‘) =
(1.1)
0
and where π΄ is a selfadjoint linear operator with domain π·(π΄) in a real Hilbert space β. We assume that π΄ has a complete eigensystem {ππ , ππ }β π=1 such that 0 β€ π1 β€ π2 β€ β
β
β
and ππ β β as π β β. Thus, π΄ is positive semideο¬nite. The solution π’ and source term π take values in β, and the initial data π’0 is an element of β. We let β¨π’, π£β© denote the inner product of π’ and π£ in β, and deο¬ne the bilinear form β β ππ β¨π’, ππ β©β¨ππ , π£β© for π’, π£ β π·(π΄1/2 ). π΄(π’, π£) = β¨π΄π’, π£β© = π=1
Received by the editor October 16, 2007 and, in revised form, October 9, 2008. 2000 Mathematics Subject Classiο¬cation. Primary 26A33, 45J05, 65M12, 65M15, 65M60. Key words and phrases. Memory term, discontinuous Galerkin method, a priori error estimates, non-uniform time steps, ο¬nite element method. Support of the KFUPM is gratefully acknowledged. c β2009 American Mathematical Society Reverts to public domain 28 years from publication
1975
1976
KASSEM MUSTAPHA AND WILLIAM MCLEAN
Concretely, one may take β = πΏ2 (Ξ©) for a bounded, Lipschitz domain Ξ© β βπ and π΄ = ββ2 subject to homogeneous Dirichlet or Neumann boundary conditions. In this case, β« π’ = π’(π₯, π‘), π = π (π₯, π‘) and π’0 = π’0 (π₯) for π₯ β Ξ© and π‘ > 0, with π΄(π’, π£) = Ξ© βπ’ β
βπ£ ππ₯. Throughout the paper, we assume the kernel π½ to be real-valued and strictly positive deο¬nite, that is, β« π β« π‘ (1.2) π£(π‘) π½(π‘, π )π£(π ) ππ ππ‘ β₯ 0 for all π£ β πΏβ ([0, π ], β), 0
0
with equality if and only if π£ is zero almost everywhere on [0, π ]. In addition, π½ may be at worst weakly singular, that is, β£π½(π‘, π )β£ β€ πΆ(π‘ β π )πΌβ1
for 0 < π < π‘ < β, with 0 < πΌ β€ 1,
and we assume for simplicity that π½(π‘, π ) is continuous for π‘ β= π . Of particular interest is the choice (π‘ β π )πΌβ1 (1.3) π½(π‘, π ) = , π€ (πΌ) which makes β¬ the RiemannβLiouville fractional integration operator of order πΌ and means that the evolution equation in (1.1) is a fractional wave equation [18]. A standard approach [9, 12, 16] to the time discretization of (1.1) uses a combination of ο¬nite diο¬erences and quadrature. If the kernel π½(π‘, π ) depends only on the diο¬erence π‘ β π , then convolution quadrature [3, 10] is a natural choice, allowing the use of fast summation techniques [17]. Another approach [7, 8, 13, 14], again suitable for a convolution kernel, achieves spectral accuracy via numerical inversion of the Laplace transform of the solution. In the present work, we instead apply the discontinuous Galerkin method using piecewise polynomials of degree at most π β1, for π = 1 or 2. Since their inception in the early 1970s, discontinuous Galerkin methods have found numerous applications [2], including for the time discretization of parabolic problems [5]. Their advantages include excellent stability properties even for highly non-uniform meshes and suitability for adaptive reο¬nement based on a posteriori error estimates [4] to handle problems with low regularity. McLean, ThomΒ΄ee and Wahlbin [15] proved a priori error estimates for a piecewise-constant (π = 1) discontinuous Galerkin method applied to (1.1), although they formulated the method as a generalised backward-Euler scheme; see (1.7) below. Adolfsson, Enelund and Larsson [1] subsequently proved a posteriori error estimates for the same piecewiseconstant discontinuous Galerkin method, leading to adaptive control of the step size. They also incorporated the use of sparse quadrature to reduce the computational cost of the algorithm. Neither [15] nor [1] considered the spatial discretization of (1.1). Here, we focus on the piecewise-linear case (π = 2) and consider only a priori error bounds. To set up the time discretization, we begin with a (possibly non-uniform) partition of the interval [0, π ], (1.4)
0 = π‘0 < π‘ 1 < β
β
β
< π‘ π = π
with πΌπ = (π‘πβ1 , π‘π ].
We denote the πth step-size by ππ = π‘π β π‘πβ1 and the maximum step-size by π = max1β€πβ€π ππ . For π β₯ 1, we let βπ denote the space of polynomials of degree strictly less than π with coeο¬cients in π·(π΄1/2 ). For π = 1 or 2, our trial space π²π
DISCONTINUOUS GALERKIN METHOD
1977
is the set of functions π : [0, π ] β π·(π΄1/2 ) such that π β£πΌπ β βπ for 1 β€ π β€ π . We follow the usual convention that a function π β π²π is left-continuous at each time level π‘π , writing (1.5)
π π = π (π‘π ) = π (π‘β π ),
π π+ = π (π‘+ π ),
π [π ]π = π+ β π π.
For any continuous test function π£ : [0, π ] β π·(π΄1/2 ), the solution π’ of (1.1) satisο¬es β« π‘π β« π‘π [ β² ( )] β¨π’ (π‘), π£(π‘)β© + π΄ β¬π’(π‘), π£(π‘) ππ‘ = β¨π (π‘), π£(π‘)β© ππ‘. π‘πβ1
π‘πβ1
By comparison, given π (π‘) for 0 β€ π‘ β€ π‘πβ1 , the discontinuous Galerkin method determines π β π²π on πΌπ by requiring that (1.6)
πβ1 πβ1 β¨π+ , π+ β©+
β«
π‘π
π‘πβ1
[ β² ( )] β¨π (π‘), π(π‘)β© + π΄ β¬π (π‘), π(π‘) ππ‘ πβ1 β©+ = β¨π πβ1 , π+
β«
π‘π
π‘πβ1
β¨π (π‘), π(π‘)β© ππ‘
for all π β βπ (πΌπ ). This time-stepping procedure starts from π 0 β π’0 , and after π steps yields the numerical solution π (π‘) for 0 β€ π‘ β€ π‘π . πβ1 For the piecewise-constant case π = 1, since π β² (π‘) = 0 and π (π‘) = π π = π+ for π‘ β πΌπ , the discontinuous Galerkin method (1.6) amounts to a generalized backward-Euler scheme π π β π πβ1 + β¬ π (π΄π ) = πΒ―π , ππ
(1.7) where
β« π‘π β« π‘ π β 1 π½(π‘, π )π΄π (π ) ππ ππ‘ = πππ π΄π π ππ , β¬ (π΄π ) = ππ π‘πβ1 0 π=1 β« π‘π β« π‘π β« min(π‘,π‘π ) 1 1 πΒ―π = π (π‘) ππ‘, πππ = π½(π‘, π ) ππ ππ‘. ππ π‘πβ1 ππ ππ π‘πβ1 π‘πβ1 π
Thus, at each time step we must solve an βellipticβ problem π π + ππ2 πππ π΄π π = π πβ1 + ππ πΒ―π β ππ
πβ1 β
πππ π΄π π ππ .
π=1
For the piecewise-linear case π = 2, we deο¬ne ππ1 (π‘) =
π‘π β π‘ ππ
and
ππ2 (π‘) =
π‘ β π‘πβ1 ππ
and use the representation πβ1 1 π (π‘) = π+ ππ (π‘) + π π ππ2 (π‘) for π‘ β πΌπ .
1978
KASSEM MUSTAPHA AND WILLIAM MCLEAN
By choosing π(π‘) = πππ (π‘)π in (1.6) for π β {1, 2} and a vector π β β (independent of π‘), we arrive at the 2 Γ 2 system (1.8) πβ1 β( ) πβ1 πβ1 11 12 11 12 πππ ( 12 + πππ π΄)π+ + ( 12 + πππ π΄)π π = π πβ1 + π π1 β π΄π+ + πππ π΄π π , π=1
πβ1 21 22 (β 12 + πππ π΄)π+ + ( 12 + πππ π΄)π π = π π2 β
where ππ πππ =
β«
π‘π
π‘πβ1
πππ (π‘)
β«
min(π‘,π‘π )
π‘πβ1
πβ1 β
( 21 πβ1 ) 22 π πππ π+ + πππ π ,
π=1
π½(π‘, π )πππ (π ) ππ ππ‘ and
π ππ =
β«
π‘π π‘πβ1
π (π‘)πππ (π‘) ππ‘.
For a general π, we would have to solve a π Γ π system. The regularity results in [3, 11, 12] show, for the speciο¬c weakly singular kernel (1.3) and under reasonable assumptions on the data π’0 and π (π‘), that there exist constants π and π , with 0 < π β€ 1, such that the exact solution of (1.1) satisο¬es (1.9)
π‘β₯π΄π’β² (π‘)β₯ + π‘2 β₯π΄π’β²β² (π‘)β₯ β€ π π‘πβ1
for 0 < π‘ β€ π
and (1.10)
β₯π’β² (π‘)β₯ + π‘β₯π’β²β² (π‘)β₯ β€ π π‘πβ1
for 0 < π‘ β€ π .
This singular behaviour as π‘ β 0+ may lead to suboptimal convergence rates if we work with quasi-uniform time meshes. We therefore assume that, for a ο¬xed πΎ β₯ 1, (1.11)
ππ β€ πΆππ‘π1β1/πΎ
and
π‘π β€ πΆπ‘πβ1
for 2 β€ π β€ π ,
with πππΎ β€ π1 β€ πΆππΎ .
(1.12) For instance, we may choose (1.13)
π‘π = (π/π )πΎ π
for 0 β€ π β€ π .
We show in Theorem 3.2 that the error β₯π (π‘) β π’(π‘)β₯ is of order ππ , uniformly for 0 β€ π‘ β€ π , provided πΎ > π/π and the initial data satisfy β₯π 0 β π’0 β₯ = π(ππ ). However, for a quasi-uniform mesh our bound yields a poorer convergence rate of order ππ . In the piecewise-linear case π = 2, faster convergence than π(π2 ) is possible at the nodal points π‘π . The nodal error β₯π π β π’(π‘π )β₯ is π(π3 ) if π½ and π’ are smooth, and the same result holds for the weakly-singular kernel (1.3) and for π’ satisfying (1.9), provided the mesh grading parameter πΎ > 3/(π + πΌ); see Corollary 4.2. Compare these results with those of Eriksson, Johnson and ThomΒ΄ee [5] for the classical parabolic problem that arises if one takes β¬π£ = π£ in (1.1): the error is then π(ππ ) everywhere on [0, π ] and is π(π2πβ1 ) at the nodes, for a general π β₯ 1. In related work, Larsson, ThomΒ΄ee and Wahlbin [6] proved the same convergence rates for a parabolic integrodiο¬erential equation of the form βπ’/βπ‘+π΄π’+memory term = π (π‘), using discontinuous Galerkin methods with π = 1 or 2.
DISCONTINUOUS GALERKIN METHOD
1979
In the concrete setting where β = πΏ2 (Ξ©) and π΄ = ββ2 , we discretize in space using standard, continuous, piecewise-linear ο¬nite elements on a quasi-uniform partition of the domain Ξ© to obtain a numerical solution πβ . Under the additional regularity assumptions (1.14)
β₯π’0 β₯2 β€ π
and β₯π’(π‘)β₯2 + π‘β₯π’β² (π‘)β₯2 β€ π
for 0 < π‘ β€ π ,
where β₯π£β₯2 = β₯π£β₯π» 2 (Ξ©) , we show in Theorem 5.2 that, with β(π) = max(1, log πβ1 ),
(1.15)
the error β₯πβ (π‘) β π’(π‘)β₯ is of order ππ + β2 β(π), uniformly for 0 β€ π‘ β€ π , provided πΎ > π/π. Our ο¬nal result, Corollary 5.4, establishes an improved error bound of order π3 + β2 β(π) for πβ at the nodes π‘ = π‘π , when π = 2 and π½ is as in (1.3). The concluding section of the paper presents the results of some numerical computations that conο¬rm our theoretical error bounds. 2. Stability An energy argument based on the positive-semideο¬niteness of β¬ and π΄ implies the existence and uniqueness of a mild solution π’ β πΆ([0, π ]; β) to the continuous problem (1.1), and yields a stability estimate [12], β« π‘ β₯π’(π‘)β₯ β€ β₯π’0 β₯ + 2 β₯π (π )β₯ ππ . 0
To state an analogous result for the discrete problem (1.6), we introduce the notation β₯π β₯π½ = sup β₯π (π‘)β₯ π‘βπ½ βͺπ for any subinterval π½ β [0, π ], and put π½π = (0, π‘π ] = π=1 πΌπ . Note that the proof makes no assumptions on the mesh (1.4). ( ) Theorem 2.1. Let π β {1, 2}. Given π 0 β β and π β πΏ1 (0, π ); β , there exists a unique π β π²π satisfying (1.6) for π = 1, 2, . . . , π . Furthermore, π (π‘) β π·(π΄) for π‘ > 0 and, with πΆ1 = 2 and πΆ2 = 8, ) ( β« π‘π β₯π β₯π½π β€ πΆπ β₯π 0 β₯ + β₯π (π‘)β₯ ππ‘ for π β₯ 1. 0
Proof. Recall the notation (1.5) and assume for the moment that π exists. By choosing π = π in (1.6) and using β¨π β² (π‘), π (π‘)β© = (π/ππ‘)β₯π (π‘)β₯2 /2, we obtain β« π‘π ( π 2 ( ) πβ1 2 ) 1 + π΄ β¬π (π‘), π (π‘) ππ‘ 2 β₯π β₯ + β₯π+ β₯ π‘πβ1
πβ1 = β¨π πβ1 , π+ β©+
Since (1.2) implies β« π β« π‘π β ( ) π΄ β¬π (π‘), π (π‘) ππ‘ = π=1
π‘πβ1
π‘π
0
=
β β π=1
0
β« ππ
β«
π‘π 0
π‘
β«
π‘π
π‘πβ1
β¨π (π‘), π (π‘)β© ππ‘.
( ) π½(π‘, π )π΄ π (π ), π (π‘) ππ ππ‘
β« 0
π‘
π½(π‘, π )β¨π (π ), ππ β© ππ β¨ππ , π (π‘)β© ππ‘ β₯ 0,
1980
KASSEM MUSTAPHA AND WILLIAM MCLEAN
we see that β« π π β β ( π 2 πβ1 2 ) πβ1 πβ1 β₯π β₯ + β₯π+ β₯ β€ 2 β¨π , π+ β© + 2 π=1
π‘π
0
π=1
β¨π (π‘), π (π‘)β© ππ‘,
so 0 2 β₯ + β₯π π β₯2 + β₯π+
πβ1 β
( π 2 π π 2) β₯π β₯ β 2β¨π π , π+ β© + β₯π+ β₯
π=1
β€ 2β¨π and hence (2.1)
0 2 β₯π π β₯2 + β₯π+ β₯ +
πβ1 β
0
β«
0 , π+ β©
+2
( β« 0 β₯[π ]π β₯2 β€ 2 β₯π 0 β₯β₯π+ β₯+
0
π=1
π‘π
0
π‘π
β¨π (π‘), π (π‘)β© ππ‘
) β₯π (π‘)β₯β₯π (π‘)β₯ ππ‘ .
πβ1 β₯) we have Let π = 2. Since β₯π β₯πΌπ = max(β₯π π β₯, β₯π+ ( ) β« π‘1 0 2 0 β₯π β₯2πΌ1 β€ β₯π 1 β₯2 + β₯π+ β₯ β€ 2 β₯π 0 β₯β₯π+ β₯+ β₯π (π‘)β₯β₯π (π‘)β₯ ππ‘ , 0
and, for π β₯ 2,
) ( ) ( πβ1 2 β₯π β₯2πΌπ = max β₯π π β₯2 , β₯π+ β₯ = max β₯π π β₯2 , β₯π πβ1 + [π ]π β₯2 ) ( β€ max β₯π π β₯2 , 2β₯π πβ1 β₯2 + 2β₯[π ]πβ1 β₯2 ( ) β« π‘π 0 β€ 8 β₯π 0 β₯β₯π+ β₯+ β₯π (π‘)β₯β₯π (π‘)β₯ ππ‘ . 0
Thus, putting ππ = arg max1β€πβ€π β₯π β₯πΌπ , the desired bound follows at once from ) ( β« π‘ππ β₯π (π‘)β₯ ππ‘ , β₯π β₯2π½π = β₯π β₯2πΌππ β€ 8β₯π β₯π½π β₯π 0 β₯ + 0
and we see that π is unique. When β is ο¬nite dimensional, the existence of π follows from uniqueness because the square linear system (1.8) must be uniquely solvable. When β is inο¬nite dimensional, we can construct π by expanding in the eigenfunctions of π΄, because the 2 Γ 2 matrix [ 1 ] 11 12 π) ( 21 + πππ π) ( 2 + πππ (2.2) 21 22 (β 21 + πππ π) ( 21 + πππ π) is non-singular for all π β₯ 0. Moreover, deο¬ning π (π‘) = 0 for π‘ β / πΌπ , we see that the quadratic form ] [ πβ1 ] β« π [ 11 12 [ πβ1 ] πππ πππ π+ π (π‘)β¬π (π‘) ππ‘ = π+ ππ 21 22 πππ πππ ππ 0 is strictly positive-deο¬nite, and so the determinant of (2.2) is bounded below by ππ2 for π suο¬ciently large. Thus, Cramerβs rule shows that the norm of the inverse πβ1 , ππ β matrix is π(πβ1 ) as π β β, and a simple inductive argument gives π+ π·(π΄) for 1 β€ π β€ π , implying that π (π‘) β π·(π΄) for 0 < π‘ β€ π . For π = 1, we have β₯π β₯πΌπ = β₯π π β₯, so the stability bound with πΆ1 = 2 follows β‘ at once from (2.1), and π π β π·(π΄) follows from (1 + πππ π)β1 = π(πβ1 ).
DISCONTINUOUS GALERKIN METHOD
1981
The proof above also yields a bound for the jumps in the numerical solution. Corollary 2.2. With πΆ1 = 4 and πΆ2 = 16, ( β« πβ1 β π 2 0 β₯[π ] β₯ β€ πΆπ β₯π β₯ +
0
π=1
π‘π
)2 β₯π (π‘)β₯ ππ‘
.
Proof. Apply (2.1).
β‘
3. Error from the time discretization For our error analysis, we reformulate the discontinuous Galerkin method in terms of a global bilinear form (3.1)
0 0 πΊπ (π, π) = β¨π+ , π+ β©+
π β1 β
π β¨[π ]π , π+ β©
π=1
+
π β« β
π‘πβ1
π=1
Summing the equations (1.6) gives 0 β©+ πΊπ (π, π) = β¨π 0 , π+
(3.2)
β«
π‘π
0
π‘π
[ β² ( )] β¨π (π‘), π(π‘)β© + π΄ β¬π (π‘), π(π‘) ππ‘.
β¨π (π‘), π(π‘)β© ππ‘ for all π β π²π ,
and conversely, by choosing π to be identically zero outside πΌπ , we see that if π β π²π satisο¬es (3.2), then (1.6) holds for each π. Since the exact solution π’ has no jumps, β« π‘π 0 β©+ β¨π (π‘), π(π‘)β© ππ‘ πΊπ (π’, π) = β¨π’0 , π+ 0
and thus (3.3)
0 β© for all π β π²π . πΊπ (π β π’, π) = β¨π 0 β π’0 , π+
Integration by parts yields an alternative expression for the bilinear form (3.1), (3.4)
πΊπ (π, π) = β¨π π , π π β© β
π β1 β
β¨π π , [π]π β©
π=1
+
π β« β
π=1
π‘π
π‘πβ1
[
( )] ββ¨π (π‘), π β² (π‘)β© + π΄ β¬π (π‘), π(π‘) ππ‘.
For any continuous function π’ : [0, π ] β β we deο¬ne a piecewise-constant interpolant Ξ π’ : [0, π ] β π²1 by putting Ξ π’(π‘) = π’(π‘π )
for π‘ β πΌπ ,
with Ξ π’(0) = π’(0),
β²
and observe that if π’ is integrable, then the interpolation error has the representation β« π‘π (3.5) Ξ π’(π‘) β π’(π‘) = π’β² (π ) ππ for π‘ β πΌπ . π‘
In the piecewise-linear case, we deο¬ne Ξ π’ : [0, π ] β π²2 by requiring that β« π‘π [π’(π‘) β Ξ π’(π‘)] ππ‘ = 0, (3.6) Ξ π’(π‘π ) = π’(π‘π ) and π‘πβ1
1982
KASSEM MUSTAPHA AND WILLIAM MCLEAN
with Ξ π’(0) = π’(0). Explicitly, we ο¬nd that (3.7)
Ξ π’(π‘) = π’(π‘π ) +
where π’ Β―π = ππβ1
β« π‘π
π‘πβ1
Β―π π’(π‘π ) β π’ (π‘ β π‘π ) ππ /2
for π‘ β πΌπ ,
π’(π‘) ππ‘, and elementary calculations then show that for π‘ β πΌπ , β«
Ξ π’(π‘) β π’(π‘) = (3.8)
π‘π
π‘
β« =
π‘π
π‘
π’β² (π ) ππ β 2
π‘π β π‘ ππ2
β«
π‘π π‘πβ1
(π β π‘πβ1 )π’β² (π ) ππ
π‘π β π‘ (π‘π β π )π’ (π ) ππ + ππ2 β²β²
β«
π‘π π‘πβ1
(π β π‘πβ1 )2 π’β²β² (π ) ππ .
Using Ξ , we decompose the error into two terms, (3.9)
π β π’ = (π β Ξ π’) + (Ξ π’ β π’)
and estimate each term separately. The representations (3.5) and (3.8) immediately yield bounds for the second term, β« π‘π πβ1 (3.10) β₯Ξ π’ β π’β₯πΌπ β€ πΆππ β₯π’(π) (π‘)β₯ ππ‘ for 1 β€ π β€ π β€ 2, π‘πβ1
and we handle the ο¬rst term as follows. Theorem 3.1. Let π β {1, 2}. If π’ is the solution of the initial value problem (1.1) and if π is the approximate solution obtained by the discontinuous Galerkin method (1.6), then β₯π β Ξ π’β₯π½π β€ πΆβ₯π 0 β π’0 β₯ + πΆπ‘πΌ π
β« 0
π‘1
π‘β₯π΄π’β² (π‘)β₯ ππ‘ +
πΆπ‘πΌ π
π β π=2
πππ
β«
π‘π π‘πβ1
β₯π΄π’(π) (π‘)β₯ ππ‘.
Proof. For brevity, we put π = π β Ξ π’ and
π = Ξ π’ β π’.
The Galerkin orthogonality relation (3.3) implies that 0 β© β πΊπ (π, π) for all π β π²π , πΊπ (π, π) = β¨π 0 β π’0 , π+
and by the construction of the interpolant we have π π = 0 for all π β₯ 1. Hence, using the alternative expression (3.4) for πΊπ , πΊπ (π, π) =
π β« β π=1
π‘π
π‘πβ1
[ ( )] ββ¨π(π‘), π β² (π‘)β© + π΄ β¬π(π‘), π(π‘) ππ‘.
β« π‘π β¨π(π‘), π β² (π‘)β© ππ‘ = 0 if π = 1, because π β² (π‘) is identically zero on πΌπ . Moreover, π‘πβ1 The same conclusion holds if π = 2, because π β² (π‘) is constant on πΌπ and hence is orthogonal to the interpolation error. Therefore, π β π²π satisο¬es β« π 0 0 β¨β¬π΄π(π‘), π(π‘)β© ππ‘ for all π β π²π , (3.11) πΊπ (π, π) = β¨π β π’0 , π+ β© β 0
DISCONTINUOUS GALERKIN METHOD
1983
which has the same form as the equation (3.2) satisο¬ed by π , so we may apply the stability result of Theorem 2.1 and conclude that ( ) β« π‘π 0 β₯πβ₯π½π β€ πΆ β₯π β π’0 β₯ + β₯β¬π΄π(π‘)β₯ ππ‘ for 1 β€ π β€ π . 0
Reversing the order of integration, we ο¬nd that β« π‘π β« π‘π β« π‘ β₯β¬π΄π(π‘)β₯ ππ‘ β€ β£π½(π‘, π )β£β₯π΄π(π )β₯ ππ ππ‘ 0 0 0 β« π‘π β« π‘π (π‘ β π )πΌβ1 ππ‘ β₯π΄π(π )β₯ ππ β€πΆ 0 π β« π‘π β« (π‘π β π )πΌ β₯π΄π(π )β₯ ππ β€ πΆπΌ π‘πΌ = πΆπΌ π 0
so
(
π‘π
0
0
β₯π β Ξ π’β₯π½π β€ πΆπΌ β₯π β π’0 β₯ +
π‘πΌ π
β«
π‘π 0
β₯π΄π(π )β₯ ππ ,
) β₯π΄π(π‘)β₯ ππ‘
for 1 β€ π β€ π .
When π = 2, the desired bound follows by using the formula (3.8): ) β« π‘1 β« π‘1 (β« π‘1 β« π‘1 β π‘ π‘1 β² β² β₯π΄π(π‘)β₯ ππ‘ β€ β₯π΄π’ (π )β₯ ππ + 2 2 π β₯π΄π’ (π )β₯ ππ ππ‘ π1 0 0 π‘ 0 β« π‘1 =2 π β₯π΄π’β² (π )β₯ ππ 0
and
β«
π‘π
π‘1
β₯π΄π(π‘)β₯ ππ‘ β€
π β
ππ β₯π΄π’ β Ξ π΄π’β₯πΌπ β€ πΆ
π=2
π β
ππ2
β«
π=2
π‘π
π‘πβ1
β₯π΄π’β²β² (π‘)β₯ ππ‘.
Similar, but simpler, estimates lead to the result for π = 1.
β‘
The next theorem shows that we can obtain π(ππ ) accuracy for all π‘ β [0, π ] provided the mesh grading, as determined by the parameter πΎ β₯ 1, is suο¬ciently strong. Theorem 3.2. Let π β {1, 2} and assume that the step sizes are such that (1.11) and (1.12) hold. If the exact solution π’ satisο¬es the regularity estimates (1.9) and (1.10), then β§ πΎπ  1 β€ πΎ < π/π, β¨π , 0 β₯π β π’β₯π½π β€ πΆβ₯π β π’0 β₯ + πΆπ Γ ππ log(π‘π /π‘1 ), πΎ = π/π,  β© πβπ/πΎ π π‘π π , πΎ > π/π. Proof. From (3.10), the assumptions (1.10) and (1.12) give β« π‘1 β« π‘1 β² (3.12) β₯Ξ π’ β π’β₯πΌ1 β€ πΆ β₯π’ (π‘)β₯ ππ‘ β€ πΆπ π‘πβ1 ππ‘ β€ πΆπ π‘π1 β€ πΆπ ππΎπ 0
0
and, using (1.11) for π β₯ 2, (3.13)
β₯Ξ π’ β π’β₯πΌπ β€
πΆπππβ1
β«
π‘π π‘πβ1
β₯π’
(π)
(π‘)β₯ ππ‘ β€
πΆπ πππβ1
β«
π‘π
π‘πβ1
π‘πβπ ππ‘
β€ πΆπ ππ π‘πβπ/πΎ , β€ πΆπ πππ π‘πβπ π π
1984
KASSEM MUSTAPHA AND WILLIAM MCLEAN
so we may bound the interpolation error as follows: { 1 β€ πΎ β€ π/π, ππΎπ , β₯Ξ π’ β π’β₯π½π = max β₯Ξ π’ β π’β₯πΌπ β€ πΆπ Γ πβπ/πΎ π 1β€πβ€π π‘π π , πΎ β₯ π/π. Next, by (1.9) and (1.12), β« β« π‘1 β² π‘β₯π΄π’ (π‘)β₯ ππ‘ β€ πΆπ 0
0
π‘1
π‘πβ1 ππ‘ β€ πΆπ ππΎπ ,
and, using (1.11), β« π‘π β« π π β β πππ β₯π΄π’(π) (π‘)β₯ ππ‘ β€ πΆπ πππ π=2
π‘πβ1
β€ πΆπ ππ
π β π=2
(1β1/πΎ)π
π=2
β«
π‘π
π‘π
π‘πβ1
π‘π
π‘πβ1
π‘πβ1βπ ππ‘
π‘πβ1βπ ππ‘ β€ πΆπ ππ
β«
π‘π
π‘1
π‘πβπ/πΎβ1 ππ‘,
and the result follows from (3.9) and Theorem 3.1, after noting that β§ β(π/πΎβπ)  β€ πΆπβ(πβπΎπ) , 1 β€ πΎ < π/π, β« π‘π β¨πΆπ‘1 πβπ/πΎβ1 π‘ ππ‘ β€ πΆ log(π‘π /π‘1 ), πΎ = π/π,  π‘1 β© πβπ/πΎ πΆπ‘π , πΎ > π/π. β‘ 4. Superconvergence at the nodes We now show that for π = 2 the numerical solution achieves a faster convergence rate at π‘ = π‘π , depending on the quantities ) (β« π‘π β« π‘π β£π½(π , π‘)β£ ππ + for 1 β€ π β€ π β€ π . π½(π , π‘) β π½(π , π‘π ) ππ (4.1) πππ = max π‘βπΌπ
π‘
π‘π
Theorem 4.1. If π’ is the solution of the initial value problem (1.1) and if π is the approximate solution obtained by the piecewise-linear (π = 2) discontinuous Galerkin method (1.6), then ( ) β« π‘1 β« π‘π π β π‘β₯π΄π’β² (π‘)β₯ ππ‘ + πππ ππ2 β₯π΄π’β²β² (π‘)β₯ ππ‘ . β₯π π β π’(π‘π )β₯ β€ πΆ β₯π 0 β π’0 β₯ + ππ1 0
π=2
π‘πβ1
Proof. Let π§ be the solution of the dual problem βπ§ β² + β¬ β π΄π§ = 0 for 0 β€ π‘ β€ π , with π§(π ) = π§π , β«π where β¬ β π£(π‘) = π‘ π½(π , π‘)π£(π ) ππ . Since π§ has no jumps and since β« π β« π [ ( )] β² β¨βπ£(π‘), π§ (π‘)β© + π΄ β¬π£(π‘), π§(π‘) ππ‘ = β¨π£(π‘), βπ§ β² (π‘) + β¬ β π΄π§(π‘)β© ππ‘ = 0, (4.2)
0
0
the formula (3.4) yields the identity πΊπ (π£, π§) = β¨π£(π ), π§π β© for all piecewise-continuous π£(π‘). Let π β π²2 denote the approximate solution of (4.2) given by the discontinuous Galerkin method πΊπ (π, π) = β¨π π , π§π β© for all π β π²2 ,
DISCONTINUOUS GALERKIN METHOD
1985
and let π = π β Ξ π’ and π = Ξ π’ β π’, as before, so that π β π’ = π + π. Since π’(π‘π ) = Ξ π’(π‘π ), by taking π = π we see from (3.3) that 0 β¨π π β π’(π‘π ), π§π β© = β¨π π , π§π β© = πΊπ (π, π) = β¨π 0 β π’0 , π+ β© β πΊπ (π, π). β« π‘ π β¨π(π‘), π β² (π‘)β© ππ‘ = 0 for all π, so the formula (3.4) shows Moreover, π π = 0 and π‘πβ1 that β« π‘π π β πΏπ , where πΏπ = β¨π΄π(π‘), β¬ β π(π‘)β© ππ‘. πΊπ (π, π) =
(4.3)
π‘πβ1
π=1
The orthogonality property of Ξ implies that β« π‘π πΏπ = β¨π΄π(π‘), β¬ β π(π‘) β β¬ β π(π‘π )β© ππ‘, π‘πβ1
and for π‘ β πΌπ ,
β« π β« π β₯β¬ π(π‘) β β¬ π(π‘π )β₯ = π½(π , π‘)π(π ) ππ β π½(π , π‘π )π(π ) ππ π‘ π‘π β« π‘π β« π [ ] = π½(π , π‘) β π½(π , π‘π ) π(π ) ππ π½(π , π‘)π(π ) ππ + β€ ππ π β₯πβ₯π½π , β
so
β
π‘
π‘π
β« β₯πΏπ β₯ β€ ππ π β₯πβ₯π½π
Using (3.10) we see that β« π‘π β« β₯π΄π(π‘)β₯ ππ‘ β€ πΆππ2 π‘πβ1
and using (3.8) we ο¬nd β«
π‘1 0
π‘π
π‘πβ1
π‘π
β₯π΄π’β²β² (π‘)β₯ ππ‘ for π β₯ 2,
π‘πβ1
β« β₯π΄π(π‘)β₯ ππ‘ β€ πΆ
β₯π΄π(π‘)β₯ ππ‘.
π‘1
0
π‘β₯π΄π’β² (π‘)β₯ ππ‘.
Stability of the discontinuous Galerkin method for the dual problem means that 0 β₯ β€ β₯πβ₯π½π β€ πΆβ₯π§π β₯. Thus, β₯π+ ( β« π‘1 π π‘β₯π΄π’β² (π‘)β₯ ππ‘ β£β¨π β π’(π‘π ), π§π β©β£ β€ πΆ β₯π 0 β π’0 β₯ + ππ 1 0
+
π β π=2
ππ π ππ2
β«
π‘π
π‘πβ1
) β₯π΄π’ (π‘)β₯ ππ‘ β₯π§π β₯, β²β²
and since π§π β β is arbitrary we obtain the desired bound for β₯π π β π’(π‘π )β₯.
β‘
If π½(π‘, π ) and π’(π‘) are smooth, then πππ = π(π) and so β₯π π βπ’(π‘π )β₯ = π(π3 ). For the speciο¬c non-smooth kernel (1.3), we have the same convergence rate provided the mesh grading is suο¬ciently strong. Corollary 4.2. Let π = 2 and π½(π‘, π ) = (π‘ β π )πΌβ1 /π€ (πΌ), with 0 < πΌ < 1. If π’ satisο¬es the regularity assumption (1.9), and if the time mesh satisο¬es the conditions (1.11) and (1.12), then, with πΎ β = 3/(π + πΌ), { ππΎ(π+πΌ) , 1 β€ πΎ < πΎ β , π 0 β₯π β π’(π‘π )β₯ β€ πΆβ₯π β π’0 β₯ + πΆπ Γ πΎ β₯ πΎβ. π3 ,
1986
KASSEM MUSTAPHA AND WILLIAM MCLEAN
Proof. Noting that π½(π , π‘) β₯ π½(π , π‘π ) for π‘ β€ π‘π β€ π , we have β« π‘π β« π‘π π½(π , π‘) β π½(π , π‘π ) ππ β£π½(π , π‘)β£ ππ + π‘
π‘π
β« = β«
π‘π π‘
π½(π , π‘) ππ +
π‘π
π‘π (
π‘π
) π½(π , π‘) β π½(π , π‘π ) ππ
β«
π‘π
(π β π‘π )πΌβ1 (π‘π β π‘)πΌ β (π‘π β π‘π )πΌ ππ = , π€ (πΌ) π€ (πΌ + 1) π‘ π‘π ] [ and so πππ = (π‘π β π‘πβ1 )πΌ β (π‘π β π‘π )πΌ /π€ (πΌ + 1). Since π πΌ β π πΌ β€ (π β π )πΌ for any π β₯ π β₯ 0, we see that πππ β€ πππΌ /π€ (πΌ + 1), with equality when π = π. However, for π < π we obtain a sharper bound by applying the mean value theorem: πππ β€ (π‘π β π‘π )πΌβ1 ππ /π€ (πΌ). Thus, using (1.9), (1.11) and (1.12), we have β« π‘1 β« π‘1 β² πΌ ππ1 π‘β₯π΄π’ (π‘)β₯ ππ‘ β€ πΆπ π1 π‘πβ1 ππ‘ β€ πΆπ π1πΌ+π β€ πΆπ ππΎ(πΌ+π) =
πΌβ1
β«
(π β π‘) π€ (πΌ)
ππ β
0
0
and, for 2 β€ π β€ π β 1, β« π‘π β« 2 β²β² 3 πΌβ1 πππ ππ β₯π΄π’ (π‘)β₯ ππ‘ β€ πΆπ ππ (π‘π β π‘π ) π‘πβ1
β€ πΆπ π3 (π‘π )3(1β1/πΎ) (π‘π β π‘π )πΌβ1 with πππ ππ2
β«
π‘π
π‘πβ1
β«
π‘π
π‘πβ1
π‘π
π‘πβ1
π‘πβ3 ππ‘
π‘πβ3 ππ‘ β€ πΆπ π3
β₯π΄π’β²β² (π‘)β₯ ππ‘ β€ πΆπ ππ2+πΌ
β«
π‘π
π‘πβ1
β«
π‘π π‘πβ1
(π‘π β π‘)πΌβ1 π‘πβ3/πΎ ππ‘,
π‘πβ3 ππ‘ β€ πΆπ ππ3+πΌ π‘πβ3 π
( )πΌ β€ πΆπ π3 ππ /π‘π π‘ππΌ+πβ3/πΎ β€ πΆπ π‘πΌ+πβ3/πΎ π3 . π
Using the substitution π‘ = π‘π π§, we ο¬nd that β« π‘π β« π‘πβ1 πβ1 β πππ ππ2 β₯π΄π’β²β² (π‘)β₯ ππ‘ β€ πΆπ π3 (π‘π β π‘)πΌβ1 π‘πβ3/πΎ ππ‘ π‘πβ1
π=2
π‘1
=
πΆπ π3 π‘πΌ+πβ3/πΎ π
β«
π‘πβ1 /π‘π
π‘1 /π‘π
(1 β π§)πΌβ1 π§ πβ3/πΎ ππ§,
and an elementary calculation yields β«
π‘πβ1 /π‘π
π‘1 /π‘π
β§ 1+πβ3/πΎ  , β¨(π‘1 /π‘π ) πΌβ1 πβ3/πΎ (1 β π§) π§ ππ§ β€ πΆ Γ log(π‘π /π‘1 ),  β© 1,
π β 3/πΎ < β1, π β 3/πΎ = β1, π β 3/πΎ > β1.
Theorem 4.1 now shows that the nodal error β₯π π βπ’(π‘π )β₯ is bounded by πΆβ₯π 0 βπ’0 β₯ plus β§ πΌβ1 πΎ(1+π)  , 1 β€ πΎ < 3/(1 + π), β¨ π‘π π πΎ(πΌ+π) πΌβ1 3 πΆπ π + πΆπ Γ π‘π π log(π‘π /π‘1 ), πΎ = 3/(1 + π),  β© πΌ+πβ3/πΎ 3 π‘π π , πΎ > 3/(1 + π), which is π(π3 ) for πΎ β₯ πΎ β = 3/(πΌ + π) > 3/(1 + π). If 1 β€ πΎ < 3/(1 + π), then π‘πΌβ1 ππΎ(1+π) = ππΎ(πΌ+π) (ππΎ /π‘π )1βπΌ β€ πΆππΎ(πΌ+π) (π‘1 /π‘π )1βπΌ β€ πΆππΎ(πΌ+π) . π
DISCONTINUOUS GALERKIN METHOD
1987
Likewise, if πΎ = 3/(1 + π), then π3 log(π‘π /π‘1 ) = ππΎ(πΌ+π) (ππΎ /π‘π )1βπΌ log(π‘π /π‘1 ) π‘πΌβ1 π β€ πΆππΎ(πΌ+π) (π‘1 /π‘π )1βπΌ log(π‘π /π‘1 ) β€ πΆππΎ(πΌ+π) , and in the remaining case, 3/(1 + π) < πΎ < πΎ β = 3/(πΌ + π), we have π‘ππΌ+πβ3/πΎ π3 = ππΎ(πΌ+π) (ππΎ /π‘π )3/πΎβ(πΌ+π) β€ πΆππΎ(πΌ+π) (π‘1 /π‘π )3/πΎβ(πΌ+π) β€ πΆππΎ(πΌ+π) . β‘ 5. Space discretization We assume now that β = πΏ2 (Ξ©) for a bounded, convex polyhedral domain Ξ©, and that π΄ is a strongly-elliptic, second-order, selfadjoint partial diο¬erential operator. In the case of homogeneous Dirichlet boundary conditions, we have π·(π΄π/2 ) = { π£ β π» π (Ξ©) : π£ = 0 on βΞ© } for 1/2 < π β€ 2, whereas for homogeneous Neumann boundary conditions, π·(π΄π/2 ) = π» π (Ξ©). Construct a continuous, piecewise-linear ο¬nite element space πβ β π·(π΄1/2 ) on a quasi-uniform partition of the domain Ξ©, with β denoting the maximum diameter of the elements. We then have the approximation property ( ) min β₯π£ β πβ₯ + ββ₯β(π£ β π)β₯ β€ πΆβ2 β₯π£β₯2 for π£ β π·(π΄), πβπβ
where we use the abbreviation β₯π£β₯π = β₯π£β₯π» π (Ξ©) . Based on the weak formulation of the initial value problem (1.1), we deο¬ne a spatially-discrete, approximate solution π’β : [0, π ] β πβ by requiring β« π‘ ( ) β¨π’β²β (π‘), πβ© + π½(π‘, π )π΄ π’β (π ), π ππ = β¨π (π‘), πβ© for 0 β€ π‘ β€ π and all π β πβ , 0
with π’β (0) = π’0β β π’0 for a suitable π’0β β πβ . This semi-discrete solution satisο¬es the error bound [12, Theorem 2.1] β« π‘ 2 β₯π’β (π‘) β π’(π‘)β₯ β€ β₯π’0β β π’0 β₯ + πΆβ β₯π’β² (π )β₯2 ππ for 0 β€ π‘ β€ π . 0
Let βπ (πβ ) denote the space of polynomials of degree strictly less than π with coeο¬cients in πβ , and deο¬ne the corresponding trial space of piecewise-polynomials π²π (πβ ). Thus, a function π(π₯, π‘) in π²π (πβ ) is continuous in π₯ but may be discontinuous at π‘ = π‘π . Applying the discontinuous Galerkin method in time, we arrive at a fully-discrete numerical solution πβ : [0, π ] β π²π (πβ ) deο¬ned by β« π‘π 0 β©+ β¨π (π‘), π(π‘)β© ππ‘ for all π β π²π (πβ ), πΊπ (πβ , π) = β¨πβ0 , π+ (5.1) 0 πβ (0) = πβ0 , for a suitable πβ0 β πβ with πβ0 β π’0 ; cf. (3.2). In place of (3.9), we now decompose the error as (5.2)
πβ β π’ = (πβ β Ξ π
β π’) + (Ξ π
β π’ β π’),
1988
KASSEM MUSTAPHA AND WILLIAM MCLEAN
where π
β : π·(π΄1/2 ) β πβ is the Ritz projector for the (strictly) positive-deο¬nite bilinear form π΄(π’, π£) + β¨π’, π£β©; thus, π΄(π
β π£, π) + β¨π
β π£, πβ© = π΄(π£, π) + β¨π£, πβ© for all π β πβ .
(5.3)
(The term β¨π’, π£β© in the bilinear form is needed only if π΄ has a zero eigenvalue.) Theorem 5.1. Let π β {1, 2}. If π’ is the solution of the initial value problem (1.1), and if πβ β π²π (πβ ) is the approximate solution deο¬ned by (5.1), then ( β« π‘π β₯πβ β Ξ π
β π’β₯π½π β€ πΆπ β₯πβ0 β π
β π’0 β₯ + β₯π’0 β π
β π’0 β₯ + β₯π’β² (π‘) β π
β π’β² (π‘)β₯ ππ‘ β« +
π‘1 0
β²
π‘β₯π΄π’ (π‘)β₯ ππ‘ +
π β π=2
β«
πππ
0
π‘π
π‘πβ1
β₯π΄π’
(π)
)
(π‘)β₯ ππ‘
for 1 β€ π β€ π .
Proof. The Galerkin orthogonality property (3.3) now takes the form 0 β© πΊπ (πβ β π’, π) = β¨πβ0 β π’0 , π+
(5.4)
for all π β π²π (πβ ),
and for brevity we let π = Ξ π
β π’ and
π = π
β π’ β π’.
Adapting the proof of Theorem 3.1, we see from (5.4) that 0 β© β πΊπ (π β π’, π) for all π β π²π (πβ ), (5.5) πΊπ (πβ β π, π) = β¨πβ0 β π’0 , π+
and, because π π = π
β π’(π‘π ), the formula (3.4) gives πΊπ (π β π’, π) = β¨π π , π π β© β
π β1 β
β¨π π , [π]π β©
π=1
+
π β« β π=1
β« π‘π
β« π‘π
π‘π π‘πβ1
[ ( )] ββ¨π β π’, π β² β© + π΄ β¬(π β π’), π ππ‘.
Since π‘πβ1 β¨π β π
β π’, π β² β© ππ‘ = π‘πβ1 β¨Ξ (π
β π’) β (π
β π’), π β² β© ππ‘ = 0, an integration by parts shows that β« π‘π β« π‘π β« π‘π ββ¨π β π’, π β² β© ππ‘ = ββ¨π
β π’ β π’, π β² β© ππ‘ = ββ¨π, π β² β© ππ‘ π‘πβ1
π‘πβ1
π‘πβ1 β« π‘π
πβ1 = ββ¨π π , π π β© + β¨π πβ1 , π+ β©+
π‘πβ1
β¨π β² , πβ© ππ‘,
and, with π = Ξ π’ β π’, the deο¬nition of the Ritz projector gives ) ( ) ( π΄ (π β π’)(π ), π(π‘) = π΄ π
β Ξ π’(π ) β π’(π ), π(π‘) ( ) = π΄ (Ξ π’ β π’)(π ), π(π‘) + β¨Ξ (π’ β π
β π’)(π ), π(π‘)β© = β¨π΄π(π ) β Ξ π(π ), π(π‘)β©, so πΊπ (π β π’, π) = β¨π
0
Thus, from (5.5), πΊπ (πβ β π, π) =
β¨πβ0
β
0 , π+ β©
β« +
π‘π
0
0 π
β π’0 , π+ β©
β¨π β² + β¬π΄π β β¬Ξ π, πβ© ππ‘. β«
β
π‘π 0
β¨π β² + β¬π΄π β β¬Ξ π, πβ© ππ‘
DISCONTINUOUS GALERKIN METHOD
1989
for all π β π²π (πβ ); cf. (3.11). Stability of the discontinuous Galerkin method (Theorem 2.1 with β = πβ ) now yields the estimate ( ) β« π‘π 0 β² β₯π + β¬π΄π β β¬Ξ πβ₯ ππ‘ . β₯πβ β π β₯π½π β€ πΆ β₯πβ β π
β π’0 β₯ + 0
β« π‘π
We already estimated the term 0 β₯β¬π΄πβ₯ ππ‘ in Theorem 3.1 and, for the remaining terms in the integral, we apply the bound β₯Ξ π£β₯πΌπ β€ πΆβ₯π£β₯πΌπ and arrive at ) ( β« π‘π β« π‘π β« π‘π β² β² πΌ+1 β² β₯π (π‘) β β¬Ξ πβ₯ ππ‘ β€ β₯π β₯ ππ‘ + πΆπ‘π β₯πβ₯π½π β€ πΆπ β₯π(0)β₯ + β₯π β₯ ππ‘ . 0
0
0
β‘ We can now show that the space discretisation leads to an additional error of order β2 β(π) compared with the error bound of Theorem 3.2; recall from (1.15) that β(π) = max(1, log πβ1 ). Theorem 5.2. Let π β {1, 2} and assume that the time mesh is such that (1.11) and (1.12) hold. If the exact solution π’ satisο¬es the regularity estimates (1.9), (1.10) and (1.14), then, for 1 β€ π β€ π and with πΆ = πΆπ , β§ πΎπ  1 β€ πΎ < π/π, β¨π , 0 2 β₯πβ β π’β₯π½π β€ πΆβ₯πβ β π’0 β₯ + πΆπ β β(π‘π /π‘1 ) + πΆπ Γ ππ β(π‘π /π‘1 ), πΎ = π/π,  β© π πΎ > π/π. π , Proof. Recall that
β₯π£ β π
β π£β₯ β€ πΆβ2 β₯π£β₯2 . To estimate the second term Ξ π
β π’ β π’ in the decomposition (5.2), we again write π = π
β π’ β π’ and then use β₯Ξ π£β₯π½π β€ πΆβ₯π£β₯π½π to obtain β« π‘π β₯π β² β₯ ππ‘. β₯Ξ π
β π’ β π’β₯π½π = β₯Ξ π’ β π’ + Ξ πβ₯π½π β€ β₯Ξ π’ β π’β₯π½π + πΆβ₯π(0)β₯ + πΆ 0
In view of Theorems 3.2 and 5.1, and the fact that β₯πβ0 β π
β π’0 β₯ β€ β₯πβ0 β π’0 β₯ + β₯π’0 β π
β π’0 β₯, it suο¬ces to note that β₯π(0)β₯ β€ πΆβ2 β₯π’0 β₯2 and, using (1.10), (1.11), (1.12) and (1.14), β« π‘1 β« π‘π β« π‘π β² β² β₯π (π‘)β₯ ππ‘ β€ πΆ β₯π’ (π‘)β₯ ππ‘ + πΆβ2 β₯π’β² (π‘)β₯2 ππ‘ 0
0
β«
β€ πΆπ β€ πΆπ π
π‘1
0 πΎπ
π‘1
π‘πβ1 ππ‘ + πΆπ β2
β«
π‘π
π‘1
π‘β1 ππ‘
+ πΆπ β2 β(π‘π /π‘1 ).
β‘
Next, we prove a spatially-discrete version of Theorem 4.1, showing superconvergence at π‘ = π‘π . Theorem 5.3. Let π = 2 and deο¬ne πππ by (4.1). If π’ is the solution of (1.1) and if πβ β π²2 (πβ ) is the approximate solution given by (5.1), then ( β« π‘π π β₯π’β² (π‘) β π
β π’β² (π‘)β₯ ππ‘ β₯πβ β π’(π‘π )β₯ β€ πΆπ β₯πβ0 β π’0 β₯ + β₯π’0 β π
β π’0 β₯ + β« + ππ1
0
π‘1
π‘β₯π΄π’β² (π‘)β₯ ππ‘ +
π β π=2
πππ ππ2
β«
0
π‘π
π‘πβ1
β₯π΄π’β²β² (π‘)β₯ ππ‘
) for 1 β€ π β€ π .
1990
KASSEM MUSTAPHA AND WILLIAM MCLEAN
Proof. We adapt the proof of Theorem 4.1, letting π β π²2 (πβ ) denote the solution of πΊπ (π, π) = β¨π π , π§π β© for all π β π²2 (πβ ), and writing π = Ξ π
β π’, π = Ξ π’ β π’, π = π
β π’ β π’. The Galerkin orthogonality (5.4) implies, cf. (4.3), β¨πβπ β π
β π’(π‘π ), π§π β© = β¨πβπ β π π , π§π β© = πΊπ (πβ β π, π) = πΊπ (πβ β π’, π) + πΊπ (π’ β π, π) 0 β© β πΊπ (π, π) β πΊπ (Ξ π, π), = β¨πβ0 β π’0 , π+
and by the triangle inequality, β₯πβπ β π’(π‘π )β₯ β€ β₯πβπ β π
β π’(π‘π )β₯ + β₯π(0)β₯ + so it suο¬ces to prove that (5.6)
( β« β£πΊπ (Ξ π, π)β£ β€ πΆπ β₯π§π β₯ β₯π(0)β₯ +
β«
π‘π
β₯π β² (π‘)β₯ ππ‘,
0
) β₯π (π‘)β₯ ππ‘ .
π‘π
β²
0
From the deο¬nition (3.1) of πΊπ , 0 0 πΊπ (Ξ π, π) = β¨Ξ π+ , π+ β©+
π β1 β
π β¨[Ξ π]π , π+ β©
π=1
+
π β« β
π=1
π‘π
[
π‘πβ1
( )] β¨(Ξ π)β² (π‘), π(π‘)β© + π΄ β¬Ξ π(π‘), π(π‘) ππ‘,
and from the deο¬nition (5.3) of π
β , ( ) π΄ β¬Ξ π(π‘), π(π‘) = ββ¨β¬Ξ π(π‘), π(π‘)β©. Integrating by parts, applying the orthogonality and interpolation propertes of Ξ πβ1 and noting that π+ = π(π‘πβ1 ) = (Ξ π)πβ1 , we have β« π‘π β« π‘π πβ1 πβ1 β² π π β¨(Ξ π) (π‘), π(π‘)β© ππ‘ = β¨(Ξ π) , π β© β β¨(Ξ π)+ , π+ β© β β¨Ξ π(π‘), π β² (π‘)β© ππ‘ π‘πβ1
πβ1 = β¨π π , π π β© β β¨(Ξ π)πβ1 + , π+ β© β
=
πβ1 β¨π+
β
πβ1 (Ξ π)πβ1 + , π+ β©
πβ1 β©+ = ββ¨[Ξ π]πβ1 , π+
Thus, 0 πΊπ (Ξ π, π) = β¨π(0), π+ β©+
β«
π‘π
π‘πβ1
β«
β« +
π‘π π‘πβ1
π‘πβ1
β«
π‘π π‘πβ1
π‘π
π‘πβ1
β¨π(π‘), π β² (π‘)β© ππ‘
β¨π β² (π‘), π(π‘)β© ππ‘
β¨π β² (π‘), π(π‘)β© ππ‘.
β¨π β² (π‘) β β¬Ξ π(π‘), π(π‘)β© ππ‘,
and hence, noting that β₯πβ₯π½π β€ πΆβ₯π§π β₯ by stability of the dual problem, ( ) β« π‘π [ β² ] β₯π (π‘)β₯ + β₯β¬Ξ π(π‘)β₯ ππ‘ . β£πΊπ (Ξ π, π)β£ β€ πΆβ₯π§π β₯ β₯π(0)β₯ + 0
DISCONTINUOUS GALERKIN METHOD
1991
The representation (3.7) implies that β₯Ξ π’β₯πΌπ β€ πΆβ₯π’β₯πΌπ . Thus, β« π‘π β« π‘π β« π‘ β₯β¬Ξ π(π‘)β₯ ππ‘ β€ β£π½(π‘, π )β£β₯Ξ π(π )β₯ ππ ππ‘ β€ πΆπ β₯πβ₯π½π , 0
0
0
so (5.6) follows using the bound β₯πβ₯π½π β€ β₯π(0)β₯ +
β« π‘π 0
β₯π β² (π‘)β₯ ππ‘.
β‘
Corollary 5.4. Let π = 2, assume π½ is the weakly singular kernel (1.3) and suppose that the time mesh satisο¬es (1.11) and (1.12). If the regularity estimates (1.9), (1.10) and (1.14) hold, then, with πΎ β = 3/(π + πΌ) and πΆ = πΆπ , { ππΎ(π+πΌ) , 1 β€ πΎ < πΎ β , π 0 2 β₯πβ β π’(π‘π )β₯ β€ πΆβ₯πβ β π’0 β₯ + πΆπ β β(π) + πΆπ Γ πΎ β₯ πΎβ, π3 , for 1 β€ π β€ π . Proof. Use Theorem 5.3 and apply the estimates from the proofs of Theorem 5.2 and Corollary 4.2. β‘ 6. Numerical experiments We now apply the discontinuous Galerkin method (1.6) and its spatially-discrete version (5.1) to some problems of the form (1.1). In each case the time interval is [0, π ] = [0, 1] and we employ a time mesh of the form (1.13) for various choices of the mesh grading parameter πΎ β₯ 1. We consider only the piecewise-linear case π = 2. 6.1. Scalar examples. To demonstrate the eο¬ect of the time discretization by itself, with no additional errors arising from a spatial discretization, we ο¬rst consider a purely time-dependent problem β« π‘ ππ’ + π½(π‘ β π )π’(π ) ππ = π (π‘) for 0 < π‘ < π with π’(0) = π’0 , ππ‘ 0 with the weakly singular kernel = π‘πΌβ1 /π€ (πΌ) for 0 < πΌ < 1. Using the Mittagβ ββ π½(π‘) π Leο¬er function πΈπ (π₯) = π=0 π₯ /Ξ(1 + ππ), we may write the exact solution as β« π‘ π’(π‘) = πΈπΌ+1 (βπ‘πΌ+1 )π’0 + πΈπΌ+1 (βπ πΌ+1 )π (π‘ β π ) ππ ; 0
see [11]. Choosing initial data π’0 = 0 and a source term π (π‘) = (πΌ + 1)π‘πΌ , we ο¬nd that β β ) ( (βπ‘)(πΌ+1)π (6.1) π’(π‘) = βπ€ (πΌ + 2) = π€ (πΌ + 2) 1 β πΈπΌ+1 (βπ‘πΌ+1 ) . π€ (1 + (πΌ + 1)π) π=1 To tabulate our numerical results, we introduce a ο¬ner grid (6.2)
π’ π,π = { π‘πβ1 + βππ /π : π = 1, 2, . . . , π and β = 0, 1, . . . , π }
and an associated norm β₯π£β₯π,π = maxπ‘βπ’ π,π β£π£(π‘)β£. Thus, β₯π β π’β₯π,1 is the β β maximum error at the nodes whereas, for larger values of π, the norm β₯π β π’β₯π,π β approximates the uniform error β₯π β π’β₯πΏβ (0,π ) . Since the exact solution (6.1) behaves like π‘πΌ+1 as π‘ β 0+ , we see that the ο¬rst regularity condition (1.9) holds for any π β€ πΌ + 2 and the second condition (1.10) holds for any π β€ πΌ+1. Thus, from Theorem 3.2 we expect β₯π βπ’β₯π½π to be π(ππΎπ ) for 1 β€ πΎ < 2/(πΌ + 1), and π(π2 ) for πΎ > 2/(πΌ + 1). Results for πΌ = 0.4, shown in Table 1, are consistent with these error bounds.
1992
KASSEM MUSTAPHA AND WILLIAM MCLEAN
Table 1. The error β₯π βπ’β₯π,5 β with diο¬erent mesh gradings, when πΌ = 0.4. We observe π(π(πΌ+1)πΎ ) convergence if 1 β€ πΎ < 2/(πΌ+1) β 1.4286, and π(π2 ) convergence if πΎ > 2/(πΌ + 1). π 40 80 160 320 640
πΎ=1 2.26e-04 8.61e-05 1.39 3.26e-05 1.39 1.23e-05 1.39 4.69e-06 1.39
πΎ = 1.25 6.25e-05 1.86e-05 1.74 5.53e-06 1.74 1.64e-06 1.74 4.89e-07 1.74
πΎ = 1.45 3.38e-05 8.59e-06 1.97 2.16e-06 1.98 5.55e-07 1.99 1.36e-07 1.99
πΎ=2 4.27e-05 1.09e-05 1.96 2.77e-06 1.98 6.96e-07 1.99 1.74e-07 1.99
Table 2. The nodal error β₯π βπ’β₯π,1 β with diο¬erent mesh gradings, when πΌ = 0.2. We observe π(ππΎ(2πΌ+2) ) convergence for 1 β€ πΎ < πΎ β = 3/(2πΌ + 2) = 1.25, and π(π3 ) convergence for πΎ β₯ πΎ β . π 40 80 160 320 640 1280
πΎ=1 2.73e-07 5.37e-08 1.34 1.03e-08 1.37 1.97e-09 2.39 3.74e-10 2.39 7.11e-11 2.39
πΎ = 1.25 6.34e-08 9.06e-09 2.80 1.25e-09 2.85 1.69e-10 2.88 2.26e-11 2.90 2.98e-12 2.93
πΎ = 1.5 9.51e-08 1.38e-08 2.78 1.94e-09 2.84 2.65e-10 2.87 3.57e-11 2.90 4.73e-12 2.92
In Corollary 4.2 we may take π = πΌ + 2, leading to πΎ β = 3/(2πΌ + 2) and an expected nodal error of order π3 for any πΎ β₯ πΎ β . This predicted behaviour is consistent with the numerical results in Table 2, where πΌ = 0.2. We also consider an example with the smooth kernel π½(π‘) = πβ2π‘ . The exact solution has the form β« π‘ π (π‘ β π )π (π ) ππ , where π (π‘) = (1 + π‘)πβπ‘ , π’(π‘) = π (π‘)π’0 + 0
see [12, Section 6], so for the particular choices π’0 = 1 and π (π‘) = π‘ππ‘ we have β« π‘ 3π‘ (6.3) π’(π‘) = (1+π‘)πβπ‘ + (1+π )πβπ (π‘βπ )ππ‘βπ ππ = cosh π‘βsinh π‘+(1+π‘/2)πβπ‘ . 2 0 Table 3 shows that, for a uniform mesh, we obtain π(π2 ) convergence globally and π(π3 ) convergence at the nodes, as expected from the error bounds in Theorems 3.1 and 4.1. 6.2. A problem in one space dimension. Let π½(π‘) =
π‘πΌβ1 , π€ (πΌ)
Ξ© = (0, 1),
π΄π’ = βπ’π₯π₯ ,
and assume that π’ = π’(π₯, π‘) satisο¬es the homogeneous Dirichlet boundary conditions π’(0, π‘) = 0 = π’(1, π‘) for all π‘ β [0, π ] = [0, 1]. The solution operator for the
DISCONTINUOUS GALERKIN METHOD
1993
Table 3. Global and nodal errors for a uniform mesh (πΎ = 1) when π½(π‘) = πβ2π‘ . We observe π(π2 ) and π(π3 ) convergence, respectively. π 40 80 160 320 640
β₯π β π’β₯π,5 β 1.56e-04 3.92e-05 1.991 9.83e-06 1.995 2.46e-06 1.997 6.16e-07 1.998
β₯π β π’β₯π,1 β 2.55e-07 3.20e-08 2.998 4.00e-09 2.999 5.00e-10 2.999 6.25e-11 3.000
homogeneous problem (π β‘ 0) is given in terms of the MittagβLeο¬er function and the eigensystem of π΄ by β°(π‘)π£ =
β β
β¨π£, ππ β©πΈπΌ+1 (βππ π‘πΌ+1 )ππ ,
ππ = (ππ)2 ,
ππ (π₯) =
β 2 sin(πππ₯),
π=1
and for the inhomogeneous problem a Duhamel principle yields an integral representation β« π’(π‘) = β°(π‘)π’0 +
π‘ 0
β°(π‘ β π )π (π ) ππ ;
β see [11] or [12]. We choose π’0 (π₯) = π1 (π₯)/ 2 = sin(ππ₯) for the initial data and π (π‘, π₯) = (πΌ + 1) π‘πΌ sin(ππ₯) for the inhomogeneous term, and we ο¬nd that { (6.4)
π’(π‘) =
( ) } π€ (πΌ + 2) Ξ(πΌ + 2) πΈπΌ+1 (βπ 2 π‘πΌ+1 ) 1 β + sin(ππ₯). π2 π2
Thus, the ο¬rst regularity condition (1.9) holds for π β€ πΌ + 2, the second condition (1.10) holds for π β€ πΌ + 1, and the additional assumption (1.14) is also satisο¬ed. We apply our fully discrete scheme (5.1) with a time mesh of the form (1.13) and a uniform spatial mesh with ππ₯ subintervals, each of length β = 1/ππ₯ . We choose πβ0 to be the πΏ2 projection of the initial data π’0 onto the space of continuous, piecewise-linear functions πβ . Taking π = πΌ + 1 in Theorem 5.2 we see that the global error β₯πβ β π’β₯πΏβ (πΏ2 ) is of order β2 β(π) + ππΎ(πΌ+1) for 1 β€ πΎ < 2/(πΌ + 1), and of order β2 β(π) + π2 for πΎ > 2/(πΌ + 1). With πΌ = 0.4 and deο¬ning the norm = maxπ‘βπ’ π,π β₯π£β₯πΏ2 (Ξ©) , we obtain the results shown in Table 4, which are β₯π£β₯π,π β consistent with our theoretical error bounds. Putting π = πΌ + 2 in Corollary 5.4 gives πΎ β = 3/(2πΌ + 2), so we expect the nodal error β₯πβ (π‘π ) β π’(π‘π )β₯ to be of order β2 β(π) + ππΎ(2πΌ+2)πΎ for 1 β€ πΎ < πΎ β and of order β2 β(π) + π3 for πΎ β₯ πΎ β . We observe this behaviour in Table 5 for the case πΌ = 0.3.
1994
KASSEM MUSTAPHA AND WILLIAM MCLEAN
Table 4. The error β₯πβ β π’β₯π,5 β with diο¬erent mesh gradings, when πΌ = 0.4. Taking ππ₯ = π , we observe convergence of order β2 β(π) + π(πΌ+1)πΎ for 1 β€ πΎ β€ 2/(πΌ + 1) β 1.4286, and of order β2 β(π) + π2 for πΎ > 2/(πΌ + 1). π = ππ₯ 20 40 80 160 320
πΎ=1 2.69e-03 1.07e-03 1.31 4.17e-04 1.36 1.59e-04 1.38 6.07e-05 1.39
πΎ = 1.45 1.26e-03 3.23e-04 1.96 8.15e-05 1.98 2.04e-05 1.99 5.12e-06 1.99
πΎ=2 1.38e-03 3.54e-04 1.96 8.97e-05 1.98 2.25e-05 1.99 5.65e-06 1.99
Table 5. The nodal error β₯πβ β π’β₯π,1 β for various mesh gradings, when πΌ = 0.3. We observe convergence of order β2 β(π) + ππΎ(2πΌ+1) for 1 β€ πΎ < πΎ β = 3/(2πΌ + 2) β 1.1538, and of order β2 β(π) + π3 for πΎ β₯ πΎβ.
π 36 49 64 81 100 121
ππ₯ = π πΎ=1 2.25e-04 1.22e-04 1.98 7.23e-05 1.98 4.53e-05 1.96 2.98e-05 2.00 2.04e-05 1.99
πΎ=1 1.67e-05 8.03e-06 2.37 4.18e-06 2.44 2.33e-06 2.48 1.37e-06 2.51 8.34e-07 2.61
π π₯ = π 3/2 πΎ = 1.2 6.67e-06 2.71e-06 2.91 1.25e-06 2.90 6.30e-07 2.91 3.40e-07 2.91 1.95e-07 2.92
πΎ = 1.4 6.14e-06 2.40e-06 3.03 1.07e-06 3.03 5.25e-07 3.02 2.77e-07 3.02 1.56e-07 3.02
References 1. K. Adolfsson, M. Enelund and S. Larsson, Adaptive discretization of an integro-diο¬erential equation with a weakly singluar kernel, Comput. Methods Appl. Mech. Engrg., 192, 5285β5304 (2003). MR2023899 (2004j:65218) 2. B. Cockburn, G. E. Karniadakis and C.-W. Shu (Eds.), Discontinuous Galerkin Methods: Theory, Computation and Algorithms, Lecture Notes in Computational Science and Engineering 11, Springer 2000. MR1842160 (2002b:65004) 3. E. Cuesta, C. H. Lubich and C. Palencia, Convolution quadrature time discretization of fractional diο¬usion-wave equations, Math. Comp., 75, 673β696 (2006). MR2196986 (2006j:65404) 4. K. Eriksson and C. Johnson, Adaptive ο¬nite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal., 28, 199β208 (1991). MR1083324 (91m:65274) 5. K. Eriksson, C. Johnson and ThomΒ΄ee, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO ModΒ΄ el. Math. Anal. NumΒ΄ er., 19, 611β643 (1985). MR826227 (87e:65073) 6. S. Larsson, V. ThomΒ΄ee and L. B. Wahlbin, Numerical solution of parabolic integro-diο¬erential equations by the discontinuous Galerkin method, Math. Comp., 67, 45β71 (1998). MR1432129 (98d:65168) 7. M. LΒ΄ opez-FernΒ΄ andez and C. Palencia, On the numerical inversion of the Laplace transform of certain holomorphic functions, Appl. Numer. Math., 51, 289β303 (2004). MR2091405 (2005e:65210)
DISCONTINUOUS GALERKIN METHOD
1995
8. M. LΒ΄ opez-Fernandez, C. Palencia and A. SchΒ¨ adle, A spectral order method for inverting sectorial Laplace transforms, SIAM J. Numer. Anal. 44, 1332β1350 (2006). MR2231867 (2007e:65138) 9. J.-C. LΒ΄ opez Marcos, A diο¬erence scheme for a nonlinear partial integrodiο¬erential equation, SIAM J. Numer. Anal., 27, 20β31 (1990). MR1034918 (91e:65160) 10. C. H. Lubich, I. H. Sloan and V. ThomΒ΄ ee, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp., 65, 1β17 (1996). MR1322891 (96d:65207) 11. W. McLean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105, 481β510 (2007). MR2266834 (2008d:65097) 12. W. McLean and V. ThomΒ΄ ee, Numerical solution of an evolution equation with a positive-type memory term, J. Austral. Math. Soc. Ser. B, 35, 23β70 (1993). MR1225703 (94e:65094) 13. W. McLean and V. ThomΒ΄ ee, Time discretization of an evolution equation via Laplace transforms, IMA. J. Numer. Anal., 24, 439β463 (2004). MR2068831 (2005d:47072) 14. W. McLean and V. ThomΒ΄ ee, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equations Appl., to appear. 15. W. McLean, V. ThomΒ΄ ee and L. B. Wahlbin, Discretization with variable time steps of an evolution equation with a positive-type memory term, J. Comput. Appl. Math., 69, 49β69 (1996). MR1391611 (97b:65073) 16. M. J. Sanz-Serna, A numerical method for a partial integro-diο¬erential equation, SIAM J. Numer. Anal., 25, 319β327 (1988). MR933727 (89d:65113) 17. Achim SchΒ¨ adle, MarΒ΄Δ±a LΒ΄ opez-FernΒ΄ andez and Christian Lubich, Fast and oblivious convolution quadrature, SIAM J. Sci. Comput., 28, 421β438 (2006). MR2231714 (2007b:65142) 18. W. R. Schneider and W. Wyss, Fractional diο¬usion and wave equations, J. Math. Phys., 30, 134β144 (1989). MR974464 (89m:45017) Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia E-mail address:
[email protected] School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia E-mail address:
[email protected]