Discrete Convexity and Polynomial Solvability in ... - Semantic Scholar

Report 2 Downloads 103 Views
.

.

Discrete Convexity and Polynomial Solvability in Minimum 0-Extension Problems Hiroshi HIRAI The University of Tokyo [email protected]

RIMS, Kyoto, October 17, 2012

.

.

.

.

.

.

1 / 27

. Contents Minimum 0-extension problems Known results on P/NP-hard classification Main result Proof idea from Discrete Convex Analysis & Valued-CSP Some technical detail . Notation . (semi)metric d on X ⇔ d : X × X → R+ , d(x, x) = 0, .

d(x, y ) = d(y , x),

d(x, z)+d(z, y ) ≥ d(x, y ).

(X , d): (semi)metric space

.

.

.

.

.

.

2 / 27

. Minimum 0-Extension Problem (Karzanov 1998) (S, µ): finite metric space

Def: extension of (S, µ) ⇔ metric space (X , d) s.t. X ⊇ S and d|S = µ Def: 0-extension of (S, µ) ⇔ extension (X , d) s.t. ∃ρ : X → S: ρ|S = id and d = µ ◦ ρ (X, d)

(X, d)

µ(u, s)

µ(s, t)

s u

t (S, µ)

ρ µ(u, t)

extension

0-extension

.

.

.

.

.

.

3 / 27

. Minimum 0-Extension Problem (Karzanov 1998) (S, µ): finite metric space Def: extension of (S, µ) ⇔ metric space (X , d) s.t. X ⊇ S and d|S = µ Def: 0-extension of (S, µ) ⇔ extension (X , d) s.t. ∃ρ : X → S: ρ|S = id and d = µ ◦ ρ . Minimum 0-Extension Problem on (S, µ) . ( ) Given a finite set X ⊇ S and c : X2 → Q+ , minimize



c(xy )d(x, y )

xy

.

subject to

(X , d): 0-extension of (S, µ)

.

.

.

.

.

.

3 / 27

. 0-Ext[µ]

Minimize



c(xy )µ(ρ(x), ρ(y ))

xy

.

subject to

ρ : X → S, ρ|S = id.

.

.

.

.

.

.

4 / 27

. 0-Ext[µ]

Minimize



c(xy )µ(ρ(x), ρ(y ))

xy

subject to

.

ρ : X → S, ρ|S = id.

. → MRF optimization form: ∑∑ ∑ Minimize ciq µ(q, ρi ) + cij µ(ρi , ρj ) i

.

subject to

q∈S

i<j

(ρ1 , ρ2 , . . . , ρn ) ∈ S × S × · · · × S

Applications: computer vision, clustering, learning theory,...

.

.

.

.

.

.

4 / 27

(S, µ) := (VΓ , dΓ ) for undirected graph Γ . ∑ 0-Ext[Γ ] Minimize c(xy )dΓ (ρ(x), ρ(y )) xy

.

subject to

ρ : X → S, ρ|S = id.

.

.

.

.

.

.

5 / 27

(S, µ) := (VΓ , dΓ ) for undirected graph Γ . ∑ 0-Ext[Γ ] Minimize c(xy )dΓ (ρ(x), ρ(y )) xy

.

subject to

ρ : X → S, ρ|S = id.

s

Γ = K2

t

X

.

.

.

.

.

.

5 / 27

(S, µ) := (VΓ , dΓ ) for undirected graph Γ . ∑ c(xy )dΓ (ρ(x), ρ(y )) 0-Ext[Γ ] Minimize xy

.

subject to

ρ : X → S, ρ|S = id.

Minimum cut s

Γ = K2 1

t

X

.

.

.

.

.

.

5 / 27

(S, µ) := (VΓ , dΓ ) for undirected graph Γ . ∑ 0-Ext[Γ ] Minimize c(xy )dΓ (ρ(x), ρ(y )) xy

.

subject to

ρ : X → S, ρ|S = id.

Γ = K

X .

.

.

.

.

.

5 / 27

(S, µ) := (VΓ , dΓ ) for undirected graph Γ . ∑ c(xy )dΓ (ρ(x), ρ(y )) 0-Ext[Γ ] Minimize xy

.

subject to

ρ : X → S, ρ|S = id.

Multi-terminal cut

Γ = K

1

X .

.

.

.

.

.

5 / 27

(S, µ) := (VΓ , dΓ ) for undirected graph Γ . ∑ 0-Ext[Γ ] Minimize c(xy )dΓ (ρ(x), ρ(y )) xy

subject to

.

ρ : X → S, ρ|S = id.

Γ 2 1

X .

.

.

.

.

.

5 / 27

. Tractability Question (Karzanov 1998, 2004)

Γ = K2 ⇒ minimum cut ⇒ P Γ = Kn ⇒ multi-terminal cut ⇒ NP-hard . Question . What is Γ for which 0-Ext[Γ ] is in P ? .

(n ≥ 3)

.

.

.

.

.

.

6 / 27

. A classical result in location theory . Theorem (Picard-Ratliff 1978) . If . Γ is a tree, then 0-Ext[Γ ] is in P.

.

.

.

.

.

.

7 / 27

. A classical result in location theory . Theorem (Picard-Ratliff 1978) . If . Γ is a tree, then 0-Ext[Γ ] is in P. Obs. Γ ∈ P and Γ ′ ∈ P ⇒ Γ × Γ ′ ∈ P (× := Cartesian product)

Γ

Γ′

Γ × Γ′ .

.

.

.

.

.

7 / 27

. Median graph .

Median of x1 , x2 , x3 ⇔ v ∈ VΓ satisfying (1 ≤ i < j ≤ 3)

dΓ (xi , xj ) = dΓ (xi , v ) + dΓ (v , xj ) .

Median graph ⇔ ∀ triple has a unique median. u

y x

y

x z w z

v

.

.

.

.

.

.

8 / 27

. Median graph .

Median of x1 , x2 , x3 ⇔ v ∈ VΓ satisfying (1 ≤ i < j ≤ 3)

dΓ (xi , xj ) = dΓ (xi , v ) + dΓ (v , xj ) .

Median graph ⇔ ∀ triple has a unique median.

c.f. Median graph ≃ graph of CAT(0) cube complex (Chepoi 2000) .

.

.

.

.

.

8 / 27

. Median graph .

Median of x1 , x2 , x3 ⇔ v ∈ VΓ satisfying (1 ≤ i < j ≤ 3)

dΓ (xi , xj ) = dΓ (xi , v ) + dΓ (v , xj ) .

Median graph ⇔ ∀ triple has a unique median.

median

c.f. Median graph ≃ graph of CAT(0) cube complex (Chepoi 2000) .

.

.

.

.

.

8 / 27

. Median graph

.

Median of x1 , x2 , x3 ⇔ v ∈ VΓ satisfying (1 ≤ i < j ≤ 3)

dΓ (xi , xj ) = dΓ (xi , v ) + dΓ (v , xj ) .

Median graph ⇔ ∀ triple has a unique median.

. Theorem (Chepoi 1996) . .If Γ is a median graph, then 0-Ext[Γ ] is in P.

.

.

.

.

.

.

8 / 27

. Metric relaxation (Karzanov 1998)

. 0-Ext[Γ ] :

Min.



c(xy )d(x, y )

xy

.

s.t.

(X , d): 0-extension of (VΓ , dΓ )

.

.

.

.

.

.

9 / 27

. Metric relaxation (Karzanov 1998)

. Ext[Γ ] :

Min.



c(xy )d(x, y )

xy

.

s.t.

(X , d): extension of (VΓ , dΓ )

.

.

.

.

.

.

9 / 27

. Metric relaxation (Karzanov 1998) . Ext[Γ ] :

Min.



c(xy )d(x, y )

xy

s.t.

d(x, x) = 0

(x ∈ X )

d(x, y ) = d(y , x) ≥ 0 (x, y ∈ X ) d(x, y ) + d(y , z) ≥ d(x, z) (x, y , z ∈ X ) .

d(s, t) = dΓ (s, t)

(s, t ∈ VΓ ⊆ X )

Rem: Ext[Γ ] is polynomial size LP → P

.

.

.

.

.

.

9 / 27

. Metric relaxation (Karzanov 1998) . Ext[Γ ] :

Min.



c(xy )d(x, y )

xy

s.t.

d(x, x) = 0

(x ∈ X )

d(x, y ) = d(y , x) ≥ 0 (x, y ∈ X ) d(x, y ) + d(y , z) ≥ d(x, z) (x, y , z ∈ X ) .

d(s, t) = dΓ (s, t)

(s, t ∈ VΓ ⊆ X )

Rem: Ext[Γ ] is polynomial size LP → P Q. What is Γ for which Ext[Γ ] is exact (for every X , c) ?

c.f. Multicommodity flows (Karzanov 1998, H. 2009 ∼) .

.

.

.

.

.

9 / 27

. Frame = graph for which Ext[Γ ] is exact . Γ : frame ⇔ . bipartite no isometric cycle of length > 4 orientable ⇔ ∃ orientation: ∀ 4-cycle .

Rem: frame is obtained by gluing K2,m and K. 2 (in. a certain way) . . .

.

10 / 27

. Frame = graph for which Ext[Γ ] is exact . Γ : frame ⇔ . bipartite no isometric cycle of length > 4 orientable ⇔ ∃ orientation: ∀ 4-cycle .

Rem: frame is obtained by gluing K2,m and K (in. a certain way) . 2 . . .

.

10 / 27

. Frame = graph for which Ext[Γ ] is exact . Γ : frame ⇔ . bipartite no isometric cycle of length > 4 orientable ⇔ ∃ orientation: ∀ 4-cycle . c.f. frame ≃ CAT(0)-complex of folders (Chepoi 2000)

.

.

.

.

.

.

10 / 27

. Frame = graph for which Ext[Γ ] is exact . Γ : frame ⇔ . bipartite no isometric cycle of length > 4 orientable ⇔ ∃ orientation: ∀ 4-cycle . . Theorem (Karzanov 1998) . Γ . is a frame if and only if Ext[Γ ] = 0-Ext[Γ ]. . Corollary (Karzanov 1998) . .If Γ is a frame, then 0-Ext[Γ ] is in P.

.

.

.

.

.

.

10 / 27

Rem. {frames} is not closed under Cartesian product Rem. frame ̸= median graph ∈ {median graphs}, ̸∈ {frames} ̸∈ {median graphs}, ∈ {frames}

.

.

.

.

.

.

11 / 27

Rem. {frames} is not closed under Cartesian product Rem. frame ̸= median graph ∈ {median graphs}, ̸∈ {frames} ̸∈ {median graphs}, ∈ {frames} .

Γ : modular ⇔ ∀ triple has a median. Γ : orientable ⇔ ∃ orientation: ∀ 4-cycle

. Rem. frame = orientable hereditary modular graph (c.f. Bandelt 85) Ex. Hasse diagram of modular lattice

.

.

.

.

.

.

11 / 27

. Hardness result . Theorem (Karzanov 1998) . If . Γ is not modular or not orientable, then 0-Ext[Γ ] is NP-hard.

NP-hard orientable modular

? median graph

frame

P

P

.

.

.

.

.

.

12 / 27

. Partial result & conjectures (Karzanov 2004)

NP-hard orientable modular NP-hard?

P

P?

median graph

frame

P

P

.

.

.

.

.

.

13 / 27

. Main result . Theorem (H. 2012, SODA 2013) . If . Γ is orientable modular, then 0-Ext[Γ ] is in P.

NP-hard orientable modular

.

.

.

.

.

.

14 / 27

. Proof idea: Discrete Convex Analysis & Valued-CSP

Discrete Convex Analysis (Murota 1996 ∼) → Our approach suggests “Discrete Convex Analysis on Γ ”

.

.

.

.

.

.

15 / 27

. Proof idea: Discrete Convex Analysis & Valued-CSP

Discrete Convex Analysis (Murota 1996 ∼) → Our approach suggests “Discrete Convex Analysis on Γ ” Valued-CSP ≃ Minimization of a sum of functions with bounded arity ∑ Min. f i1 ,i2 ,...,iK (ρi1 , ρi2 , . . . , ρiK ) 1≤i1