dpm

Report 5 Downloads 152 Views
ChemAxon UGM Budapest 2012

Contribution of 2D, 3D structural features of drug molecules in the prediction of Drug Profile Matching Ágnes Peragovics Department of Biochemistry Eötvös Loránd University Budapest, Hungary

DRUG PROFILE MATCHING (DPM) METHOD

Interaction Profile (IP) generation

Drug

Effect Profile (EP) generation

drugs

drugs

Interaction Profile matrix A set of random proteins

Effect Profile matrix

HIERARCHICAL EFFECT DATABASE

Main effect

Subcategories ACE inhibitor Calcium channel blocker Renin blocking agent Angiotensin II receptor antagonist

Antihypertensive agent

Neutral endopeptidase inhibitor Sodium depletion diuretic Sympathetic blocker Vasodilator Diuretic

DRUG PROFILE MATCHING (DPM) METHOD

Interaction Profile matrix

Effect Profile matrix

Effect Probability matrix

PREDICTION LIST – ACE INHIBITORS Drug name Probability Captopril 1.000 Cilazapril 1.000 Ramipril 1.000 Methacycline 1.000 Trandolapril 1.000 Quinapril 1.000 Benazepril 1.000 Moexipril 1.000 Rescinnamine 1.000 Fosinopril 0.999 Rolitetracycline 0.999 Deserpidine 0.997 Enalapril 0.997 Lisinopril 0.996 Buprenorphine 0.991 Spirapril 0.990 Dasatinib 0.988 Telmisartan 0.985 Diatrizoate 0.977

True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TN)

ROC CURVES: MEASURE OF ACCURACY

TPR

AUC=1.0

AUC=0.50

FPR

TRADITIONAL 2D AND 3D SIMILARITY SEARCHES

2D descriptors

3D descriptors

ChemAxon chemical fingerprints Tanimoto similarity

ChemAxon Flexible 3D alignment alignment scores

2D similarity matrix

3D similarity matrix

Screening protocol for a given effect: 1. Select an active molecule as a query structure 2. Sort the database molecules by decreasing similarity 3. Calculate AUC to measure accuracy 4. Repeat steps 1-3 for each active molecule of a given effect 5. Calculate average AUC and standard deviation

RESULTS OF DRUG CLASSIFICATION

DPM

2D

3D

DPM

2D

3D

RIGID STRUCTURAL CATEGORIES

Benzodiazepines DPM

2D

3D

1.00

0.96±0.04

0.95±0.03

Glucocorticoids

DPM

2D

3D

1.00

0.99±0.01

1.00±0.00

STRUCTURALLY DIVERSE EFFECTS

Anti-inflammatory agent

DPM

2D

3D

0.93

0.52±0.11

0.50±0.03

Anxiolytic agent DPM

2D

3D

0.94

0.59±0.08

0.60±0.11

Anti-glaucoma agent DPM

2D

3D

0.96

0.49±0.04

0.51±0.04

STRUCTURALLY DIVERSE EFFECTS Fast sodium channel inhibitor

GABA agent

NMDA receptor Calcium channel antagonist agent

Antiepileptic agent DPM

2D

3D

0.97

0.55±0.07

0.50±0.11

Antiepileptic agent. NOS

CONCLUSIONS

1. Rigid structural categories can be handled effectively by 2D and 3D searches. The more complex DPM method is not required in these cases. 2. The main strength of DPM is to screen wide effect categories containing structurally diverse molecules.

Possible explanation: interaction to non-target protein sites

biologically more relevant rare conformers?

THANK YOU FOR YOUR ATTENTION!

Department of Psychiatry and Psychotherapy Semmelweis University

Department of Biochemistry Eötvös Loránd University

Printnet Ltd.

Pál Czobor István Bitter Gábor Csukly László Tombor

András Málnási-Csizmadia Zoltán Simon Balázs Jelinek Csaba Hetényi Margit Vigh-Smeller Anna Rauscher László Végner Zhenhui Yang Gergely Zahoránszky-Kőhalmi

Péter Hári Zoltán Brandhuber Domonkos Nagy Máté Marót Barna Bíró

PREDICTIVE POWER ON EXTERNAL DATA?

Random splitting experiment Training set

Test set

Modified 2D and 3D search • same query molecules as in DPM training set • search performed on the same test sets

RESULTS OF RANDOM SPLITTING DPM

2D

3D

DPM

2D

3D

RESULTS OF RANDOM SPLITTING

RESULTS OF RANDOM SPLITTING

TEN-FOLD CROSS-VALIDATION

ROBUSTNESS VALUES FOR MAIN EFFECTS AND SUBGROUPS