Dynamics of a family of two-dimensional difference ... - Semantic Scholar

Report 6 Downloads 44 Views
Applied Mathematics and Computation 219 (2013) 5949–5955

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Dynamics of a family of two-dimensional difference systems Wanping Liu a,b,⇑, Xiaofan Yang a, Xinzhi Liu b a b

College of Computer Science, Chongqing University, Chongqing 400044, China Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

a r t i c l e

i n f o

a b s t r a c t The boundedness and global asymptotic behavior of positive solutions of the nonlinear two-dimensional difference systems xn ¼ Uðxnt1 ; yns1 Þ; yn ¼ Wðyns2 ; xnt2 Þ, where t1 ; s1 ; s2 ; t 2 are all positive integers, are investigated. Some sufficient conditions are established such that the positive solutions converge to the unique equilibrium. Finally, some examples are given to illustrate our results. Ó 2012 Elsevier Inc. All rights reserved.

Keywords: Difference equation System Equilibrium point Global attractivity

1. Introduction There has been a long history of interest in difference equations and difference systems, e.g., see [1–37] and the references therein. In particular, a wide variety of nonlinear difference systems have been studied because they model numerous real life problems in biology, physics, population dynamics, economics and so on. One of the difference equations that has attracted some attention is

xnþ1 ¼ A þ

xpnm ; xrnk

n 2 N0 ;

ð1Þ

where A; r > 0; p P 0 and k; m 2 N0 , and its numerous special cases had been studied in a large number of papers, e.g., see [1–4,7–9,11,12,14,26–34] and the references therein. Note that in all these papers the equations treated therein are of the form xn ¼ f ðxnk ; xnl Þ, for some k; l 2 N where the function f ðx; yÞ is monotone in both variables x and y. For related max-type difference equations see, e.g. [25,29], and the references therein. Usually, many specific difference equations are studied before an abstract one is investigated. For example, Camouzis and Papaschinopoulos [6] investigated a specific system which consists of the following two rational difference equations

xnþ1 ¼ 1 þ

xn ; ynm

ynþ1 ¼ 1 þ

yn ; xnm

n 2 N0 ;

and suggested to study the generalized system

xnþ1 ¼ A þ

xn ; ynm

ynþ1 ¼ B þ

yn ; xnm

n 2 N0 :

For some related papers on systems of difference equations, see, e.g. [5,15–19,21–24]. The following abstract nonlinear difference equation

xnþ1 ¼ f ðxns ; xnt Þ;

⇑ Corresponding author at: College of Computer Science, Chongqing University, Chongqing 400044, China. E-mail address: [email protected] (W. Liu). 0096-3003/$ - see front matter Ó 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2012.11.058

5950

W. Liu et al. / Applied Mathematics and Computation 219 (2013) 5949–5955

where s; t 2 N0 satisfying s < t, was studied by Sun and Xi [37], in which they gave some sufficient conditions such that every positive solution of this equation converges to the unique positive equilibrium point. Furthermore, Sun and Xi [35] investigated the global asymptotic behavior of positive solutions to the following difference system

xnþ1 ¼ f ðxn ; ynk Þ;

ynþ1 ¼ f ðyn ; xnk Þ;

n 2 N0 ;

ð2Þ

with positive initial conditions and k 2 N. Certain appropriate assumptions about the function f in system (2) were given to guarantee that each positive solution to this system converges to a positive equilibrium point. Recently, Sun and Xi [36] have further studied the generic difference equation system

xnþ1 ¼ f ðynq ; xns Þ;

ynþ1 ¼ gðxnt ; ynp Þ;

n 2 N0 ;

where p; q; s; t are all nonnegative integers satisfying s P t and p P q, and the initial values are positive, by posing some sufficient conditions such that the unique positive equilibrium is a global attractor. Inspired by the above works, we study in this paper the dynamics of the following class of difference systems

xn ¼ Uðxnt1 ; yns1 Þ;

yn ¼ Wðyns2 ; xnt2 Þ;

n 2 N0 ;

ð3Þ

where t1 ; s1 ; s2 ; t2 are all positive integers and both Uðx; yÞ and Wðx; yÞ are decreasing in x and increasing in y. For s1 ; s2 ; t 1 ; t 2 in system (3), let t ¼ maxft1 ; t2 g and s ¼ maxfs1 ; s2 g in the sequel. As far as we know, system (3) has not yet been studied. Through careful analysis we have found that all positive solutions of system (3) converge to the unique equilibrium under some assumptions. These conditions are different from those given in [36]. 2. Main results In this section, we first present six basic assumptions about the mappings U and W in system (3), which are necessary for the main result at the end of this section. For the two mappings in system (3), we assume (A1): Let I ¼ ½a; þ1Þ or ða; þ1Þ, where a P 0, and U; W : I 2 ! I are continuous with c ¼ inf ðx;yÞ2I 2 Uðx; yÞ ¼ inf ðx;yÞ2I 2 Wðx; yÞ. Furthermore, all the initial values of system (3) xt ; xtþ1 ; . . . ; x1 ; ys ; ysþ1 ; . . . ; y1 belong to the interval I ; (A2): There exists only one fixed point k 2 ðc; þ1Þ such that Uðc; kÞ ¼ Wðc; kÞ ¼ k; Þ with   2 ½Wðk; cÞ; k; (A3): The system x ¼ Uðx; yÞ; y ¼ Wðy; xÞ has a unique solution ð x; y x 2 ½Uðk; cÞ; k; y (A4): Both the mappings Uðx; yÞ and Wðx; yÞ are strictly decreasing in x for each y 2 I and strictly increasing in y for each x 2 I; (A5): Both Uðc; xÞ=x and Wðc; xÞ=x are nonincreasing on the interval ðc; þ1Þ; (A6): The system M ¼ Uðm; T Þ; m ¼ UðM; tÞ; T ¼ Wðt; MÞ; t ¼ WðT ; mÞ with M; m 2 ½Uðk; cÞ; k; T ; t 2 ½Wðk; cÞ; k has a unique solution with M ¼ m; T ¼ t. Lemma 2.1. Assume that there exist two bounded sequences fan g1 and n¼t an ¼ Uðant1 ; bns1 Þ; bn ¼ Wðbns2 ; ant2 Þ; n 2 N0 , where both U and W satisfy (A1), (A4). Then

fbn g1 n¼s

such

that

lim sup an 6 Uðlim inf ant1 ; lim sup bns1 Þ; n!1

n!1

n!1

lim inf an P Uðlim sup ant1 ; lim inf bns1 Þ; n!1

n!1

n!1

ð4Þ

lim sup bn 6 Wðlim inf bnt2 ; lim sup ans2 Þ; n!1

n!1

n!1

lim inf bn P Wðlim sup bnt2 ; lim inf ans2 Þ: n!1

n!1

n!1

Proof. The proof is simple and known but is given here for the completeness. Since the sequences fan g and fbn g are bounded, denote

a1;k ¼ inf fan g ¼ inffak ; akþ1 ; . . .g; a2;k ¼ inf fbn g ¼ inffbk ; bkþ1 ; . . .g; nPk

nPk

b1;k ¼ supfan g ¼ supfak ; akþ1 ; . . .g; nPk

b2;k ¼ supfbn g ¼ supfbk ; bkþ1 ; . . .g: nPk

Then by (5) and the assumption (A4), we have that for k P maxfs1 ; t1 g,



!



b1;k ¼ sup Uðant1 ; bns1 Þ 6 U inf fant1 g; supfbns1 g nPk

nPk

nPk

¼ Uða1;kt1 ; b2;ks1 Þ;

ð5Þ

W. Liu et al. / Applied Mathematics and Computation 219 (2013) 5949–5955



5951

!



a1;k ¼ inf Uðant1 ; bns1 Þ P U supfant1 g; inf fbns1 g ¼ Uðb1;kt1 ; a2;ks1 Þ: nPk

nPk

nPk

Therefore by taking limits on both sides of the above two inequalities and in light of the continuity of the function U, we have

    lim supan ¼ lim b1;k 6 U lim a1;kt1 ; lim b2;ks1 ¼ U lim inf ant1 ; lim supbns1 ; k!1

n!1

k!1

k!1

n!1

n!1

    lim inf an ¼ lim a1;k P U lim b1;kt1 ; lim a2;ks1 ¼ U lim supant1 ; lim inf bns1 : n!1

k!1

k!1

k!1

n!1

The proof of the last two inequalities of (4) is similar and thus omitted.

n!1

h

Lemma 2.2. Under the assumptions (A1), (A2), (A4) and (A5), the following two statements hold: (1) xn 6 k if yns1 6 k, while xn 6 yns1 if yns1 > k; n P maxfs1 ; t1 g; (2) yn 6 k if xnt2 6 k, while yn 6 xnt2 if xnt2 > k; n P maxfs2 ; t 2 g.

Proof. Observe that xn ¼ Uðxnt1 ; yns1 Þ 6 Uðc; yns1 Þ; n P maxfs1 ; t1 g. By the assumptions (A2), (A4) and (A5), we have that if yns1 6 k, then

xn 6 Uðc; yns1 Þ 6 Uðc; kÞ ¼ k; while if yns1 > k then

Uðc; yns1 Þ yns1

6

Uðc; kÞ k

¼ 1;

which implies xn 6 Uðc; yns1 Þ 6 yns1 . Likewise, we get

yn ¼ Wðyns2 ; xnt2 Þ 6 Wðc; xnt2 Þ;

n P maxfs2 ; t2 g:

From this inequality, we know that if xnt2 6 k, then

yn ¼ Wðyns2 ; xnt2 Þ 6 Wðc; kÞ ¼ k; while if xnt2 > k then

Wðc; xnt2 Þ xnt2

6

Wðc; kÞ k

¼ 1;

which indicates that yn 6 Wðc; xnt2 Þ 6 xnt2 . h Lemma 2.3. For each j 2 f0; 1; . . . ; s1 þ t 2  1g, there exists N j 2 N such that xnðt2 þs1 Þþj 6 k and ynðt2 þs1 Þþt2 þj 6 k for all n P N j . Proof. Suppose that for some j 2 f0; 1; . . . ; s1 þ t 2  1g there exists wj 2 N0 such that xwj ðt2 þs1 Þþj 6 k. By using both statements in Lemma 2.2 we have that

xnðt2 þs1 Þþj 6 k for all n P wj and

ynðt2 þs1 Þþt2 þj 6 k for all n P wj : Likewise, if for some j 2 f0; 1; . . . ; t 2 þ s1  1g there exists zj 2 N0 such that yzj ðt2 þs1 Þþj 6 k. Then recursively we get that for all n P zj there hold

ynðt2 þs1 Þþj 6 k and xnðt2 þs1 Þþs1 þj 6 k: Therefore, on the contrary assume that there exists some j 2 f0; 1; . . . ; s1 þt2  1g such that Lemma 2.3 does not hold. Then applying the above two conclusions, we can simply get that

xnðt2 þs1 Þþj > k and ynðt2 þs1 Þþt2 þj > k for all n 2 N0 : Using Lemma 2.2, we have that for all n 2 N0 ,

k < xðnþ1Þðt2 þs1 Þþj 6 xnðt2 þs1 Þþj and k < yðnþ1Þðt2 þs1 Þþt2 þj 6 ynðt2 þs1 Þþt2 þj :

5952

W. Liu et al. / Applied Mathematics and Computation 219 (2013) 5949–5955

Denote

lim xnðt2 þs1 Þþj ¼ kj and lim ynðt2 þs1 Þþt2 þj ¼ cj ;

n!1

n!1

then kj P k and cj P k. By Lemma 2.2 we know fxn g; fyn g are bounded. Let

/j ¼ lim inf xnðt2 þs1 Þt1 þj and n!1

lj ¼ lim inf ynðt2 þs1 Þþt2 s2 þj ; n!1

obviously we have /j P c; lj P c. By system (3), we have that

xnðt2 þs1 Þþj ¼ Uðxnðt2 þs1 Þt1 þj ; ynðt2 þs1 Þs1 þj Þ;

ð6Þ

ynðt2 þs1 Þþt2 þj ¼ Wðynðt2 þs1 Þþt2 s2 þj ; xnðt2 þs1 Þþj Þ: Employing Lemma 2.1, it follows from (6) that

kj 6 Uð/j ; cj Þ 6 Uðc; cj Þ ¼ cj Uðc; cj Þ=cj 6 cj Uðc; kÞ=k ¼ cj ;

cj 6 Wðlj ; kj Þ 6 Wðc; kj Þ ¼ kj Wðc; kj Þ=kj 6 kj Wðc; kÞ=k ¼ kj : Thus kj ¼ cj , which plus the assumptions (A2) and (A4) leads to kj ¼ cj ¼ k; /j ¼ lj ¼ c. Let Aj ¼ lim supn!1 xnðt2 þs1 Þþj2t1 and Bj ¼ lim inf n!1 ynðt2 þs1 Þþjt1 s1 , then Aj ; Bj P c. Again by system (3) we get

xnðt2 þs1 Þþjt1 ¼ Uðxnðt2 þs1 Þþj2t1 ; ynðt2 þs1 Þþjt1 s1 Þ:

ð7Þ

It follows by Lemma 2.1 and (7) that c P UðAj ; Bj Þ > UðAj þ 1; Bj Þ P c, which is obviously a contradiction. The proof is complete. h The following lemma follows directly from Lemma 2.3 and shows the explicit bounds of positive solution to system (3) for sufficiently large n. Lemma 2.4. Suppose (A1)–(A5) hold for system (3), then there exists N 2 N such that Uðk; cÞ 6 xn 6 k and

Wðk; cÞ 6 yn 6 k; n > N . Proof. According to Lemma 2.3, let

N ¼ max fN j g  ðs1 þ t 2 Þ þ maxfsi ; ti g þ t 2 ; 06j<s1 þt 2

i¼1;2

then xnti ; ynsi 6 k; i ¼ 1; 2, for all n > N. It follows by system (3) xn ¼ Uðxnt1 ; yns1 Þ P Uðk; cÞ; yn ¼ Wðyns2 ; xnt2 Þ P Wðk; cÞ, for all n > N . The proof is complete. h

and

(A4)

that

Theorem 2.1. If (A1)–(A6) hold for system (3), then every positive solution ðxn ; yn Þ to system (3) converges to the unique equiÞ. librium ð x; y 1 1 1 Proof. Let t ¼ maxft1 ; t2 g; s ¼ maxfs1 ; s2 g, and define four sequences fmi g1 i¼t ; fMi gi¼t ; ft i gi¼s ; fT i gi¼s recursively in the following way:

Mi ¼ Uðmit1 ; T is1 Þ; T i ¼ Wðt is2 ; Mit2 Þ;

mi ¼ UðMit1 ; tis1 Þ; ti ¼ WðT is2 ; mit2 Þ;

ð8Þ

where i 2 N0 and the initial values satisfy

mj ¼ Uðk; cÞ; t j ¼ Wðk; cÞ;

Mj ¼ k; j 2 ft; t þ 1; . . . ; 1g; T j ¼ k; j 2 fs; s þ 1; . . . ; 1g:

ð9Þ

Obviously we have that mj1 6 mj ; Mj 6 Mj1 ; j 2 ft þ 1; . . . ; 1g and t j1 6 tj ; T j 6 T j1 ; j 2 fs þ 1; . . . ; 1g. Assume that mj1 6 mj 6 k; Uðk; cÞ 6 Mj 6 Mj1 hold for t þ 1 6 j 6 k, and tj1 6 tj 6 k; Wðk; cÞ 6 T j 6 T j1 hold for s þ 1 6 j 6 k; k P 1. Then employing (A4), for j ¼ k þ 1 we obtain that

mkþ1 ¼ UðMkt1 þ1 ; t ks1 þ1 Þ P UðMkt1 ; tks1 Þ ¼ mk ; Mkþ1 ¼ Uðmkt1 þ1 ; T ks1 þ1 Þ 6 Uðmkt1 ; T ks1 Þ ¼ Mk ; t kþ1 ¼ WðT ks2 þ1 ; mkt2 þ1 Þ P WðT ks2 ; mkt2 Þ ¼ tk ; T kþ1 ¼ Wðtks2 þ1 ; Mkt2 þ1 Þ 6 Wðt ks2 ; Mkt2 Þ ¼ T k : 1 1 Working inductively, we have that fmi g1 i¼t and ft i gi¼s are nondecreasing and bounded from above by k, and fMi gi¼t and 1 fT i gi¼s are nonincreasing and bounded from below by Uðk; cÞ; Wðk; cÞ, respectively.

5953

W. Liu et al. / Applied Mathematics and Computation 219 (2013) 5949–5955

Hence fmi g; fMi g; fti g; fT i g are convergent, and denote

m ¼ limmi ; i!1

M ¼ limMi ; i!1

t ¼ limt i ; i!1

T ¼ limT i : i!1

Then m; M 2 ½Uðk; cÞ; k and t; T 2 ½Wðk; cÞ; k. By taking limits on both sides of (8) and in view of the continuity of U and W, we have that

M ¼ Uðm; T Þ;

m ¼ UðM; tÞ;

T ¼ Wðt; MÞ;

t ¼ WðT ; mÞ:

It follows from (A3) and (A6) that m ¼ M ¼ x; t ¼ T ¼ y. 1 Let fxn g1 n¼t and fyn gn¼s be a solution to system (3), then by Lemma 2.4 there exists K 2 N such that

Uðk; cÞ 6 xj 6 k for all j P K  t and

Wðk; cÞ 6 yj 6 k for all j P K  s: By (8) and (9), we have

mjK 6 xj 6 MjK ; K  t 6 j 6 K  1 and

tjK 6 yj 6 T jK ; K  s 6 j 6 K  1: If mjK 6 xj 6 MjK holds for K  t 6 j 6 n  1 and tjK 6 yj 6 T jK holds for K  s 6 j 6 n  1; n P K, then observe that

xn ¼ Uðxnt1 ; yns1 Þ P UðMnKt1 ; tnKs1 Þ ¼ mnK ; xn ¼ Uðxnt1 ; yns1 Þ 6 UðmnKt1 ; T nKs1 Þ ¼ MnK ; yn ¼ Wðyns2 ; xnt2 Þ P WðT nKs2 ; mnKt2 Þ ¼ tnK ; yn ¼ Wðyns2 ; xnt2 Þ 6 Wðt nKs2 ; MnKt2 Þ ¼ T nK : By induction, we derive mnK 6 xn 6 MnK and tnK 6 yn 6 T nK , for all n P K. This plus m ¼ M ¼ x; t ¼ T ¼ y yields . The proof is complete. h limn!1 xn ¼  x and limn!1 yn ¼ y 3. Examples In this section, we will discuss several specific examples to verify the correctness of the main result given in Section 2. Example 3.1. Consider the following difference equation system

xn ¼ p þ

yns1 ; xnt1

yn ¼ p þ

xnt2 ; yns2

where s1 ; t 1 ; s2 ; t 2 2 N; p > 1 and t ¼ maxft1 ; t2 g; s ¼ maxfs1 ; s2 g.

n 2 N0 ; the

initial

ð10Þ values

xi ; yj > 0,

for

i ¼ t; . . . ; 1; j ¼ s; . . . ; 1,

where

Proof. Define Uðx; yÞ ¼ Wðx; yÞ ¼ p þ y=x with x; y 2 Rþ . It can be seen that U; W satisfy assumptions (A1)–(A5) with

c ¼ p; k ¼ p2 =ðp  1Þ; x ¼ y ¼ p þ 1. Hence it suffices to verify the following system

M ¼ p þ T=m;

m ¼ p þ t=M;

T ¼ p þ M=t;

t ¼ p þ m=T

ð11Þ

has a unique solution with m ¼ M; t ¼ T. It follows from (11) that

pðM  mÞ ¼ T  t and pðT  tÞ ¼ M  m; which implies T ¼ t; M ¼ m for p > 1. Thus (A6) holds for U; W. In view of Theorem 2.1, for every positive solution limn!1 xn ¼ x ¼ p þ 1; limn!1 yn ¼ y ¼ p þ 1. h

ðxn ; yn Þ

to

system

(10)

we

conclude

Example 3.2. Consider the following difference equation system

xn ¼

pyns1 þ xnt1 ; q þ xnt1

yn ¼

pxnt2 þ yns2 ; q þ yns2

ð12Þ

where s1 ; s2 ; t1 ; t2 2 N; 0 < q < p < q þ 1 with p þ q > 1 and initial values xi ; yj 2 ðq=p; þ1Þ, for i ¼ t; . . . ; 1; j ¼ s; . . . ; 1, where t ¼ maxft 1 ; t 2 g; s ¼ maxfs1 ; s2 g.

5954

W. Liu et al. / Applied Mathematics and Computation 219 (2013) 5949–5955

Proof. Let Uðx; yÞ ¼ Wðx; yÞ ¼ ðpy þ xÞ=ðq þ xÞ with x; y 2 ðq=p; þ1Þ. It is straightforward to verify that (A1)–(A5) hold for U; W with c ¼ 1; k ¼ 1=ðq  p þ 1Þ; x ¼ y ¼ p  q þ 1. Easily, it follows from the system



pT þ m ; qþm



pt þ M ; qþM



pM þ t ; qþt



pm þ T ; qþT

that ðq þ 1ÞðM  mÞ ¼ pðT  tÞ and ðq þ 1ÞðT  tÞ ¼ pðM  mÞ. So we get ðq þ 1Þ2 ðT  tÞ ¼ p2 ðT  tÞ which implies T ¼ t, and then M ¼ m. Hence (A6) holds for U; W. In light of Theorem 2.1, for every positive solution ðxn ; yn Þ of system (12) we have limn!1 xn ¼ x ¼ p  q þ 1; limn!1 yn ¼ y ¼ p  q þ 1. h Example 3.3. Consider the system

xn ¼ p þ qynt1 þ

A ; xns1

yn ¼ p þ qxnt2 þ

A ; yns2

n 2 N0 ;

ð13Þ

where all the initial values are positive, and p; A > 0; 0 < q < 1 satisfy the inequality

  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi p 1 þ q þ Að1  qÞ=ðA þ p2 Þ > A=ð1  qÞ:

ð14Þ

Proof. Set Uðx; yÞ ¼ Wðx; yÞ ¼ p þ qy þ A=x with x; y 2 Rþ . With c ¼ p; k ¼ ðA þ p2 Þ=ðpð1  qÞÞ; x ¼ y ¼ ðpþ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 p þ 4Að1  qÞÞ=ð2ð1  qÞÞ, Uðx; yÞ and Wðx; yÞ satisfy (A1)–(A5). From the following system

M ¼ p þ qT þ A=m; T ¼ p þ qM þ A=t;

m ¼ p þ qt þ A=M;

ð15Þ

t ¼ p þ qm þ A=T;

we can easily get ð1  A=ðmMÞÞðM  mÞ ¼ qðT  tÞ and ð1  A=ðtTÞÞðT  tÞ ¼ qðM  mÞ, which indicate that ð1  A=ðmMÞÞð1  A=ðtTÞÞðT  tÞ ¼ q2 ðT  tÞ. If m; M 2 ½Uðk; cÞ; k; t; T 2 ½Wðk; cÞ; k, then by (14) it is simple to verify ð1  A=ðmMÞÞð1  A=ðtTÞÞ > q2 . Thus T ¼ t; M ¼ m. That is, (A6) holds for mappings U; W. It follows by Theorem 2.1 that pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi limn!1 xn ¼ limn!1 yn ¼ ðp þ p2 þ 4Að1  qÞÞ=ð2ð1  qÞÞ for every positive solution ðxn ; yn Þ to system (13). h Example 3.4. Consider the following system (from Riccati equation)

xn ¼

p1 þ yns1 ; q1 þ xnt1

yn ¼

p2 þ xnt2 ; q2 þ yns2

n 2 N0 ;

ð16Þ

with nonnegative initial values, and p1 ; p2 > 0; q1 ; q2 > 1 satisfying

p1 q2 þ p2 ¼ p2 q1 þ p1 ;

q22  2p2 þ q1 P 0;

q1 q2  2p2 q2  1 P 0;

p22  q1 p2  p1 < 0:

ð17Þ

Proof. Define two mappings Uðx; yÞ ¼ ðp1 þ yÞ=ðq1 þ xÞ and Wðx; yÞ ¼ ðp2 þ yÞ=ðq2 þ xÞ; x; y 2 ½0; þ1Þ. It is easy to verify that (A1),(A2) and (A4)–(A6) hold for U; W with c ¼ 0; k ¼ p1 =ðq1  1Þ ¼ p2 =ðq2  1Þ. Hence it suffices to show that the system

x2 þ q1 x ¼ p1 þ y;

y2 þ q2 y ¼ p2 þ x

ð18Þ

has a unique positive solution ðx; yÞ. It follows from system (18) that

y4 þ 2q2 y3 þ ðq1 þ q22  2p2 Þy2 þ ðq1 q2  2p2 q2  1Þy ¼ q1 p2 þ p1  p22 : 4

3

q22

2

ð19Þ p22

Let HðtÞ ¼ t þ 2q2 t þ ðq1 þ  2p2 Þt þ ðq1 q2  2p2 q2  1Þt þ  q1 p2  p1 , then H0 ðtÞ ¼ 4t 3 þ 6q2 t2 þ 2ðq1 þ q22  2p2 Þt þ q1 q2  2p2 q2  1, and H00 ðtÞ ¼ 12t 2 þ 12q2 t þ 2ðq1 þ q22  2p2 Þ. . Then by substituting y ¼ y  into (18) we get We conclude by (17) that (19) has only one positive root, denoted by y qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2   =2. It follows from Theorem 2.1 that every positive solution to system (16) converges to the x ¼ q1 þ q1 þ 4p1 þ 4y Þ. h unique positive equilibrium ð x; y Acknowledgement The authors thank the anonymous referees for their valuable comments. This work was supported by the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education (No. 0903005109081-10), the Doctorate Foundation of Educational Ministry of China (Grant No. 20110191110022) as well as the China Scholarship Council (CSC).

W. Liu et al. / Applied Mathematics and Computation 219 (2013) 5949–5955

5955

References [1] R. Abu-staris, R. DeVault, Global stability of ynþ1 ¼ A þ yn =ynk , Appl. Math. Lett. 16 (2003) 173–178. [2] A. Amleh, E. Grove, G. Ladas, On the recursive sequence xnþ1 ¼ a þ xn1 =xn , J. Math. Anal. Appl. 533 (1999) 790–798. [3] K. Berenhaut, J. Foley, S. Stevic´, The global attractivity of the rational difference equation yn ¼ 1 þ ynk =ynm , Proc. Amer. Math. Soc. 135 (4) (2007) 1133–1140. [4] K. Berenhaut, J. Foley, S. Stevic´, Quantitative bounds for the recursive sequence ynþ1 ¼ A þ yn =ynk , Appl. Math. Lett. 19 (9) (2006) 983–989. [5] L. Berg, S. Stevic´, On some systems of difference equations, Appl. Math. Comput. 218 (2011) 1713–1718. [6] E. Camouzis, G. Papaschinopoulos, Global asymptotic behavior of positive solutions on the system of rational difference equations xnþ1 ¼ 1 þ xn =ynm ; ynþ1 ¼ 1 þ yn =xnm , Appl. Math. Lett. 17 (2004) 733–737. [7] R. DeVault, C. Kent, W. Kosmala, On the recursive sequence xnþ1 ¼ p þ xnk =xn , J. Differ. Equ. Appl. 9 (8) (2003) 721–730. [8] R. DeVault, S.W. Schultz, G. Ladas, On the recursive sequence xnþ1 ¼ A=xn þ 1=xn2 , Proc. Amer. Math. Soc. 126 (1998) 3257–3261. [9] H. El-Owaidy, A. Ahmed, M. Mousa, On asymptotic behavior of the difference equation xnþ1 ¼ a þ xnk =xn , Appl. Math. Comput. 147 (2004) 163–167. [10] H. El-Owaidy, A. Ahmed, A. Youssef, The dynamics of the recursive sequence xnþ1 ¼ axn1 =ðb þ cxpns Þ, Appl. Math. Lett. 18 (2005) 1013–1018. [11] J. Feuer, On the behavior of solutions of xnþ1 ¼ p þ xn1 =xn , Appl. Anal. 83 (6) (2004) 599–606. [12] B. Iricˇanin, S. Stevic´, On a class of third-order nonlinear difference equations, Appl. Math. Comput. 213 (2009) 479–483. [13] S.A. Kuruklis, The asymptotic stability of xnþ1  axn þ bxnk ¼ 0, J. Math. Anal. Appl. 188 (1994) 719–731. [14] W. Liu, X. Yang, Quantitative bounds for positive solutions of a Stevic´ difference equation, Discrete Dyn. Nat. Soc. 2010 (2010) (Article ID 235808), 14 pp.. [15] W. Liu, X. Yang, B. Iricˇanin, On some k-dimensional cyclic systems of difference equations, Abstr. Appl. Anal. 2010 (2010) (Article ID 528648), 11 pp.. [16] W. Liu, X. Yang, S. Stevic´, B. Iricˇanin, Part-metric and its applications to cyclic discrete dynamic systems, Abstr. Appl. Anal. 2011 (2011) (Article ID 534974), 16 pp.. [17] A. Özban, On the system of rational difference equations xn ¼ a=yn3 ; yn ¼ byn3 =ðxnq ynq Þ, Appl. Math. Comput. 188 (2007) 833–837. [18] A. Özban, On the positive solutions of the system of rational difference equations xn ¼ 1=ynk ; yn ¼ yn =ðxnm ynmk Þ, J. Math. Anal. Appl. 323 (2006) 26–32. [19] G. Papaschinopoulos, M. Radin, C. Schinas, Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form’’, Appl. Math. Comput. 218 (2012) 5310–5318. pi qi [20] G. Papaschinopoulos, C. Schinas, On the system of two difference equations xnþ1 ¼ Rki¼0 ðAi =yni Þ; ynþ1 ¼ Rki¼0 ðBi =xni Þ, J. Math. Anal. Appl. 273 (2002) 294–309. [21] G. Papaschinopoulos, M. Radin, C. Schinas, On the system of two difference equations of exponential form: xnþ1 ¼ a þ bxn1 eyn ; ynþ1 ¼ c þ dyn1 exn , Math. Comput. Model. 54 (2011) 2969–2977. [22] S. Stevic´, On a system of difference equations, Appl. Math. Comput. 218 (2011) 3372–3378. [23] S. Stevic´, On a system of difference equations with period two coefficients, Appl. Math. Comput. 218 (2011) 4317–4324. [24] S. Stevic´, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2011) 5010–5018. [25] S. Stevic´, On a nonlinear generalized max-type difference equation, J. Math. Anal. Appl. 376 (2011) 317–328. [26] S. Stevic´, On a class of higher-order difference equations, Chaos Solitons Fract. 42 (1) (2009) 138–145. [27] S. Stevic´, Boundedness character of a class of difference equations, Nonlinear Anal.: Theory Methods Appl. 70 (2009) 839–848. [28] S. Stevic´, Boundedness character of two classes of third-order difference equations, J. Differ. Equ. Appl. 15 (11–12) (2009) 1193–1209. [29] S. Stevic´, On the recursive sequence xnþ1 ¼ maxfc; xpn =xpn1 g, Appl. Math. Lett. 21 (8) (2008) 791–796. [30] S. Stevic´, On the difference equation xnþ1 ¼ a þ xn1 =xn , Comput. Math. Appl. 56 (5) (2008) 1159–1171. [31] S. Stevic´, On the recursive sequence xnþ1 ¼ an þ xpn =xrn1 , Discrete Dyn. Nat. Soc. 2007 (2007) (Article ID 40963), 9 pp.. [32] S. Stevic´, On the recursive sequence xnþ1 ¼ a þ xpn =xpn1 , Discrete Dyn. Nat. Soc. 2007 (2007) (Article ID 34517), 9 pp.. [33] S. Stevic´, On the recursive sequence xnþ1 ¼ an þ xpn1 =xpn , J. Appl. Math. Comput. 18 (1–2) (2005) 229–234. [34] M. Saleh, M. Aloqeili, On the difference equation ynþ1 ¼ A þ ypn =ypnk , Appl. Math. Comput. 171 (2005) 862–869. [35] T. Sun, H. Xi, On the system of rational difference equations xnþ1 ¼ f ðxn ; ynk Þ; ynþ1 ¼ f ðyn ; xnk Þ, Adv. Differ. Equ. 2006 (2006) (Article ID 16949), 7 pp.. [36] T. Sun, H. Xi, On the system of rational difference equations xnþ1 ¼ f ðynq ; xns Þ; ynþ1 ¼ gðxnt ; ynp Þ, Adv. Differ. Equ. 2006 (2006) (Article ID 51520), 8 pp.. [37] T. Sun, H. Xi, Global behavior of the nonlinear difference equation xnþ1 ¼ f ðxns ; xnt Þ, J. Math. Anal. Appl. 311 (2005) 760–765.