E. coli

Report 9 Downloads 161 Views
Undergraduate   Category:  Physical  and  Life  Sciences   Degree  Level:  B.S.,  Biochemistry   Abstract  ID  #733

  Characteriza0on  of  DNA  Alkyla0on  in  E.  coli   Samir  Baig,  Sirine  Bellou,  Meghan  Travers,  Charles  Conway,  Caitlin  Kramer,  Mark  Muenter,  and  Penny  Beuning    Department  of  Chemistry  and  Chemical  Biology,  Northeastern  University,  Boston,  MA  02115

ABSTRACT  

DNA alkylation is the process by which alkyl groups are covalently attached to DNA bases forming lesions that can cause mutations and lead to cancer. DNA alkylation is ubiquitous and can occur endogenously via cellular metabolism and exogenously from exposure to chemical and environmental agents. Alkylating agents are used in cancer chemotherapy as cytotoxic agents, but also can be present in industrial processes and as impurities in drug synthetic pathways. Hence, a comprehensive understanding of the DNA alkylation process is extremely important. Repair of DNA alkylation involves various processes including Base Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Direct Repair (DR), and bypass by specialized DNA polymerases. Our research aims to determine the survival of E. coli cells upon treatment with styrene oxide, benzyl bromide, and chloroacetaldehyde, three alkylating agents found in various industrial processes (plastics, chemical, pharmaceutical) and identify how cellular responses to these agents correlate with the identity and frequency of adducts. The survival of wild-type E. coli and knockouts of twenty-seven specific genes associated with the various DNA repair processes are being examined following exposure to each alkylating agent to determine which genes are required for resistance to alkylation damage and to what degree. We have identified a number of DNA repair genes that are critical for survival in response to a given agent, including genes involved in nucleotide excision repair and direct repair. We plan to profile the DNA adducts formed from benzyl bromide and the adducts that persist in certain knockout strains via HPLC-(ESI)-MS. This work will allow us to identify the range of adducts formed and the contribution of specific DNA repair pathways to repair defined adducts.

AIM   To  determine  the  range  of  adducts  formed  in  E.  coli  by  different   alkyla@ng  agents  and  their  suscep@bility  to  repair.    

  BACKGROUND  

Response  in  E.  coli    SOS    

Alkyla0ng  Agents  

Adap0ve  Reponse  in  E.  coli  

7 mL LB 140µL o/n

35-40 min @ 37oC OD600 0.1-0.2 750 µL/OD = VSC

CH3

Alkylated DNA

CH3

Alkyla@ng  agents  alkylate  DNA  via  SN1  or  SN2  mechanisms,  disrup@ng  normal   Watson-­‐Crick  DNA  base  pairing  and  leading  to  DNA  damage  in  the  form  of  various   adducts.  Accumula@on  of  these  adducts  can  lead  to  impairment  and/or  loss  of   cellular  func@on.  Above,  atoms  colored  red  indicate  sites  most  open  methylated  by   SN1  alkyla@ng  agents,  while  atoms  in  green  indicate  sites  commonly  modified  by  SN2   alkyla@ng  agents.  Atoms  colored  orange  represent  sites  open  methylated  in  single   stranded  DNA,  while  those  colored  blue  designate  exocyclic  amino  groups  important   in  forma@on  of  cyclized  DNA  adducts.  

Alkylated Ada protein Repaired DNA

ada

Ada DNA Alkyltransferase

Part  A.  Cloning  The  Gene   Plasmid   DNA  

WT  E.coli  

Cut  plasmid  DNA  using   same  restric@on  enzymes   as  gene   Dephosphorylate  to   prevent  plasmid  from   liga@ng  to  itself   Amplify  gene  from  WT   using  designed  plasmids   containing  restric@on  sites  

Cut   Plasmid   DNA  

E.  Coli  with   plasmid  DNA   Ligate  and   transform   Into  cells  

Isolate  plasmid   DNA  from  cells  

Plasmid   DNA  with   gene  

Gene  from  amplifica@on   in  large  amounts  with   s@cky  ends  for  liga@on  

Percent  Survival  of  E.  coli  strain   dele@ons  exposed  to  alkyla@ng  agents:  

         1)      Zone  of  inhibi@on  assays

    (1)  Chloroacetaldehyde       (2)  Styrene  Oxide       (3)  Benzyl  Bromide  

Percent  Survival  (Log10 Scale/Error  Analysis)  Versus  Time  of  E.  coli  AB1157 Derivatives  Versus  WT  Exposed  to  Benzyl  Bromide  (0.14  mg/mL)   100.000 AB1157  WT Delta  ada

%  Survival  (Log10)

Delta  recJ

Delta  recN Delta  rnt Delta  ruvA

10.000

Delta  sbmC Delta  sulA Delta  symE Delta  umuC Delta  uvrA Delta  uvrD Delta  uvrY

% Survival (log Scale)

Delta  dinB

10  

Delta  umuD

WT

Delta  umuDC

1.000

Delta  dinB  Delta  umuDC

0

Exposure Time (Minutes)

(dG)  

Frick,  L.E.;  Delaney,  J.C.;  Wong,  C.;  Drennan,  C.L.;  Essigmann,  J.M.  Allevia@on  of   1,N6-­‐ethanoadenine  genotoxicity  by  the  Escherichia  coli  adap@ve  response  protein   AlkB  Proc.  Nat.  Acad.  Sci.  USA  104(3)  (2007)  755-­‐76     New  Research  Direc@ons  in  DNA  Repair,  Chapter  5:  “Direct  Repair  in  Mammalian   Cells”  by  S.  L.  Nay  and  T.  R.  O’Connor  (edited  by  Clark  Chen,  ISBN   978-­‐953-­‐51-­‐1114-­‐6,  Published:  May  22,  2013)  123-­‐162     Lehninger,  et  al.  Principles  of  Biochemistry,  2nd  Edi@on     Quinlivan,  E.  P.;  Gregory,  J.  F.,  3rd,  DNA  diges@on  to  deoxyribonucleoside:  a   simplified  one-­‐step  procedure.  Analy@cal  biochemistry  2008,  373  (2),  383-­‐5.  

 

ACKNOWLEDGEMENTS  

Delta  uvrC

Delta  yebG

100  

+  

REFERENCES  

100  

50  

               

                                                     2)      Protein  purifica@on  

Delta  ybfE

0  

in  vitro  

  f    ybfE   Characteriza0on  o

% Survival Versus Time

0.1  

Glycosylase

RESULTS  

Delta  recE

1  

Dioxygenase

in  vivo:  

Delta  recA

0 30 60 90 min.

AlkA

The  normal  survival  assay  will  be  conducted  with  the  transformants  from  above   and  %  survival  will  be  examined  to  see  if  complementa@on  was  successful.      The  expected  result  is  that  WT  will  do  the  best,  dele@on  will  do  the  worst  with   empty  vector  about  the  same  and  the  dele@on  strain  with  the  plasmid+gene  will  do   beher  than  the  dele@on.  This  will  confirm  that  the  gene  is  cri@cal  for  repair  of   alkylated  DNA    

Delta  mug

1.  Centrifuge T0 3 min/6K rcf 2.  Remove SN and wash/resuspend in 500 µL of 0.85% saline 3. Store on Ice 4. Repeat all steps for all timepoints

AidB AlkB

Several  plasmids  need  to  be  transformed  into  strains  of  E.  coli  for  complementa@on   The  transformants  needed  for  complementa@on  are  as  follows:   a)  WT   b)  Dele@on  strain,  e.g.  ΔumuDC   c)  Dele@on  strain  transformed  with  gene-­‐containing  plasmid   d)  Dele@on  strain  transformed  with  emplty  plasmid  (no  gene  inserted)  

Delta  nfo

180 µL 0.85% saline into Rows C à G 100 µL washed RSP into Row B Serial Dilutions: 20 µL B à C; C à D…..F à G Plate 10 µL from G à B (bottom of plate à top)

aidB

•  In  vitro  studies  by  LC-­‐(ESI)-­‐MS:  React  free  nucleosides  (dG;  dA;  dC;  dT)   with  benzyl  bromide  and  iden@fy/profile  DNA  adducts  formed     •  In  vivo  studies  by  LC-­‐(ESI)-­‐MS:  Analyze  damaged  DNA  (DNA  extrac@on;   diges@on  to  nucleosides)    from  specific    E.  coli  strain  dele@ons  showing   high  sensi@vity  to  benzyl  bromide    Examples:  AB1157(ΔybfE  and  ΔrecA)      

Part  B.  Survival  Assays  

To  confirm  that  these  genes  are  cri@cal  for  the  repair  of  alkylated  DNA  and   there  isn’t  some  other  factor  involved,  we  have  designed  a  protocol  that  allows   the  gene  to  be  expressed  in  cells  that  have  the  gene  deleted  using  plasmids  

Delta  mutS

1.  2.  3.  4. 

alkA

Ada regulon

Delta  dinG

S

alkB

COMPLEMENTATION  STUDIES  EXPERIMENTAL  DESIGN  

1.  Centrifuge 10 min @ 3.8k rcf 2.  Remove supernatant (SPN) 3.  Resuspend pellet in 1 mL LB (New 15 mL snap caps) 4. 900 µL resuspension (RSP) à “S” eppie 5. 90 µL “S” RSP à T0 eppie 6. 90 µL AA into “S” eppies; mix

0

•  Dele@on  of  recA  and  ybfE  confers  high  sensi@vity  styrene  oxide,          benzyl  bromide,  and  chloroacetaldehyde  and  benzyl  bromide     •  Complementa@on  studies  to  confirm  percent  survival  (are  high   sensi@vi@es  (high  cellular  death)  due  to  the  specific  gene  dele@on?  

Ada protein

Delta  mutM

96-Well Plate Preparation: Using Multi-channel pipettes…...

•  Strains  are  generally  more  resistant  to  styrene  oxide  and   chloroacetaldehyde  compared  to  benzyl  bromide  

Alkylating agent

SURVIVAL  ASSAY  EXPERIMENTAL  DESIGN  

CONCLUSIONS/FUTURE  WORK  

30

60

Exposure Time (minutes)

90

Delta  alkB

Dr.  Roger  Giese,  Barneh  Ins@tute  –  Northeastern  University   Dr.  April  Gu,  Civil  and  Environmental  Engineering  –  Northeastern  University   Man  Hu,  Civil  and  Environmental  Engineering  –  Northeastern  University   Dr.  Keith  McCarthy,  Process  R&D  Rhodes  Technologies   Dr.  Ewa  Sokol,    Process  R&D  Rhodes  Technologies