Effects of Bubbles on Turbulent Flows in Vertical Channels

Report 3 Downloads 120 Views
ICMF2010-Tampa 2010.6.1.

ICMF2010-Tampa 2010.6.1.

Purpose

Turbulence structure in bubbly flows is very complex due to (1) bubble-induced pseudo turbulence, (2) interaction between bubble-induced and shear–induced turbulences, (3) direct interaction between bubbles and turbulence eddies and (4) modification of shear-induced turbulence due to the modulation of mean velocity distribution due to bubbles.

Effects of Bubbles on Turbulent Flows in Vertical Channels

Bubbly upflows in vertical channnels

dB/lt

1. Index of turbulence modification The eddy viscosity ratio φ ( = dBVR/ltu’ )

Shigeo Hosokawa and Akio Tomiyama

2. Turbulence modification at large dB/lt Experiments & numerical predictions

Kobe University

3. Turbulence modification at small dB/lt and large VR/u’ Turbulence kinetic energy budget

Large φ Turbulence augmentation

Large dB/lt Effect of VR/u’ on turbulence modification VR/u’ Small dB/lt Large VR/u’

Small φ Turbulence attenuation

Turbulence modification due to dispersed phase

αL

Large particle/bubble: Turbulence augmentation

2

Small particle/bubble: Turbulence attenuation Gore and Crowe Critical parameter: d/lt ⇒Ratio of mixing length of particle-induced turbulence to that of shear-induced turbulence

1

ΔTI



νTP = f (ν t , ν B , K) φ=

0

νB νt

νt : Shear-induced eddy viscosity νB : Bubble-induced eddy viscosity VR : Relative velocity dB : Diameter of dispersed phase u’ : Turbulence velocity lt : Turbulence length scale

ν B ∝ VR d B

S.I.T.

ν t ∝ u ′lt

-1

-2

ICMF2010-Tampa 2010.6.1.

M α DVL = − L ∇P + ∇α L (ν + νTP )(∇VL + ∇VLT ) + i + α L g ρ ρ Dt

Present data (Gas-Liquid) Present data (Liquid-Solid) Hosokawa et al.(1988)(Gas-Solid) Tsuji et al. (1984) Maeda et al. (1980) Kulick et al. (1994) Lee and Durst (1982)

VR

u’ dB

Turbulence attenuation

Ratio of eddy viscosity of particle-induced turbulence to that of shear-induced turbulence

Eddy Viscosity Ratio φ

ICMF2010-Tampa 2010.6.1.

10-2

Turbulence augmentation

10-1 d/lt

100

Eddy viscosity ratio

φ≡

lt B.I.T.

VR d B VR d B ReB = = u ′lt u ′ lt Ret

ReB =

u ′lt VR d , Ret = ν ν

Indicator of Turbulence Modification

ICMF2010-Tampa 2010.6.1.

ICMF2010-Tampa 2010.6.1.

φ-CTI/Nd 3

Pipe diameter: D = 20, 30 mm Liquid volumetric flux: JL = 0.5 -1.0 m/s Volume fraction of dispersed phase: α = 0.7 - 5.0 % Bubble/particle diameter d = 1 -5 mm

2

2

Solid-Liquid(JL=0.5m/s) d=4.0mm,Js=0.002m/s d=4.0mm,Js=0.004m/s d=2.5mm,Js=0.002m/s d=2.5mm,Js=0.004m/s d=1.0mm,Js=0.002m/s d=1.0mm,Js=0.004m/s

-6

-6 -6 CTI/Nds [X10 ΔTI/N [X10 ]]

3

Gas-Liquid JL=0.51m/s,JG=0.017m/s JL=0.51m/s,JG=0.023m/s JL=0.71m/s,JG=0.017m/s JL=0.71m/s,JG=0.023m/s JL=1.01m/s,JG=0.017m/s JL=1.01m/s,JG=0.023m/s JL=0.50m/s,JG=0.015m/s (D=20 mm) JL=0.90m/s,JG=0.020m/s (D=20 mm)

CTI/Nd [X10 ]

LDV Measurements Gas-Liquid bubbly flow (Air-Water) Solid-Liquid two-phase flow (Ceramic-Water) in vertical circular pipe

1

Gas-Liquid JL=0.5m/s,JG=0.017m/s(D=30 JL=0.5m/s,JG=0.023m/s(D=30 JL=0.7m/s,JG=0.017m/s(D=30 JL=0.7m/s,JG=0.023m/s(D=30 JL=1.0m/s,JG=0.017m/s(D=30 JL=1.0m/s,JG=0.023m/s(D=30 JL=0.5m/s,JG=0.015m/s(D=20 JL=0.9m/s,JG=0.020m/s(D=20

mm) mm) mm) mm) mm) mm) mm) mm)

Liquid-Solid(JL=0.5m/s, D=30mm) d=4.0mm JS=0.002m/s d=4.0mm JS=0.004m/s d=2.5mm JS=0.002m/s d=2.5mm JS=0.004m/s d=1.0mm JS=0.002m/s d=1.0mm JS=0.004m/s

1

Dimensionless change in turbulence intensity per unit number density

′ u′ uTP − SP U TP U SP 2

CTI = Nd

u ′SP U SP

φ=1 0

0

2

u’ : Axial fluctuation velocity U : Axial mean velocity Nd : Number density of dispersed phase Subscript TP : Two-phase flow SP : Single phase flow

Nd

2

Correlation between φ and CTI/Nd

0.5

1 d/lt

Gore & Crowe’s parameter: d/lt

0

2

φ

4

4

6

Eddy viscosity ratio: φ=

νB νt

φ is applicable to gas-liquid and liquid-solid flows. Critical point is close to φ=1, irrespective of a type of two-phase flows.

ICMF2010-Tampa 2010.6.1.

Gas-liquid-solid three phase flow (water+air bubble+aluminum ceramic particle)

Gas-solid two-phase flow

0

ICMF2010-Tampa 2010.6.1.

Turbulence modification depends on φ ( = dBVR/ltu’), that is, it depends not only on dB/lt but also on VR/u’.

CTI/Nd [X10-4]

CTI/Nd [X10-8]

Shakutsui et al. (2001)

2

Effect of VR/u’ on turbulence properties in bubbly pipe flows at large dB/lt ( ~ 1). D=30 mm JL=0.5-1.0 m/s JG=0-0.023 m/s JS=0-0.0038 m/s dB≅2.0-8.0 mm

Air-water bubbly flow dB ~ constant ÆVR ~ constant D ~ constant Æ lt ~ constant JL changes Æ u’ changes Case 2

0

-20

ρd=980 kg/m33 (Polystyrene), m=2.3 ρd=980 kg/m 3(Polystyrene), m=4.6 ρd=2500 kg/m (Glass), m=4.6 ρd=2500 kg/m33 (Glass), m=6.0 ρd=3600 kg/m3 (Ceramic), m=4.6 ρd=3600 kg/m (Ceramic), m=6.9

1

2

φ

3

4

2.5

φ=

5

N PVRP dφP + N BVRB d B (N P + N B )u′lt

7.5

φ is applicable not only to gas-liquid and liquid-solid two-phase flows but also to gas-solid two-phase flows and three phase flows.

Turbulence augmentation dB/lt Large φ Millimeter size bubbles

Case 1 VR/u’

Case 1: turbulence augmentation low JL Æ large VR/u’ Small φ

Case 2: turbulence attenuation high JL Æ small VR/u’ Turbulence attenuation

ICMF2010-Tampa 2010.6.1.

Experimental Apparatus Length of pipe L = 2 m Diameter of pipe D = 25 mm Elevation of measurement point 1.7 m

FEP (Fluorinated Ethylene-Propylene resin) Refractive index: 1.338 cf. water: 1.333 Negligible optical distortion

CCD Camera

Reflection light

D=25mm

LDV

1.7m

2.0m

Camera

Reflection of light from the side reduces contrast of interface image.

Optical filter (Green transmit)

Standard light without optical filter

Optical filter (Red transmit)

B

A

Mixing section

LDV: Liquid velocity Image processing method: Void fraction, Bubble velocity, Bubble diameter, Aspect ratio

Flow

FEP

Water

Contrast increase.

Reflection light

LED (Red) 25mm

LED (Green)

Two color LED with optical filter

FEP pipe

41mm

sor Compres

Original image Binary image Elliptic disk with a pixel height

Acrylic duct

ai

Water

Fluids Liquid: water Gas: air

r Ai Drain

Tank

[Pixel]

ICMF2010-Tampa 2010.6.1.

One pixel

F=0 20

F=1

B 0 0

Curvature takes negative peaks at overlapped points A and B.

ICMF2010-Tampa 2010.6.1.

<JG>= 0.018m/s <JL>= 0.5m/s

A

40

Binarize

Void distribution Bubble diameter etc…

Condition

60

The curvature evaluation method was applied to overlapped bubble image.

∇F ∇F

bi

Binary image 1 Binary image 2

Detection and Separation of Overlapped Bubbles

n = −

ai

Pile up

bi

i

Pump

20

Optical setup 40

60 [Pixel]

0.1 κ[1/m]

κ = ∇ ⋅n

ICMF2010-Tampa 2010.6.1.

Image Processing Method

Camera B Camera A 0

κ: Interface curvature n : Unit normal to interface -0.1 F : Color function representing spatial distribution of interface 0

B

A 50

100

Pixel number

ICMF2010-Tampa 2010.6.1.

Mean Velocity Distributions

0.05

HIgh JLÆ high u’ Low VR/u’, φ

Case 1 JL = 0.5 m/s JG = 0.018 m/s

W,w’

Case 2 JL=1.0 m/s JG=0.036 m/s

1

Single phase flow U/JL V/JL W/JL Bubbly flow U/JL V/JL W/JL αG

0.5

0.2 0.4 0.6 0.8

1 0

0.1

The axial mean velocities were flattened due to the presence of bubbles. The radial and tangential mean velocities were zero.

0.2 0.4 0.6 0.8

r/R

U: Axial mean velocity V: Radial mean velocity W: Tangential mean velocity JL: Liquid volumetric flux JG: Gas volumetric flux αG: Void fraction R: Pipe radius

0 1

Æ fully-developed flow

Case1: Large VR/u’ Turbulence augmentation

Case2: Small VR/u’ Turbulence attenuation

0.5 1.5

0.5 Single phase flow

0.5

Bubbly flow 0.2

0.4

Time (s)

0.2 - 0.3m/s = VR

VR Bubble

Bubbly flow

Velocity data

(JL =0.93m/s,J G=0.018m/s,r/R=0.7)

U(m/s)

(JL =0.63m/s,J G=0.017m/s,r/R=0.7)

Phase distribution function (High: gas, Low: liquid)

Single-phase flow

(JL =0.93m/s,r/R=0.7)

1.5

Velocity data

Bubbly flow

0 0

Case 1 u’u’, v’v’ and w’w' are enhanced over the crosssection.

0

B.I.T. augments T.I. whereas it does not enhance u’v’ so much.

Single phase flow u'v'/JL2 2 u'w'/JL Bubbly flow 2 u'v'/JL 2 u'w'/JL

0.004 0.003

Case 2 Turbulence intensities are attenuated in core region, and it is enhanced in the near wall region.

0.002 0.001 0 0

0.2

0.4 0.6 r/R

0.8

0

0.2

0.4 0.6 r/R

Phase di stribution function (High: gas, Low: liquid)

Bubbly flow

10

4

103

Case 1: Turbulence enhancement

Case 1 -5/3

E(ω) was enhanced

JL=0.63 m/s r/R = 0.7

105

Single phase flow

Case 2: Turbulence suppression High frequency eddy was enhanced Low frequency eddy was attenuated

Bubbly flow

Bubbly flow

0 0

0.2

Time (s)

ICMF2010-Tampa 2010.6.1.

105

1 0.5

0.8

u’v’ is attenuated due to the presence of bubbles except in 1 the near wall region.

Turbulence Energy Spectra

1

Single-phase flow

W,w’ V,v’

u’v’ is enhanced in the near wall region, whereas it in the core region changes not so much.

E(ω)

(JL =0.63m/s,r/R=0.7)

V,v’

VR/u’, φ

0.01

Single phase flow Velocity data

Velocity data

U(m /s)

U(m/s)

Single phase flow

U(m/s)

0.02

1.5

1.5

1

0.03

ICMF2010-Tampa 2010.6.1.

Fluctuating Axial Velocity

1

Single phase2 flow u'u'/JL Low 2 v'v'/JL 2 w'w'/JL Bubbly flow 2 u'u'/JL2 v'v'/JL w'w'/JL2

High VR/u’, φ

0.04

r/R

Void fraction exhibits wallpeaking profile in case 2.

U,u’ W,w’

Case 1 Case 2 (JL=0.5 m/s, JG=0.018 m/s) (JL=1.0 m/s, JG=0.036 m/s)

102

Case 2

-5/3

104

0.4

E(ω)

0 0

V,v’

0.2

αG

U/JL, V/JL, W/JL

1.5

V,v’

u'u'/JL2, v'v'/JL2, w'w'/JL2

Low JL Æ low u’ High VR/u’, φ

Turbulence augmentation Turbulence attenuation

U,u’ W,w’

Case 2

u'v'/JL2, u'w'/JL2

Case 1

ICMF2010-Tampa 2010.6.1.

Reynolds Stress

JL=0.93 m/s r/R=0.7

u’ > VR

Breakup of large scale eddy due to bubbles

103

Turbulence attenuation

Low frequency fluctuation becomes weak

B.I.T 10-1

100

101 ω (Hz)

102

102 103

Numerical Prediction of Bubbly Flows

ICMF2010-Tampa 2010.6.1.

ICMF2010-Tampa 2010.6.1.

Field Equations MultiMulti-fluid model (Tomiyama (Tomiyama et al. 1998, 2005)

• Turbulence modification depends on VR/u’.

Gas phase

N =6 ∂nm + ∇ ⋅ (nmVGm ) = 0 (m = 1, K , N ) ∂t DVGm M im 1 =− ∇P − +g Dt ρGm α Gm ρGm

• This indicates that accurate prediction of VR might be required for accurate prediction of turbulence in bubby flow.

n: V: t: ρ: P: α: g: N: Mi : Mμ:

Liquid phase

∂α L + ∇ ⋅ (α LVL ) = 0 ∂t N

1 DV L = − ∇P + Dt ρL

• Multi-fluid simulation of the bubbly flows To examine effect of drag model on predicted k.

∑M m=1

im

+ Mμ

α Lρ L

number density velocity time density pressure volume fraction gravitational acceleration number of bubble size classes interfacial momentum transfer viscous diffusion

Subscripts G: gas phase L: liquid phase

+g

M μ = ∇ ⋅ α L {μ ( ∇VL + ∇VLT ) + τT }

M im = M Dm + M Lm + M VMm + M TDm

Closure relations: drag, lift, virtual mass & turbulence dispersion models

ICMF2010-Tampa 2010.6.1.

Turbulence Model M μ = ∇ ⋅ α L {μ ( ∇VL + ∇VLT ) + τT } Reynolds stress: τT = τ SI +

∑τ

Drag BIm

m=1

Shear-induced turbulence

(

τ SI = ρ L νT ∇VL + ∇VL

T

)

2 + ρ L ASI k SI 3

Bubble-induced turbulence

τ BIm

k BIm =

Dk SI ν αL = ∇ ⋅ α L T ∇k SI + α L ( pk − ε) Dt σk αL νT

N

m =1 N

k

= k SI + ∑ k BIm = m =1



k SI2 ε

k SI

+ +

Shear-induced turbulence

N

∑C m =1 N

μb

Bubble-induced turbulence

~ 1 α GmCVM VGm − VL 2

0 0 ⎤ ⎡4 / 10 ABIm = ⎢⎢ 0 3 / 10 0 ⎥⎥ ⎢⎣ 0 0 3 / 10⎥⎦ 2

σ k = 1.0 σ ε = 1.3 C ε1 = 1.44 C ε 2 = 1.92

6α Gm dm

2l CDSm = CDm α 3− L

(

)

Tomiyama (1995)

ASI = − I

d m α Gm VGm − VL

1 ~ α GmCVM VGm − VL ∑ m =1 2

1 a INTmC DSmρ L VGm − VL (VGm − VL ) 8

2

Effect of bubble aspect ratio 8 C Dm = CD=f(E, Eo) Tomiyama (2002)

Eo F −2 3 E 2 / 3 (1 − E 2 ) −1 Eo + 16 E 4 / 3

Coefficients

⎛ ν εp ε2 ⎞ Dε ⎟ = ∇ ⋅ α L T ∇ε + α L ⎜⎜ Cε1 k − Cε 2 σε Dt k SI k SI ⎟⎠ ⎝

= ν SI + ∑ ν BIm =

M Dm =

aINTm =

Free rising single bubble C = max ⎡min ⎧ 16 1 + 0.15 Re 0.687 , 48 ⎫, 8 Eo ⎤ ⎨ ⎬ Dm ⎢ ⎥ CD=f(Re, Eo) Re ⎭ 3 Eo + 4 ⎦ ⎩ Re ⎣

2 = ρ L ABIm k BIm 3

Standard k-ε model

ICMF2010-Tampa 2010.6.1.

Drag Model M im = M Dm + M Lm + M VMm + M TDm

Lopez de Bertodano (1994)

N

Turbulence model

Cμ = 0.09 Cμb = 0.6 ~ CVM = 2.0

F=

sin −1 1 − E 2 − E 1 − E 2 1− E2

8 3 E 2 / 3 (1 − E 2 ) −1 Eo + 16 E 4 / 3

−2

Case 1: <JL>=0.5 m/s, <JG>=0.018 m/s 0.4

0.4

d=2.50 - 2.75 mm 0.3

0.4

VR [m/s]

0.1

0 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 d=3.00 E - 3.25 mm

0 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 d=3.25 E - 3.50 mm

0 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 E - 3.25 mm d=3.00

0 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 E - 3.50 mm d=3.25 VR [m/s]

VR [m/s]

VR [m/s]

VR [m/s]

0.1

0 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 E - 3.75 mm d=3.50

0 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 E - 4.00 mm d=3.75

0 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 E - 3.75 mm d=3.50

0 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 E - 4.00 mm d=3.75

0.3

0.3

0.3

0.3

0.1 0 0.4 0.5

0.2

E

)

,

ΔV L dω Sr = = VR VR

VL

CD/CD0

2

CD/CD0=1+0.55Sr2

1

: Experimental Data

ΔVL

VR[m/s]

F=

⎡ 48 ⎤ 8 Eo ⎤ ⎡ 16 1 + 0.15Re 0.687 , , C D = max ⎢min ⎢ ⎥ Re ⎥⎦ 3 Eo + 4 ⎦ ⎣ Re ⎣

(

Case1

CD =

0.2

F=

0.1

)

sin −1 1 − E 2 − E 1 − E 2 1− E2

0.3

F=

0.1

Legendre & Magnaudet’ Magnaudet’s equation is applicable to turbulent bubbly flows.

JL=1.0m/s JG=0.036m/s

00

0.2 0.4 0.6 0.8 r/R

)

1− E − E 1− E 2 1− E 2 2

C D = C D 0 1 + 0.55S r

VR[m/s]

100

−1

(

Case2

CD =

10-1 Sr

(

sin

0

)

8 Eo F −2 3 E 2 / 3 1 − E 2 Eo + 16 E 4 / 3

JL=0.5m/s JG=0.018m/s

0.2

0 -2 10

ICMF2010-Tampa 2010.6.1.

Relative Velocity

8 Eo F −2 3 E 2 / 3 1 − E 2 Eo + 16 E 4 / 3

(

dω VR

ω: magnitude of liquid velocity gradient d: bubble diameter VR: relative velocity

0.3

CD0 =

sin −1 1 − E 2 − E 1 − E 2 1− E2

Sr =

0.7 0.8 0.9 1 E

3 Case1(JL=0.5m/s, JG=0.018m/s) Case2(JL=0.5m/s, JG=0.025m/s) Case3(JL=1.0m/s, JG=0.020m/s) Case4(JL=1.0m/s, JG=0.036m/s)

F=

Legendre & Magnaudet (2002)

VR

Legendre & Magnaudet (2002)

(

Eo F −2 (1 − E ) Eo + 16 E 4 / 3 2 −1

Single bubble in shear flow Effect of liquid velocity gradient

ICMF2010-Tampa 2010.6.1.

Effect of shear on CD C D = C D 0 1 + 0.55Sr

2/3

0.2

E

2

)

C Dm = C D 0 m (1 + 0.55Sr 2 )

0.1 0.1 VR & CD depend0.1on E. Tomiyama’s C model is applicable to turbulent bubbly pipe 0D 0 0 flows. 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 E

3E

VR [m/s]

VR [m/s]

VR [m/s]

0.1

VR [m/s]

0.1

0.2

Effect of bubble aspect ratio 8 C Dm = CD=f(E, Eo) Tomiyama (2002)

0.1

0.2

2l CDSm = CDm α 3− L

0.2

0.2

6α Gm dm

Tomiyama (1995)

0.3

0.3

1 a INTmC DSmρ L VGm − VL (VGm − VL ) 8

(

0.1

0.2

aINTm =

Free rising single bubble C = max ⎡min ⎧ 16 1 + 0.15 Re 0.687 , 48 ⎫, 8 Eo ⎤ ⎨ ⎬ Dm ⎢ ⎥ CD=f(Re, Eo) Re ⎭ 3 Eo + 4 ⎦ ⎩ Re ⎣

0.2

0.1

0.3

M Dm =

0.3

0.1

0.2

Drag

d=2.75 - 3.00 mm

0.2

0.2

0.3

M im = M Dm + M Lm + M VMm + M TDm



0.4

d=2.50 - 2.75 mm

0.3

VR [m/s]

VR [m/s]



Case 2: <JL>=1.0 m/s, <JG>=0.020 m/s

d=2.75 - 3.00 mm 0.3

0.2





ICMF2010-Tampa 2010.6.1.

Drag Model

0.687

Dm

VR [m/s]

C Dm =

Correlation between ICMF2010-Tampa 2010.6.1. Relative Velocity and Aspect Ratio ⎡ 48 ⎫ 8 Eo ⎤ Eo ⎧ 16 ), Re ⎬, 3 Eo + 4 ⎥ C = max ⎢min ⎨ (1 + 0.15 Re F Re

1

2

)

Tomiyama et al. (2002)

Legendre & Magnaudet (2002) Sr =

ΔV L dω = VR VR

8 Eo F −2 3 E 2 / 3 1 − E 2 Eo + 16 E 4 / 3

sin

(

−1

)

1− E − E 1− E 2 1− E 2 2

ICMF2010-Tampa 2010.6.1.

Predictions Measured (a) (c)

CD(Re,E,Sr) CD(Re) Measured

Case 2

0.2 0.1

Improvement in drag model

k[m /s ]

0

k = Ψ 2 k SI

0.015 Case 1 (JL=0.5 m/s) k [m2/s2]

VR[m/s]

0.4 Case 1 0.3

ICMF2010-Tampa 2010.6.1.

Turbulence Kinetic Energy

0.01

0.005

Case2 (JL=1.0 m/s)

Measured (Single phase) Predicted (Single phase) Measured (Two-phase) Predicted (Two-phase) Lopez de Bertodano et al. Predicted (Two-phase) Hosokawa & Tomiyama

Two-phase multiplier for k

Ψ = nCTM + 1

2

0.01

0.4

r/R

0.6

0.8

0

0.2

0.4

r/R

0.6

0.8

1

3

Accurate prediction of k

2 -6

0.06 0.04 0.02 0 0

0.2

Turbulence modification per unit number density

Gas-Liquid JL=0.5m/s,JG=0.017m/s JL=0.5m/s,JG=0.023m/s JL=0.7m/s,JG=0.017m/s JL=0.7m/s,JG=0.023m/s JL=1.0m/s,JG=0.017m/s JL=1.0m/s,JG=0.023m/s JL=0.5m/s,JG=0.015m/s(D=20 mm) JL=0.9m/s,JG=0.020m/s(D=20 mm)

The turbulence model proposed by Lopez de Bertodano et al. with the accurate drag C (φ) = 2.54 ×10 −7 (φ − 1.12) model gives good prediction for turbulence modification TM caused by bubbles.

0 0.08

αG

0 0

Accurate prediction of VR

CTM [X10 ]

2

0.02

0.4 r/R

0.8

0.4 r/R

Turbulence modification in bubbly flows with small dB/lt and large VR/u’ in a square duct. dB ~ the Kolmogolv scale lK, VR ~ the bulk velocity JL ~ 10 X u’

φ ~ 0.5

Dk = P−ε+ D Dt ∂U i ∂u ′ ∂u ′ P = −ui′u ′j ε=ν i i ∂x j ∂x j ∂x j Measurement of velocity gradients and velocity components with the spatial resolution higher than the Kolmogorov scale. Molecular tagging velocimetry based on photobleaching reaction (PB-MTV)

N

This model has a potential to predict turbulence 0 modification in turbulent 0 2 4 6 bubbly flows.

0.8

∑ (n m =1

m

ν Gm )

nν SI

=

νT of B.I.T. νT of S.I.T.

φ

ICMF2010-Tampa 2010.6.1.

Measurement of TKE At large dB/lt (1) turbulence augmentation at large VR/u’. (2) turbulence attenuation at small φ. At small φ and large VR/u' ?

Eddy viscosity ratio

φ=

An accurate drag model is necessary for accurate predictions of turbulence in bubbly flows.

0

1

Liquid-Solid(JL=0.5m/s) d=4.0mm JS=0.002m/s d=4.0mm JS=0.004m/s d=2.5mm JS=0.002m/s d=2.5mm JS=0.004m/s d=1.0mm JS=0.002m/s d=1.0mm JS=0.004m/s

dB/lt

Large φ Turbulence augmentation

Turbulence attenuation

Millimeter size bubbles C on st an tφ Small φ Turbulence attenuation

VR/u’

Photobleaching: irriversible change from a fluorescent dye to non-fluorescent dye Fluorescent dye: uranine (Fluoresceine sodium salt) Concentration: 10-6 mol/m3 Mask

?

ICMF2010-Tampa 2010.6.1.

Photobleaching MTV

Laser beam

1.0mm

Open

Camera Close ON

Laser sheet λ=514.5nm

OFF ON

Intense laser λ=488 nm

δt ~5ms Tir ~ 1ms

T=t+δt

OFF

Time 1.0mm

Lens

Low power laser sheet (λ=514.5nm): Visualization of tags

δl

Intense laser beam (λ=488.0nm): Photobleaching reactiion

V= Tag Shutter

CCD camera

δl δt

T=t

ICMF2010-Tampa 2010.6.1.

Measurement of Velocity Gradient

ICMF2010-Tampa 2010.6.1.

Experimental Apparatus

W δR: Difference of displacement vectors of two points v: Velocity v0: Velocity at center of tagged region δr: Position vector from the center δt: Time interval

v0 δt

δr

Original tagged region

∂v ⎛ ⎞ δR = vδt = ⎜ v 0 + ⋅ δr ⎟δt ∂r ⎝ ⎠

Laser Transformed tagged region

t=0

Laser

x,u

Measurement position CCD camera

t=δt

Cross-correlation

∂v / ∂r is constant in tagged region

Pump

Intense laser beam for photobleaching

z, w

z, w y, v

Laser sheet

CCD camera

Laser sheet

Exposure time:1 ~5 ms

Kolmogorov scale 1/ 4

aij+ε

aij

Flowmeter

ICMF2010-Tampa 2010.6.1.

⎛ ν3 ⎞ l k ≈ ⎜⎜ ⎟⎟ ⎝ ε ⎠

Lower tank

Axial mean velocity and Void Fraction 0.1

Tag size: 40 – 100 μm Sample number: 200

y, v CCD camera Intense laser beam for photobleaching

Tag size:40~100 μm

Sample number: 200

Correct value

Experimental Conditions x-z plane

Tank

Air

aij-ε

x-y plane

Reynolds number:5000

Water

50 mm

0.08

W: duct width (50 mm)

0.1 0.06 0.04

JG [m/s] U 0.0x10-5 2.5x10-5 5.0x10-5 7.5x10-5

α

0 0

lt ~ 0.2xW ~10 mm

The void fraction exhibits wall-peaking profile.

JG [x10-5m/s]

d32 [mm]

Case 0

0.06

0.0

-

Case 1

0.06

2.5

0.60

Large VR/u’ ~8,

Case 2

0.06

5.0

0.59

Case 3

0.06

7.5

0.59

Small dB/lt ~ 0.06

φ = VRdB/ltu’ ~ 0.5

0.1

0.2

0.3

0.4

U: axial mean velocity

α: void fraction

0.05

lK ~ 0.2 mm ~ dB

JL [m/s]

ICMF2010-Tampa 2010.6.1.

y: distance from the wall

0.02 VR ~ 0.05 m/s ~ JL ~ 10xu’

≈ 200μm

0.15

α [%]

a12 ⎤ ⎡δx ⎤ ⎞ ⎟δt a22 ⎥⎦ ⎢⎣δy ⎥⎦ ⎟⎠

Experimental condition

Compressor Cross-correlation

⎛ ⎡u ⎤ ⎡ a δR = ⎜⎜ ⎢ o ⎥ + ⎢ 11 ⎝ ⎣ vo ⎦ ⎣a21

50 mm

U [m/s]

2D flow

Flow

z,w y,v

1000 mm

δR

Upper tank

0 0.5

y/W The gradients of the axial velocity in the bubbly flows are larger than that in the single-phase flow in the near wall region. The axial velocity distribution in the core region is flattened as many researches reported.

0.1

0.2

y/W

0.3

0.4

0.4

0.3 y/W

102

y+

εν/uτ4

α [%]

Pν/uτ4

0.2

0

-0.2

101

y

+

102

101

y+

102

0

∂U ∂x j The dimensionless andDε does are strongly The dimensionless not change ⎛ P, Pε and ∂k ⎞⎟ so much. ∂ ⎜ 1 ′ ′ ′ attenuated. ′ ′ − u j ui ui − p u j + ν D= ⎜ ⎟ ∂xenhance ∂xand 2 the frictional The bubbles velocity j ⎝ structure j ⎠ The turbulence is different from

0.1

shear-induced turbulence. shear-induced due to the ∂u ′ ∂turbulence ui′ The bubble-induced pseudo turbulence is by not breakup eddies ε = νof thei shear-induced prominent. ∂x j ∂x j bubbles.

0

Fully-developed Turbulence structure doesflow not change so much Symmetry due to bubbles. with respect to y axis

-0.4

2

α [%]

2 2

-4

α [%]

0.2

0.1

0.2

y/W

0.3

Reynolds shear stress

0.3

0.4

JG [m/s] u'v' α -5 0.0x10 -5 2.5x10 -5 5.0x10 -5 7.5x10

0 0.5

0.3

0.2

0.2

0.1 0.1

φ=10

1 Circular pipe (Attenuation)

Circular pipe (Enhancement)

Neglect p’u’ in D

ICMF2010-Tampa 2010.6.1. Large φ: Turbulence augmentation due to bubble-induced turbulence Small φ: Turbulence attenuation occurs Small VR/u’: Agitated flow due to bubbles is weak Æ Eddy breakup by bubbles ÆTurbulence attenuation

0.5

i In thePcore ′ ′ =the −uregion, Between wall i u j and void peak position,

α [%]

0.2 Dν/uτ4

0.1

0 0 10

0 0.3

JG [m/s]-5 Dν/uτ4 α 0.0x10 2.5x10-5 5.0x10-5 7.5x10-5

0.4

100

0.6

0.2

0.2 101

0.1

0.4

core

0.2

0.2

2

φ=1.0

0.4

0.4

0 0 10

0.3

JG [m/s] w' α 0.0x10-5 in the attenuated 2.5x10-5 -5 5.0x10 7.5x10-5

α

0.4

Conclusions

0.2

0.8

0.1

Spanwise component

0.6

0 0

0 0.5

0.4

Although u’v’ is enhanced in the near 0.4 wall region, the increase is not so 0.1 large. 0.2

JG [m/s] εν/uτ4 α 0.0x10-5 2.5x10-5 5.0x10-5 7.5x10-5

4

0.6

0.3 y/W

ICMF2010-Tampa 2010.6.1.

1

0.2 JG [m/s]-5 Pν/uτ α 0.0x10-5 2.5x10 5.0x10-5 7.5x10-5

0.8

0.2

JG [m/s] v'2 0.0x10-5 2.5x10-5 5.0x10-5 7.5x10-5

at small0 φ, whereas VR/u’ is large. 0 0Turbulence attenuation occurs 0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 pipe 0.4flows. 0.5 These trends are y/W y/Wthe same as those in the case 2 in bubbly

Dimensionless P, D and ε 1

0.1

u’v’ is strongly 0.6 region.

0 0.5

0.4

v' [x10 m /s ]

2

The turbulence intensities are attenuated in the core region and enhanced in the near wall region due to bubbles.

α [%]

0.2

2

0.8

0.2

0.1

-4

0 0

0.1

0 0

2

0 0.5

0.3

Wall-normal component

α [%]

0.2 α [%]

w'2 [x10-4 m2/s2]

α

0.1 1

0.3 2

JG [m/s] w' 0.0x10-5 2.5x10-5 -5 5.0x10 7.5x10-5

0.6

0 0

0 0.5

0.4

0.2

u'v' [x10-4 m2/s2]

Spanwise component

0.1 0.2

ICMF2010-Tampa 2010.6.1.

α

α [%]

0.3 y/W

2

2

w'2 [x10-4 m2/s2]

0.2

0.4

JG [m/s]-5 u' 0.0x10 2.5x10-5 5.0x10-5 7.5x10-5

3

0.8

0.3

Streamwise component

dB/lt

0.8

0.1

0.2 α [%]

-4

1

4

α

u' [x10 m /s ]

0.1

0.6

2

2

2

2

0 0

JG [m/s] v'2 0.0x10-5 2.5x10-5 5.0x10-5 7.5x10-5

2

-4

α [%]

0.2

0.3

Wall-normal component

α

2

v' [x10 m /s ]

JG [m/s]-5 u' 0.0x10 2.5x10-5 5.0x10-5 7.5x10-5

3

0.8

0.3

Streamwise component

2

2

u' [x10 m /s ]

4

Turbulence Intensity and Reynolds Shear Stress

ICMF2010-Tampa 2010.6.1.

Turbulence Intensity

φ=0.1

Rich experimental data Small dB/lt: B.I.T. quickly dissipates due to its small scale Æ Eddy breakup by bubbles ÆTurbulence attenuation

0.1 0.05 0.5

Square duct (Attenuation)

1

VR/u'

5

10

Further experimental data is required to understand more detailed turbulence structure in bubbly flows.