Efficient Electrochemical Water Splitting Catalyzed by ...

Report 7 Downloads 65 Views
Supporting Information

Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film Zonghua Pu,† Yonglan Luo,†,* Abdullah M. Asiri,‡ and Xuping Sun†,*



Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,

College of Chemistry and Chemical engineering, China West Normal University, Nanchong 637002, Sichuan ‡

Chemistry Department & Center of Excellence for Advanced Materials Research,

King Abdulaziz University, Jeddah 21589, Saudi Arabia *Corresponding Author: [email protected]; [email protected]

S-1

Figure S1 Optical photograph of bare Ti plate (left) and NiSe2/Ti (right).

S-2

Figure S2 SEM image of bare Ti plate.

S-3

Figure S3 Cross-section SEM image of NiSe2/Ti.

S-4

Figure S4 EDX spectrum of NiSe2/Ti.

S-5

Table S1 Comparison of HER performance for NiSe2/Ti with other non-precious metal HER electrocatalysts. Catalyst

Electrolyte

Tafel slope (mV dec-1)

η@10 mA cm-2 (mV)

Ref.

NiSe2/Ti Ni0.33Co0.67S2 nanowires NiSe/NF Ni5P4 film CoP/CC Co-NRCNTs

1.0 M KOH 1.0 M KOH

82 118

96 88

This work (1)

1.0 M KOH 1.0 M KOH 1.0 M KOH 1.0 M KOH

120 129 -

96 150 209 ~370

(2) (3) (4) (5)

0.5 M H2SO4

52.7

125

(6)

0.5 M H2SO4

49.1

80

(7)

WS2@P,N,O-graph ene film PCN@N-graphene -750

S-6

Figure S5 CVs for (a) NiSe2/Ti, (b) bare Ti plate, and (c) Ni(OH)2/Ti. (d) The capacitive currents at -0.9 V vs. Ag/AgCl as a function of scan rate for bare Ti plate, Ni(OH)2/Ti and NiSe2/Ti.

S-7

Figure S6 (a) XPS survey spectrum for post-HER NiSe2/Ti. XPS spectra for post-HER NiSe2/Ti in the (b) Ni 2p, (c) Se 3d, and (d) O 1s regions.

S-8

Figure S7 XRD pattern of post-HER NiSe2 scratched down from Ti substrate.

S-9

Figure S8 Polarization curve for NiSe2/Ti in 2.0 M PBS with a scan rate of 5 mV s-1.

S-10

Figure S9 SEM images of NiSe2/Ti after HER electrolysis.

S-11

Table S2 Comparison of OER performance for NiSe2/Ti with other non-precious metal OER electrocatalysts. Catalyst

Electrolyte

NiSe2/Ti Ni0.33Co0.67S2 nanowires NiSe/NF Ni5P4 film ZnxCo3-xO4 nanoarrays NiFeOx NiOx NiCo LDH

Current density (j, mA cm-2)

η at the corresponding j (mV)

Ref.

1.0 M KOH 1.0 M KOH

Tafel slope (mV dec-1) 82 51

20 10

295 320

This work (1)

1.0 M KOH 1.0 M KOH 1.0 M KOH

64 ~40 51

20 10 10

270 290 320

(2) (3) (8)

1.0 M NaOH

-

10

350

(9)

1.0 M NaOH

-

10

420

(9)

1.0 M KOH

40

10

367

(10)

S-12

Figure S10 SEM images of NiSe2/Ti after OER electrolysis.

S-13

Figure S11 (a) XPS survey spectrum for post-OER NiSe2/Ti. XPS spectra for the post-OER NiSe2/Ti in the (b) Ni 2p, (c) Se 3d, and (d) O 1s regions.

S-14

Figure S12 (a) Raman spectra for NiSe2/Ti before and after OER electrolysis in 1.0 M KOH. (b) high-resolution TEM image of post-OER NiSe2 nanoparticles.

S-15

Figure S13 XRD pattern of post-OER NiSe2 scratched down from Ti substrate.

S-16

Figure S14 Polarization curve for NiSe2/Ti in 2.0 M PBS with a scan rate of 5 mV s-1.

S-17

Figure S15 Polarization curves of NiSe2/Ti and Ni(OH)2/Ti for OER with a scan rate of 5 mV s-1 in 1.0 M KOH.

S-18

Figure S16 SEM images of (a, b) NiSe2/Ti cathode and (c, d) NiSe2/Ti anode after overall water splitting.

S-19

Movie S1 This movie shows H2 and O2 evolution on NiSe2/Ti electrodes in a two-electrode setup driven by a DC power supply with a cell voltage of 1.60 V in 1.0 M KOH.

S-20

References (1) Peng, Z.; Jia, D.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. From Water Oxidation

to

Reduction:

Homologous

Ni–Co

Based

Nanowires

as

Complementary Water Splitting Electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031. (2) Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. Angew. Chem. Int. Ed. 2015, 54, 9351–9355. (3) Ledendecker, M; Calderon, S. K.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M. The Synthesis of Nanostructured Ni5P4 Films and their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting. Angew. Chem. Int. Ed. 2015, 127, 12538–12542. (4) Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587–7590. (5) Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmekova, E.; Asefa, T. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values. Angew. Chem. Int. Ed. 2014, 126, 4461–4465. (6) Duan, J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. 3D WS2 Nanolayers@Heteroatom-Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes. Adv. Mater. 2015, 27, 4234–4241.

S-21

(7) Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Porous C3N4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. ACS Nano 2015, 9, 931–940. (8) Liu, X.; Chang, Z.; Luo, L.; Xu, T.; Lei, X.; Liu, J.; Sun, X. Hierarchical ZnxCo3-xO4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution. Chem. Mater. 2014, 6, 1889–1895. (9) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. (10) Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Lett. 2015, 15, 1421–1427.

S-22