Supporting Information
Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film Zonghua Pu,† Yonglan Luo,†,* Abdullah M. Asiri,‡ and Xuping Sun†,*
†
Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,
College of Chemistry and Chemical engineering, China West Normal University, Nanchong 637002, Sichuan ‡
Chemistry Department & Center of Excellence for Advanced Materials Research,
King Abdulaziz University, Jeddah 21589, Saudi Arabia *Corresponding Author:
[email protected];
[email protected] S-1
Figure S1 Optical photograph of bare Ti plate (left) and NiSe2/Ti (right).
S-2
Figure S2 SEM image of bare Ti plate.
S-3
Figure S3 Cross-section SEM image of NiSe2/Ti.
S-4
Figure S4 EDX spectrum of NiSe2/Ti.
S-5
Table S1 Comparison of HER performance for NiSe2/Ti with other non-precious metal HER electrocatalysts. Catalyst
Electrolyte
Tafel slope (mV dec-1)
η@10 mA cm-2 (mV)
Ref.
NiSe2/Ti Ni0.33Co0.67S2 nanowires NiSe/NF Ni5P4 film CoP/CC Co-NRCNTs
1.0 M KOH 1.0 M KOH
82 118
96 88
This work (1)
1.0 M KOH 1.0 M KOH 1.0 M KOH 1.0 M KOH
120 129 -
96 150 209 ~370
(2) (3) (4) (5)
0.5 M H2SO4
52.7
125
(6)
0.5 M H2SO4
49.1
80
(7)
WS2@P,N,O-graph ene film PCN@N-graphene -750
S-6
Figure S5 CVs for (a) NiSe2/Ti, (b) bare Ti plate, and (c) Ni(OH)2/Ti. (d) The capacitive currents at -0.9 V vs. Ag/AgCl as a function of scan rate for bare Ti plate, Ni(OH)2/Ti and NiSe2/Ti.
S-7
Figure S6 (a) XPS survey spectrum for post-HER NiSe2/Ti. XPS spectra for post-HER NiSe2/Ti in the (b) Ni 2p, (c) Se 3d, and (d) O 1s regions.
S-8
Figure S7 XRD pattern of post-HER NiSe2 scratched down from Ti substrate.
S-9
Figure S8 Polarization curve for NiSe2/Ti in 2.0 M PBS with a scan rate of 5 mV s-1.
S-10
Figure S9 SEM images of NiSe2/Ti after HER electrolysis.
S-11
Table S2 Comparison of OER performance for NiSe2/Ti with other non-precious metal OER electrocatalysts. Catalyst
Electrolyte
NiSe2/Ti Ni0.33Co0.67S2 nanowires NiSe/NF Ni5P4 film ZnxCo3-xO4 nanoarrays NiFeOx NiOx NiCo LDH
Current density (j, mA cm-2)
η at the corresponding j (mV)
Ref.
1.0 M KOH 1.0 M KOH
Tafel slope (mV dec-1) 82 51
20 10
295 320
This work (1)
1.0 M KOH 1.0 M KOH 1.0 M KOH
64 ~40 51
20 10 10
270 290 320
(2) (3) (8)
1.0 M NaOH
-
10
350
(9)
1.0 M NaOH
-
10
420
(9)
1.0 M KOH
40
10
367
(10)
S-12
Figure S10 SEM images of NiSe2/Ti after OER electrolysis.
S-13
Figure S11 (a) XPS survey spectrum for post-OER NiSe2/Ti. XPS spectra for the post-OER NiSe2/Ti in the (b) Ni 2p, (c) Se 3d, and (d) O 1s regions.
S-14
Figure S12 (a) Raman spectra for NiSe2/Ti before and after OER electrolysis in 1.0 M KOH. (b) high-resolution TEM image of post-OER NiSe2 nanoparticles.
S-15
Figure S13 XRD pattern of post-OER NiSe2 scratched down from Ti substrate.
S-16
Figure S14 Polarization curve for NiSe2/Ti in 2.0 M PBS with a scan rate of 5 mV s-1.
S-17
Figure S15 Polarization curves of NiSe2/Ti and Ni(OH)2/Ti for OER with a scan rate of 5 mV s-1 in 1.0 M KOH.
S-18
Figure S16 SEM images of (a, b) NiSe2/Ti cathode and (c, d) NiSe2/Ti anode after overall water splitting.
S-19
Movie S1 This movie shows H2 and O2 evolution on NiSe2/Ti electrodes in a two-electrode setup driven by a DC power supply with a cell voltage of 1.60 V in 1.0 M KOH.
S-20
References (1) Peng, Z.; Jia, D.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. From Water Oxidation
to
Reduction:
Homologous
Ni–Co
Based
Nanowires
as
Complementary Water Splitting Electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031. (2) Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. Angew. Chem. Int. Ed. 2015, 54, 9351–9355. (3) Ledendecker, M; Calderon, S. K.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M. The Synthesis of Nanostructured Ni5P4 Films and their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting. Angew. Chem. Int. Ed. 2015, 127, 12538–12542. (4) Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587–7590. (5) Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmekova, E.; Asefa, T. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values. Angew. Chem. Int. Ed. 2014, 126, 4461–4465. (6) Duan, J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. 3D WS2 Nanolayers@Heteroatom-Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes. Adv. Mater. 2015, 27, 4234–4241.
S-21
(7) Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Porous C3N4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. ACS Nano 2015, 9, 931–940. (8) Liu, X.; Chang, Z.; Luo, L.; Xu, T.; Lei, X.; Liu, J.; Sun, X. Hierarchical ZnxCo3-xO4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution. Chem. Mater. 2014, 6, 1889–1895. (9) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. (10) Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Lett. 2015, 15, 1421–1427.
S-22