Efficient Preparation of Large-Area Graphene Oxide Sheets for ...

Report 20 Downloads 138 Views
Supporting Information

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Jinping Zhao, Songfeng Pei, Wencai Ren*, Libo Gao and Hui-Ming Cheng*

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China

Email address: [email protected]; [email protected]

Figure S1. XPS spectra of the rGO films assembled of GO sheets with average area of ~100−300 (III), ~1000−3000 (II) and ~7000 µm2 (I), which were reduced by 55 wt% HI acid for 30s at 100 °C.

Table S11 Opto-electrical property comparison of TCFs assembled with different kinds of graphene.

Graphene type

Reduced graphene oxide

Chemical reduction

Electrical conductivity (S/cm)

——

Sheet resistance (Ω/sq)

1000

Transmittance (%)

85

σDC/σOP

Reference

Our work (Large GO sheets with a area of ~7000

2

µm2) Chemical reduction

Chemical reduction

——

——

11300

30000

87

80

0.29

Zhu et al,2 APL 95, 103104

0.05

Liu et al,3 Nanotechnology 20, 465605 Becerril et al,4 ACS Nano 2, 463

High temperature annealing

——

100-1000

80

1.6

High temperature annealing

——

800

82

1.5

Wu et al,5ACS Nano, 4, 43

0.63

Wu et al,6 APL 92, 263302

0.552

Liang et al,7 Nanotechnology, 20, 434007

High temperature annealing High temperature annealing High temperature annealing High temperature annealing

——

1425

550

——

5kΩ-1MΩ

——

1800

8000

﹥80

70

70

70

0.42

0.132

Wang et al, Nano Letters, 8, 323

8

Zhao etal,9 Electrochimica Acta, 55, 491

Chemical reduction + high temperature annealing Chemical reduction + high temperature annealing Chemical reduction + high temperature annealing Chemical reduction + high temperature annealing Graphite, exfoliated with DMF

Solutionexfoliated graphene sheets by sonication

CVD

Graphite, exfoliated in sodium cholate solution Graphite, exfoliated in sodium cholate solution Expandable graphite, exfoliated with DMF

550

——

——

——

——

——

11×106

100000

70000

5000

85

95

65

65

90

0.64

Mattevi et al,10 Adv.Funct. Mater.19, 2577

0.03

Kim et al,11 Langmuir, 25, 11302

0.022

Eda et al,12 Nature Nanotechnology, 3, 270

0.011

Eda et al,13 APL 92, 233305

0.697

Blake et al,14 Nano Letters, 8, 1704

——

2000

75

0.6

Green et al ,15 Nano Letters, 9,4031

100

——

90

0.4

De et al,16 Small, 6,458

0.18

Li et al,17 Nature Nanotechnology, 3, 538

——

8000

83

Cu substrate

——

200

85

11.13

Cai et al,18 APL 95, 123115

Cu substrate

——

350

90

9.96

Li et al,19 Nano Letters, 9,4359

5.0

Wang et al,20 APL, 95, 063302

Ni substrate

——

1350-210

91-72

Ni substrate

Ni substrate

——

——

280

770-1000

80

90

4.6

Kim et al,21 Nature 457, 706

4.53

Reina et al,22 Nano Letters, 9, 30

REFERENCES AND NOTES 1. 2. 3. 4. 5. 6. 7.

8. 9. 10.

11. 12. 13. 14.

15. 16.

De, S.; Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 2010, 4, 2713-2720. Zhu, Y. W.; Cai, W. W.; Piner, R. D.; Velamakanni, A.; Ruoff, R. S. Transparent Self-Assembled Films of Reduced Graphene Oxide Platelets. Appl. Phys. Lett. 2009, 95, 103104. Liu, Y. Q.; Gao, L.; Sun, J.; Wang, Y.; Zhang, J. Stable Nafion-Functionalized Graphene Dispersions for Transparent Conducting Films. Nanotechnology 2009, 20, 456605. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2, 463-470. Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano 2010, 4, 43-48. Wu, J. B.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic Solar Cells with Solution-Processed Graphene Transparent Electrodes. Appl. Phys. Lett. 2008, 92, 263302. Liang, Y. Y.; Frisch, J.; Zhi, L. J.; Norouzi-Arasi, H.; Feng, X. L.; Rabe, J. P.; Koch, N.; Mullen, K. Transparent, Highly Conductive Graphene Electrodes from Acetylene-Assisted Thermolysis of Graphite Oxide Sheets and Nanographene Molecules. Nanotechnology 2009, 20, 434007. Wang, X.; Zhi, L. J.; Mullen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323-327. Zhao, L.; Zhao, L.; Xu, Y. X.; Qiu, T. F.; Zhi, L. J.; Shi, G. Q. Polyaniline Electrochromic Devices with Transparent Graphene Electrodes. Electrochim. Acta 2009, 55, 491-497. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mostrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Adv. Funct. Mater. 2009, 19, 2577-2583. Kim, Y. K.; Min, D. H. Durable Large-Area Thin Films of Graphene/Carbon Nanotube Double Layers as a Transparent Electrode. Langmuir 2009, 25, 11302-11306. Eda, G.; Fanchini, G.; Chhowalla, M. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nat. Nanotechnol. 2008, 3, 270-274. Eda, G.; Lin, Y. Y.; Miller, S.; Chen, C. W.; Su, W. F.; Chhowalla, M. Transparent and Conducting Electrodes for Organic Electronics from Reduced Graphene Oxide. Appl. Phys. Lett. 2008, 92, 233305. Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-Based Liquid Crystal Device. Nano Lett. 2008, 8, 1704-1708. Green, A. A.; Hersam, M. C. Solution Phase Production of Graphene with Controlled Thickness Via Density Differentiation. Nano Lett. 2009, 9, 4031-4036. De, S.; King, P. J.; Lotya, M.; O'Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.; Coleman, J. N.

17. 18. 19.

20. 21.

22.

Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions. Small 2010, 6, 458-464. Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly Conducting Graphene Sheets and Langmuir-Blodgett Films. Nat. Nanotechnol. 2008, 3, 538-542. Cai, W. W.; Zhu, Y. W.; Li, X. S.; Piner, R. D.; Ruoff, R. S. Large Area Few-Layer Graphene/Graphite Films as Transparent Thin Conducting Electrodes. Appl. Phys. Lett. 2009, 95, 123115. Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359-4363. Wang, Y.; Chen, X. H.; Zhong, Y. L.; Zhu, F. R.; Loh, K. P. Large Area, Continuous, Few-Layered Graphene as Anodes in Organic Photovoltaic Devices. Appl. Phys. Lett. 2009, 95, 063302. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706-710. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35.