Supporting Information For
Efficient Visible Light Driven Photocatalytic Degradation of Pentachlorophenol with Bi2O3/TiO2-xBx Ke Su, Zhihui Ai,* and Lizhi Zhang
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
* To whom correspondence should be addressed. E-mail:
[email protected]. Phone/Fax: +86-27-6786 7535
Figure S1. XPS spectra of the resulting samples. A) survey spectra of Bi2O3/TiO2-xBx, B) high resolution XPS spectra of Ti 2p for all the resulting samples, C) Bi2O3/TiO2-xBx high resolution XPS spectra of Bi 4f, D) Bi2O3/TiO2-xBx high resolution XPS spectra of B, (a) pure TiO2, (b) Bi2O3/TiO2, (c) TiO2-xBx, (d) Bi2O3/TiO2-xBx.
Figure S2. UV-vis diffuse reflectance spectra (inset) and plots of the (ahν)1/2 vs photon energy (hν) of the as-prepared samples. (a) pure TiO2, (b) TiO2-xBx, (c) Bi2O3/TiO2 and (d) Bi2O3/TiO2-xBx.
Figure S3. Nitrogen a dsorption-desorption isotherm of the resulting samples. (a) pure TiO2, (b) TiO2-xBx, (c) Bi2O3/TiO2-xBx and (d) Bi2O3/TiO2.
Figure S4. Photodegradation of PCP in the presence of different scavengers of tert-butylalcohol, sodium oxalate over Bi2O3 under visible light irradiation.
Figure S5. Positive ion mass spectra in the photodegradation of PCP intermediate products in the presence of Bi2O3/TiO2-xBx under visible-light. Spectra labeled (a), (b) and (c) correspond to the peaks of Figure 5 respectively.
Table S1: Results of the high-resolution XPS spectra for the Bi 4f and B 1s regions, surface area, degradation efficiencies (K), degradation efficiencies normalized with the surface areas (K’) and band gap energy of various photocatalysts.
Sample
Bi : Ti
SBET
K
K’
Band gap
(m2·g-1)
( h-1)
(g·h-1·m-2,×10-4)
(eV)
B : Ti
— Pure TiO2 —
—
7.4
0.001
1.4
3.03
0.106
15.4
0.083
53
2.94
—
33.9
0.025
7.3
2.79
0.118
27.7
0.172
62.1
2.85
TiO2-xBx 0.03 Bi2O3/TiO2 7 Bi2O3/TiO2-xB 0.02 x
3