Electric Circuits ECSE 210

Report 4 Downloads 236 Views
12/22/08

ECSE 210: Electric Circuits 2 Chapter 9 AC SteadySteady-State Analysis

1

12/22/08

KCL/KVL for Phasor Circuits i1 (t )

Æ KCL in time domain:

i5 (t )

i1 (t) + i2 (t) + i3 (t) + i4 (t) + i5 (t) + ... = 0

i4 (t ) i2 (t )

Æ Complex exponential input:

I e 1

jωt

+I e 2

jωt

+I e 3

jωt

+I e 4

jωt

Æ KCL for phasors

+I e 5

jωt

i3 (t )

+ ... = 0 I s1

I s5

I + I + I + I + I + ... = 0 1 2 3 4 5

Æ We can use the same approach to prove KVL for phasor circuits.

I s4

I s2

I s3 2

12/22/08

Impedance Z and Admittance Y Frequency Domain

Time Domain

V = ZI

v = Ri

I = YV

i = Gv

Æ Phasor terminal relationships are linear and in the same form as in the case of dc circuits Æ Except in this case we have complex numbers. Æ KCL and KVL are valid for phasor circuits. Î We can derive network theorems that are similar to th dc the d case. Î Example: Element series and parallel combinations

3

12/22/08

Parallel Combinations

Y3

Y2

Y1

Gpar

G3

G1

G3

Ypar

Ypa par = Y1 + Y2 + Y3 + K

G ppar = G1 + G2 + G3 + K

1 1 1 1 = + + +K Z par Z1 Z 2 Z 3

1 1 1 1 = + + +K R par R1 R2 R3

4

12/22/08

Series Combinations

Z1

R1

Z2

R3

Z series

Rseries R3

Z3

Z series = Z1 + Z 2 + Z 3 + K 1 1 1 1 = + + +K Yseries Y1 Y2 Y3

Rseries = R1 + R2 + R3 + K 1 1 1 1 = + + +K Gseries G1 G2 G3

5

12/22/08

Example 1 Calculate the equivalent impedance at 60Hz and 400Hz. Æ At 60Hz,

25Ω

ω = 2πf = 120π

Z eq = 25Ω + j (120π × 20 ×10 −3 ) +

1 j (120π × 50 × 10 −6 )

Z eq = 25Ω + j 7.54 − j 53.05 = 25 − j 45.51

Z eq ⇒

20mH

Æ Capacitive Æ At 400Hz 400Hz,

ω = 2πf = 800π

50μF

1 Z eq = 25Ω + j (800π × 20 × 10 ) + j (800π × 50 × 10 −6 ) −3

Z eq = 25Ω + j 50.27 − j 7.96 = 25 + j 42.31 Æ Inductive

6

12/22/08

Example 2 At 60Hz, Is = 0.5∠ − 22.98

I

o

Z eq

Calculate vs(t) First determine Vs

Vs

Z R = 20Ω

+ -

20Ω

40mH

Z L = jωL = j (2π × 60) × (40 × 10 −3 )= jj15.08Ω

Z RZ L (20)( j15.08) Z eq = = = 7.25 + j9.61Ω = 12.04∠52.98 Z R + Z L 20 + j15.08 j15 08

(

Vs = Z eq I = 12.04∠52.98

o

)(0.5∠ − 22.98 )= 6.02∠30 )(

vs (t) = 6.02 cos(120π t + 30 o ) volts

o

o

7

12/22/08

Example 3: Equivalent Circuits Find an equivalent circuit for the impedance: Æ Option #1:

Z = 10∠30o

Z = 10∠30 o = 8.66 8 66 + j5Ω

8.66 Ω

Æ Positive P iti reactance t Î inductive i d ti

j5 Ω

8

12/22/08

Example 3: Equivalent Circuits Find an equivalent circuit for the impedance: Æ Option #2:

Z = 10∠30o

Z = 10∠30o = 8.66 + j 5Ω

1 o Y= = 0.1∠ − 30 = 0.0866 − j0.05 o 10∠30

Negative susceptance Î inductive Positive reactance Î inductive Y circuit Z circuit

Equivalent circuits

?

0.0866S G

-j0.05S 11.55 Ω B R

? j20Ω X 9

12/22/08

Example 4 1Ω

− j2Ω

Z eq ⇒



j2Ω

2Ω j6Ω

j 4Ω

− j2Ω

− j2Ω

Z eq = 1Ω || (−2 jΩ) + [4Ω + j 2Ω + j 4Ω || (− j 2Ω)] || (2Ω + j 6Ω − j 2Ω)

→ Z eq = 3.8 + j 0.6Ω

10

12/22/08

AC Steady State Analysis Basis:

KCL, KVL and V=ZI can be used to solve linear, ac steady-state circuit problems.

Æ Consider the network theorems developed for resistive dc circuits for ac steady-state analysis of RLC circuits. q y domain Æ Each time-domain method is valid for frequency analysis. (Derive equivalent frequency domain results based on the phasor form of KCL, KVL and V=IZ.) Æ We will consider a selection of illustrative ac steady-state (phasor) circuit analysis examples. 11

12/22/08

Example 1: Linearity I1

Vs +-

j4 Ω I3

4Ω I2

-j3Ω

I4



I5

-j2 Ω

Use linearity to determine the phasor I4 and the time domain current i4(t) given that: vs (t ) = 12 cos(377t + 30)V Æ The phasor for vs(t) is given by:

Vs = 12∠30oV How do we find the value of L in the above circuit?

12

12/22/08

Example 1: Linearity Solve using linearity:

Assume:

I4 = 1∠0

Æ Solve for Vs Æ Using linearity calculate I4 for the given value of Vs

For example:

•Assume that for I4=1A we can solve for Vs=3V. •Then we could immediately state (using linearity) that if Vs=1.5 =1 5 then I4= (1.5/3)1 (1 5/3)1 = 0.5A 0 5A Æ Apply above procedure to the circuit on previous slide. 13

12/22/08

Example 1: Linearity 4Ω

I1

I2

Vs +-

-j3 Ω

Assume I 4 = 1∠0 A o

I4 = 1∠0 A 2V = j Æ I5 = − jj2Ω o

j4Ω

V1

Æ

Æ

I3

V2 I4



I5

-j2Ω

C l l t Vs Calculate

V2 = (1∠0 o A)(2Ω) = 2V

Æ I3 = I4 + I5 = 1 + j A

14

12/22/08

Example 1: Linearity I1

Vs +-



j4 Ω

V1 I2

-j3Ω

I3

V2 I4



I5

-j2 Ω

V1 = I3 ( j 4Ω) + V2 = (1 + j )( j 4) + 2 = −2 + 4 j V

−2 + 4 j −4 2 = −j Æ I2 = − j3 3 3 4 2 1 1 Æ I1 = I 2 + I 3 = − − j + 1 + j = − + j 3 3 3 3 15

12/22/08

Example 1: Linearity I1

Vs +-



j4 Ω

V1 I2

-j3Ω

I3

V2 I4



I5

-j2 Ω

1⎞ ⎛ 1 Æ Vs = I1 (4Ω) + V1 = − + j (4Ω) + (−2 + 4 j ) ⎝ 3 3⎠ Æ

10 16 Vs = − + j = 6.29∠122 o V 3 3 16

12/22/08

Example 1: Linearity I 4 = 1∠0

o

10 16 Vs = − + j = 6.29∠122 o 3 3

Æ

Using linearity:

Vs = 12∠30 o

o o 12∠30 1∠0 ( ) ( ) o = 1.91∠ − 92 Æ I4 = o 6 29∠122 6.29∠122

In the time domain:

i4 (t ) = 1.91 cos(377t − 92 o )

A 17

12/22/08

Example 2: Nodal Analysis V1

2∠60o A

12∠30o V

V2

+ -

Find V1 and V2.

jj1Ω



-j2 j2 Ω

KCL at supernode: V1 V2 V2 + + = 2∠60 o j1 2 − j2

For the supernode: V2 = V1 − 12∠30 o

V1 V1 − 12∠30 V1 − 12∠30 + + = 2∠60 o j1 2 − j2 18

12/22/08

Example 2: Nodal Analysis V1 V1 − 12∠30 V1 − 12∠30 + + = 2∠60 o j1 2 − j2 ⎛1 1 1 ⎞ 12∠30 o 12∠30 o o V1 ⎜ + + − ⎟ = 2∠60 + ⎝ j 2 −22 j ⎠ 2 j2

How do we combine these?

V1 = 14.69∠117.14 o V Also

V2 = V1 − 12∠30 o = 14.69∠117.14 o − 12∠30 o = −6.70 + j13.07 − (10.4 + j 6 ) From supernode constraint

= −17.1 + j 7.07 = 18.5∠157.54 o V 19

12/22/08

Example 3: Nodal Analysis 2 V1 2Vx

+ -

V2

6∠0o V

1Ω V3

+ -

+ 1Ω V x o 4∠0 V -

-j1Ω

+

Find Vo.

j1Ω

+ 1Ω Vo -

V2 = 6∠0 Vx = Vo − 6∠0 Use KVL on outer loop V1 = Vo + Vx = 2Vo − 6∠0 V3 = Vo − 4∠0

20

12/22/08

Example 3: Nodal Analysis 2 V1

Constraints V2 = 6∠0 2Vx

V1 = Vo + Vx = 2Vo − 6∠0

+ -

V2

V3

V3 = Vo − 4∠0

6∠0o V



+

Vx = Vo − 6∠0

+ 1Ω V x 4∠0oV -

-j1Ω

j1Ω

+ -

+ 1Ω Vo -

KCL at supernode: Vo − V1 V3 − V1 V3 − V2 V3 Vo + + + + =0 1 −j 1 j 1

Æ Substitute for V1, V2, V3:

Vo = 3.225∠7.125o V

21

12/22/08

Example 4: Mesh Analysis j1 Ω



Find Vo. I1 = 2∠30 o

+

I1



Vo -

I2

+ -

8∠45o

-j2 j Ω

2∠30o A

KVL (I2 − I1 )(2 − 2 j)) + I2 ( j1) 1) + 8∠45 o = 0

(−2∠30 )(2 − 2 j ) + I (2 − 1 j ) + 8∠45 = 0 2∠30 )(2 − 2 j) − 8∠45 ( I = = 3.18∠ − 64.96 o

o

2

o

2

o

2 − 1j

o

22

12/22/08

Example 4: Mesh Analysis j1 Ω

3Ω I1 = 2∠30 o

I 2 = 3.18∠ − 64.96 o I1 − I2 = 2∠30 − 3.18∠ − 64.96 o

+ o

I1

= 0.38 + j 3.88 A 2∠30o A

Vo = 2(I1 − I 2 ) = 0.76 + j 7.76



Vo -

I2

+ -

8∠45o

-j2 j Ω

V 23

12/22/08

Example 5: Mesh Analysis 2 Objective: Find I4 then Vo.

-j1Ω

I2

I1

+ - 12∠0o V

1Ω V3 2I x

I3

4∠0o A

1Ω j1Ω

Ix

I4

+ 1Ω Vo -

Constraint Equations I2 = −4∠0 Ix = I4 − I2 = I4 + 4

I3 = 2Ix = 2(I4 + 4 ) 24

12/22/08

Example 5: Mesh Analysis 2 Constraint Equations I2 = −4∠0

-j1Ω

+ - 12∠0o V



Ix = I4 − I2 = I4 + 4

V3

I3 = 2Ix = 2(I4 + 4 )

Mesh Equations

I2

I1

2I x

I3

4∠0o A

1Ω j1Ω

Ix

I4

+ 1Ω Vo -

− jI1 + 1(I1 − I3 ) = −12∠0 j (I 4 − I3 ) + 1(I 4 − I2 ) + 1I 4 = 0 Vo = −4∠ − 36.87 o V

I4 = −4∠ − 36.87 o A 25

12/22/08

Example 6: Linear Superposition Calculate Vo using superposition:

j1 Ω

3Ω +

Need to assume: 1 Both sources are at 1.Both the same frequency 2.The reactances are given i for f thi this same frequency



Vo -

2∠30o A

+ -

8∠45o

-j2 j Ω

•Superposition was shown to hold in the time domain •But also holds in the frequency domain if all frequencies are the same

26

12/22/08

Example 6: Linear Superpostion Short circuit voltage source and calculate Vo1.

Io1 2Ω

Current divider: j1Ω Io1 = 2∠30 o ) ( 2 − j2 + j1

j1Ω

3Ω +

Vo1 -

2∠30o A

-j2 j Ω

j1 Vo1 = 2∠30 o )(2) = 1.79∠146.57 o ( 2 − j2 + j1

27

12/22/08

Example 6: Linear Superpostion j1Ω

3Ω Open circuit current source and calculate Vo2.

+



Vo2 -

2∠30 A o

+ -

8∠45o

-j2 j Ω

Voltage divider:

2 Vo2 = 8∠45 o = 7.14∠71.57 o − j2 + 2 + j1 B superposition: By ii Vo = Vo1 + Vo2 = 1.79∠146.57 o + 7.14∠71.57 o = 0.76 + j 7.76 V

28

12/22/08

Example 7: Source Transformation j4 Ω



I4

12∠30 V +o



-j3 Ω

-j2 Ω

Use sou source ce ttransformation a s o at o to dete determine e tthe ep phasor aso I4. j4 Ω I4

3∠30o A



j3Ω -j3



-j2 Ω 29

12/22/08

Example 7: Source Transformation j4Ω I4

3∠30o A





-j3Ω

-j2Ω

Z1

(3∠30 )Z

j4Ω

o

1

V

+-

(4)(− j 3) − j12 Z1 = = 4 − j3 4 − j3

I4



-j2Ω j

30

12/22/08

Example 7: Source Transformation Z1

(3∠30 )Z

jj4Ω

o

(3∠30 )Z

1

V +-

I4



-j2Ω

I4

o

1

A

Z2



-j2Ω j2Ω

Z2 12 + j 4 Ω Z 2 = Z1 + j 4 = 4 − j3

31

12/22/08

Example 7: Source Transformation

(3∠30 )Z

I4

o

1

Z3

Z2

(3∠30 )Z o

Z2

1



(− j 2)( Z 2 ) Z3 = − j2 + Z2 4 − j12 Ω = 3 − j2

= 2.85∠ − 78.43o A

⎛ 4 − j12 ⎞ ⎜ ⎟ ⎝ 3 − j2 ⎠ I4 = 2.85∠ − 78.43o = 1.91∠ − 78.43o A ⎛ 4 − j12 ⎞ 2+⎜ ⎟ ⎝ 3 − j2 ⎠

32

12/22/08

Example 8: Thevenin’s Theorem j1Ω

3Ω Calculate Vo using Thevenin’s Theorem.

+



Vo -

2∠30o A

+ -

8∠45o

-j2Ω j

33

12/22/08

Example 8: Thevenin’s Theorem j1Ω

3Ω Calculate Vo using Thevenin’s Theorem.

+

Voc -

2∠30o A

Voc = (2∠30 o )( j1) + 8∠45 o = 8.73∠57.75 o V Z th = − j 2 + j1 = − jΩ

Vth = Voc = 8.73∠57.75 o V

+ -

8∠45o

-j2Ω j

No currentt N through this capacitor

34

12/22/08

Example 8: Thevenin’s Theorem Z th = − jΩ

8.73∠57.75

o

V +-

+



Vo

-

2 o V0 = 88.73∠57.75 73∠57 75 = 0.76 0 76 + j7.76 j7 76 2− j

V

35

12/22/08

Summary 1. All the methods derived for solving dc steady-state circuits are also valid for ac steady-state circuit analysis i the in th frequency f domain. d i These Th methods th d iinclude: l d Æ Æ Æ Æ Æ

Nodal analysis. Mesh and loop analysis. Superposition. Source transformation. Thevenin and Norton’s theorems

2 The principle of linearity is valid for the analysis of ac 2. steady-state circuit analysis in the frequency domain under certain conditions . 36

12/22/08

Consider Linear Superposition Again •See Section 9.4 in J & J •Superposition only holds true in general for linear circuits in the time domain •See Example 9.9 for how to apply this concept to the case where the circuit has sources at different frequencies •We cannot superpose phasors at different frequencies!

37

12/22/08

Sources With Different Frequencies Find

12cos(2t) V

- v(t)

+ -

+



0.5F 1Ω

1H

+ - 5cos(1t ( + 45 o ) Æ Two sources at different frequencies. Æ We must use superposition.

(Only meaningful in the time domain!) 38

12/22/08

Sources With Different Frequencies () - v(t)

12 cos(2t ) V

+ -

+



0 5F 0.5F 1Ω

1H

+ - 5 cos(t + 45o )V - v2(t) +

+ -

() + - v1(t)



-j2Ω

-j1Ω

12∠0o V





j2Ω

1Ω + - 5∠45o V

j1Ω 39

12/22/08

Sources With Different Frequencies In parallel to ground & replaced by

- v1(t) +

VC



-j2Ω 1Ω

+

v1(t)

VC

5∠45o V

1Ω + - 5∠45o V

-

j1Ω

+ -

voltage divider (− j2Ω) || (2Ω + j1Ω) VC = (5∠45 o ) 1Ω + (− j2Ω) || (2Ω + j1Ω)

VC = (0.7∠ (0 7∠ − 12.09 12 09o )(5∠45o ) = 3.5∠32.9 3 5∠32 9 o

v1 (t ) = 3.5 cos(t + 32.9o )

40

12/22/08

Sources With Different Frequencies - v2(t) + (2Ω + j2Ω) || (1Ω) VC = (12∠0 o ) (2Ω + j2Ω) || (1Ω) − j1Ω

+ -



-j1Ω 1Ω

12∠0o V

j2Ω

VC

VC = (0.686∠59.04 o )(12∠0 o ) = 8.23∠59.04 o

V

V2 = (8.23∠59.04 o ) − (12∠0 o ) = 10.5∠138 o

V

v2 (t ) = 10.5 cos((2t + 138o )V 41

12/22/08

Sources With Different Frequencies v1 (t ) = 3.5 cos(t + 32.9 o )

V

v2 (t ) = 10.5 cos(2t + 138o )

V

v(t ) = v1 (t ) + v2 (t ) = 3.5 cos((t + 32.9 o ) + 10.5 cos((2t + 138o ) Æ Note we can only add waveforms at different frequencies in the time domain. We CANNOT add their phasors. Each phasor is defined at a specific frequency and phasors with diff different t frequencies f i cannott be b added. dd d

42

12/22/08

Next Topic: Power Recall: Power as a function of time

i (t )

Passive Sign Convention: pp to Æ Power supplied circuit/circuit element:

p (t ) = i (t )v(t )

+

v(t ) -

Electric El t i Circuit/ Ci it/ Circuit Element

Power as a function of time when the currents and voltages are sinusoids 43