Electromagnetic Energy Harvesting

Report 18 Downloads 165 Views
Science  Applications     International  Corporation  

Engineering  Programs   5998  Alcalá  Park   San  Diego,  CA  92110  

 

10260  Campus  Point  Drive   San  Diego,  CA  92121  

S-­‐Band  Radio  Frequency  Energy   Harvesting   An  Integrated  Solution  for  Low-­‐Powered  Embedded   Systems        

Final  Design  Review   May  5,  2009                       Submitted  to:   Dr.  Thomas  Schubert   Professor  of  Electrical  Engineering       ™       Submitted  by:   Hanner  Hart,  Kelty  Lanham,  and  Michael  Sass      

   

Abstract   The  SAIC-­‐sponsored  team  designed  a  system  that  harvests  S-­‐Band  radio  frequency   energy  and  provides  power  for  an  8-­‐bit  PIC  flash  microcontroller.    The  ultimate  goal  was  to   have  the  capability  to  capture  ambient  radio  frequency  energy  from  traditional  S-­‐Band   transmission  sources,  such  as  shipboard  radar  systems  and  radiolocation  devices.      The  final   design  contains  two  primary  subsystems:  a  single  non-­‐radiating  edge  fed  microstrip  patch   antenna  and  a  7-­‐stage  charge  pump  circuit  utilizing  S-­‐Band  Schottky  diodes.    The  final  design   also  contains  a  supercapacitor-­‐based  energy  storage  and  distribution  system,  but  this   subsystem  is  not  vital  to  the  overall  device  operation.    Due  to  the  technical  complexity  of  the   design,  only  the  primary  subsystems  were  physically  built.    These  two  subsystems  were   constructed  onto  a  self-­‐fabricated  printed  circuit  board  using  a  unique  process  developed  by   the  team.       This  report  contains  a  detailed  overview  of  the  final  design  of  the  University  of  San   Diego’s  capstone  senior  design  project.    The  contents  of  this  report  will  meticulously  discuss   the  final  system  design  at  the  circuit  diagram  level,  as  well  as  detail  all  simulation  and  test   results.    The  process  used  to  develop  the  final  printed  circuit  board,  as  well  as  the  test  results   achieved  with  this  device,  are  included  as  well.    The  team’s  success  at  meeting  the  minimum   project  standards  is  fully  discussed.    Finally,  an  outgoing  budget  assessment  detailing  the   financial  status  of  the  project  is  fully  disclosed.  

Important  Notice:  

   

At  the  time  of  preparing  the  Final  Design  Review,  the  team  is  still  in   the  process  of  final  construction  and  testing  of  the  design.    As  a   result,  an  addendum  will  be  submitted  no  later  than  Friday  at  2:00   pm  detailing  the  team’s  final  progress  toward  construction  and   testing.  

      2    

Table  of  Contents   1  -­  Introduction  .................................................................................................................................................  6   Background  ..................................................................................................................................................................  6   Survey  of  Existing  Markets  and  Research  ..................................................................................................  6   Potential  of  RF  Energy  Harvesting  .................................................................................................................  7   SAIC  Interest  in  RF  Energy  Harvesting  ........................................................................................................  8    

2  –  Project    Concept........................................................................................................................................  9   3  –  Functional  Specifications  .................................................................................................................  10   Project  Outcome  .....................................................................................................................................................  10   Design  Specifications  ...........................................................................................................................................  11  

4  –  Overview  of  Final  System  Design  ...............................................................................................  12   Statement  of  Final  Design  Approach  ..........................................................................................................  12   Statement  of  Final  System  Development  .................................................................................................  12  

5–  RF  Harvesting  Subsystems  ...............................................................................................................  16   Primary  Subsystem  I  -­‐  Antenna  Subsystem  ...........................................................................................  16              Overview  of  Technical  Description………….…….………..…………………………………………16   Design  Approach…………………………………….…….………..…………………...……………………16                Technical  Description……………………………….…….………..…………………………………………19              System  Analysis  Results………………………….…….………..…………………………………………22   Primary  Subsystem  II  -­‐  Rectification  Subsystem  ................................................................................  27                            Overview  of  Technical  Description………….…….………..…………………………………………27              Design  Approach…………………………………….…….………..…………………………………………28                Technical  Description……………………………….…….………..…………………………………………30              System  Analysis  Results………………………….…….………..…………………………………………32   Secondary  Subsystem  -­‐  Energy  Storage  and  Distribution  Subsystem  ...................................  37                            Overview  of  Technical  Description………….…….………..…………………………………………37              Design  Approach…………………………………….…….………..…………………………………………38              Technical  Description……………………………….…….………..…………………………………………39              System  Analysis  Results………………………….…….………..…………………………………………40  

6  –  Embedded  System  .................................................................................................................................  43   7  –  Personnel..  ..................................................................................................................................................  44   8  –  Test  Plan….  .................................................................................................................................................  45   9  –  Schedule….  ..................................................................................................................................................  51   10  –  Budget……..  ..............................................................................................................................................  55   3    

References.........  ................................................................................................................................................  57   Appendices   A   B   C   D    

Resumes   Calculations  –  Matlab  Code   Component  Data  Sheets     Self-­‐Fabrication  of  Printed  Circuit  Board  –  Detailed  Procedure    

List  of  Figures   Figure  1   Figure  2   Figure  3   Figure  4   Figure  5   Figure  6   Figure  7   Figure  8   Figure  9   Figure  10   Figure  11   Figure  12   Figure  13   Figure  14   Figure  15   Figure  16   Figure  17   Figure  18   Figure  19   Figure  20   Figure  21   Figure  22   Figure  23   Figure  24   Figure  25   Figure  26   Figure  27   Figure  28   Figure  29   Figure  30   Figure  31   Figure  32   Figure  33  

Block  Diagram  of  System  .....................................................................................................  9   Overall  System  Design  ........................................................................................................  14   Ultiboard  Representation  of  Final  System  PCB  Layout  I  .......................................  15   Ultiboard  Representation  of  Final  System  PCB  Layout  II  .....................................  15   Basic  Model  of  an  Edge  Fed  Patch  Antenna  ................................................................  16   ITS  Broadband  Spectrum  Survey  Graph  ......................................................................  18   Two-­‐Dimensional  View  of  Microstrip  Patch  Antenna  ............................................  20   Three-­‐Dimensional  View  of  Microstrip  Patch  Antenna  .........................................  21   Antenna  Return  Loss  vs.  Frequency  ..............................................................................  23   Antenna  Swept  Gain  vs.  Frequency  ...............................................................................  23   Antenna  VSWR  vs.  Frequency  ..........................................................................................  24   Real Part of Antenna Input Impedance  ..........................................................................  24   Imaginary  Part  of  Antenna  Input  Impedance  ............................................................  25   Antenna  Radiation  Pattern  ...............................................................................................  25   Smith  Chart  .............................................................................................................................  26   Antenna  Near  Field  Three-­‐Dimensional  Plot  .............................................................  26   Antenna  Far  Field  Three-­‐Dimensional  Plot  ................................................................  27   Rectification  Subsystem  .....................................................................................................  28   One-­‐Stage  Voltage  Doubler  ...............................................................................................  29   10  MHz  Charge  Pump  Design  ...........................................................................................  33   Transient  Analysis  for  10  MHz  Charge  Pump  Design  .............................................  33   Bread  Boarded  Rectification  Test  Circuit  ....................................................................  34   Oscilloscope  Output  for  Rectification  Test  Circuit  ...................................................  35   7-­‐Stage  Charge  Pump  Circuit  Operating  at  3.25  GHz  ..............................................  36   Transient  Analysis  for  7-­‐Stage  Charge  Pump  at  3.25  GHz  ....................................  37   Various  Supercapacitors  ....................................................................................................  38   Energy  Storage  and  Distribution  Subsystem  Diagram  ...........................................  41   LTC3225  Demonstration  Board  Configuration  .........................................................  42   Antenna  Subsystem  Generic  Test  Setup  ......................................................................  47   Simulation  of  5-­‐Stage  Charge  Pump  ..............................................................................  49   Oscilloscope  Results  of  5-­‐Stage  Charge  Pump  ...........................................................  49   Gantt  Chart  for  Fall  Semester  ...........................................................................................  53   Gantt  Chart  for  Spring  Semester  .....................................................................................  54   4  

 

List  of  Tables   Table  1   Table  2   Table  3   Table  4   Table  5   Table  6   Table  7   Table  8   Table  9   Table  10   Table  11  

Major  Design  Specifications  .......................................................................................................  11   Microstrip  Patch  Antenna  Characteristics  .........................................................................  17   Patch  Antenna  Substrate  Specifications  ..............................................................................  19   Overview  of  Theoretical  Antenna  Specifications  ...........................................................  19   Theoretical  Rated  Input  Characteristics  to  Rectification  Circuitry  .....................  20   Results  from  Simulation  of  Microstrip  Patch  Antenna  ...............................................  22   Specifications  of  Rectification  Components  ......................................................................  31   Supercapacitor  Advantages  and  Disadvantages  ............................................................  39   Microchip  PIC10F202  Flash  Microcontroller  Specifications  ..................................  43   Proposed  Testing  Conditions  and  Theoretical  Results  ..............................................  47   Critical  Design  Review  Updated  Budget  .............................................................................  55  

                                                 

     

5    

1  –  Introduction   Within  the  curriculum  of  the  Senior  Design  and  Practice  course  at  the  University  of  San   Diego,  a  traditional  capstone  design  project  providing  a  solution  to  a  realistic  problem  must  be   completed.    To  satisfy  this  requirement,  a  device  that  harvests  S-­‐Band  radio  frequency  energy   and  provides  power  to  an  embedded  system  was  designed.    This  project  was  worked  on  by   three  Senior  Electrical  Engineering  students:  Hanner  Hart,  Kelty  Lanham,  and  Michael  Sass.     Although  sponsored  by  Science  Applications  International  Corporation  (SAIC)  and  loosely  based   on  a  United  States  Patent  [1]  assigned  to  SAIC,  all  of  the  design  work  has  been  completed   within  the  laboratory  facilities  at  the  University  of  San  Diego.    Dr.  Gerald  C.  Gerace,  an  SAIC   Deputy  Division  Manager  within  Division  048,  acted  as  mentor  and  principle  project  advisor.     Mr.  Ronald  Rahmel  and  Mr.  Andrew  Spector  also  advised  the  undergraduate  team.    Funding  for   the  project  up  to  the  amount  of  $700  was  approved  by  the  Manager  of  SAIC’s  Division  048,  Dr.   Steven  P.  Auerbach.    A  research  grant  proposal  was  submitted  to  the  University  of  San  Diego’s   Associated  Students  and  approved.    However,  due  to  the  team  remaining  under  budget,  this   additional  funding  was  not  needed.  

Background   Within  the  past  decade,  a  wide  range  of  wireless  devices  have  been  introduced  that   provide  efficient  and  practical  solutions  to  consumer,  industrial,  and  military  needs.     Unfortunately,  with  existing  technology,  wireless  devices  are  constrained  by  the  amount  of   time  they  can  be  operated  independent  of  centralized  power  sources.    As  a  result,  the   usefulness  of  wireless  devices,  as  well  as  the  potential  range  of  applications,  is  severely   restricted  by  relatively  slow  advancements  in  rechargeable  battery  technology.    As  a  result,  a   clear  market  need  exists  that  either  allows  wireless  devices  to  operate  for  longer  durations   away  from  centralized  power  sources  or  increases  the  amount  of  power  that  can  be  supplied  to   a  wireless  device.    

Survey  of  Existing  Markets  and  Research   Currently,  many  technologies  have  been  developed  that  attempt  to  overcome  the   limitations  imposed  on  wireless  devices.    For  example,  recent  advancements  in  rechargeable   batteries  and  electric  double-­‐layer  capacitors  (i.e.  supercapacitors),  as  well  as  technologies  that   harvest  solar  energy  and  exploit  the  piezoelectric  effect  have  been  effective  at  satisfying  a  large   portion  of  the  established  market  need.       Within  the  recent  past,  rechargeable  battery  capacity  has  been  increasing  by   approximately  6%  per  year  [2],  and,  as  a  result,  the  amount  of  time  a  wireless  device  can  be   used  portably  without  being  re-­‐energized  has  improved.    However,  this  only  provides  a  partial   solution  to  the  inherent  problem  with  powering  wireless  devices.    Products  that  solely  exploit   6    

improvements  in  battery  life  still  present  severe  restrictions  for  applications  that  require  long   periods  of  independent  operation  away  from  centralized  power  sources.           Solar  power  technology  has  also  developed  into  a  viable  solution  for  many  industrial,   commercial,  and  military  applications.    Nonetheless,  at  the  current  level  of  technology,  solar   power  provides  an  inadequate  solution  for  many  wireless  devices  due  to  multiple  seemingly   insurmountable  constraints.    Some  of  these  limitations  include  a  solar  cell’s  location  relative  to   the  sun,  time  of  operation,  and  weather  conditions,  as  well  as  the  relatively  high  price  per  watt   of  power.    Moreover,  many  wireless  applications  do  not  have  access  to  sunlight  due  to  their   embedded  location  within  structures.   Within  the  scientific  community,  much  research  has  been  devoted  recently  to   developing  piezoelectric  energy  harvesting  devices.    This  technology  exploits  certain  materials’   ability  to  induce  an  electric  potential  after  the  application  of  a  mechanical  disturbance.    For   example,  it  is  theoretically  possible  to  design  a  device  that  can  take  advantage  of  applied   pressure  to  a  human  kneecap  during  normal  movement  and  use  this  mechanical  motion  to   induce  an  electric  potential.    Many  mechanical  systems  inherently  create  vibrational  motion   during  operation,  and  consequently,  this  energy  could  be  harvested.  

Potential  of  RF  Energy  Harvesting   Around  1891,  the  famous  inventor  and  engineer  Nikola  Tesla  proposed  that  radio   frequency  energy  could  be  used  to  wirelessly  power  devices  [3].      Currently,  passive  radio   frequency  identification  systems  (such  as  RFID  tags)  are  the  only  large  scale  implementation  of   the  technology.    Powering  embedded  systems,  and  to  some  extent  wireless  sensor  networks,   requires  significantly  more  power  than  a  simple  passive  device  like  an  RFID  tag;  however,  in   recent  years,  the  technology  has  been  researched  for  applications  that  require  monitoring  of  a   sensor  network.    In  most  of  these  applications,  the  location  of  the  sensors  (inside  a  rigid   structure,  for  instance)  does  not  allow  for  other  forms  of  energy  harvesting.    Furthermore,   providing  sufficient  wiring  to  the  sensor  network  would  be  extremely  costly  and  cumbersome   [4].    For  example,  the  United  States  Navy  purchased  a  system  that  allowed  technicians  to   monitor  the  structural  integrity  of  aircraft  wings.    Basically,  wireless  sensors  were  placed   throughout  an  aircraft’s  wing,  and  a  technician  uses  a  handheld  device  to  wirelessly  transmit   power,  as  well  as  information,  to  the  sensors.    Once  receiving  power,  each  individual  sensor   transmits  data  back  to  the  technician  [5].    Harvesting  radio  frequency  energy  has  also  been   discussed  for  monitoring  the  structural  integrity  of  bridges,  as  well  as  overseeing  environmental   conditions  within  a  sealed  space  (a  nuclear  reactor  compartment,  for  instance)  [4].    In  most  of   these  cases,  the  sensor  network  does  not  need  to  be  run  continuously,  and,  as  a  result,   intentional  power  transmissions  can  be  sent  at  specific  times  to  power  the  devices.      

7    

SAIC  Interest  in  RF  Energy  Harvesting   It  is  important  to  note  that  radio  frequency  energy  harvesting  is  a  relatively  new  area  of   research  within  the  field  of  electrical  engineering.    As  a  result  of  the  unproven  capabilities  of   the  technology,  SAIC’s  initial  interest  came  about  as  a  result  of  its  potential  for  integration  with   unmanned  aerial  vehicles,  and  many  of  the  team’s  design  decisions  through  the  year  took  this   specific  application  into  account.    To  date,  RF  energy  harvesting  technology  has  focused  mostly   on  low-­‐powered  applications.    However,  as  the  efficiency  of  the  designed  harvesting  circuitry  is   increased,  use  with  device’s  requiring  high  power  demands,  such  as  an  unmanned  aerial   vehicle,  becomes  a  possibility.    A  high  efficiency  also  allows  for  the  possibility  of  harvesting   ambient  radio  frequency  energy  to  power  certain  wireless  devices.    According  to  Dr.  Marlin  H.   Mickle,  Professor  of  Electrical  Engineering  at  the  University  of  Pittsburgh  and  researcher  in  the   area  of  wireless  networks  and  energy  harvesting,    “When  we  talk  about  ambient  [radio   frequency]  energy…we’re  showing  that  we  can  make  it  work”  [5].         It  was  the  undergraduate  design  team’s  goal  to  power  a  typical  embedded  system  (such   as  a  PIC  microcontroller)  by  designing  a  device  that  has  the  capability  of  harvesting  ambient   S-­‐Band  radio  frequency  energy  in  the  San  Diego  metropolitan  area.    Relevant  sections  of  this   report  will  demonstrate  how  the  design  team’s  project,  a  virtual  “proof  of  concept”  of  RF   energy  harvesting,  provides  the  initial  research  and  development  work  necessary  for   integrating  radio  frequency  energy  harvesting  technology  with  unmanned  aerial  vehicles  in  the   future.    At  the  conclusion  of  our  project,  we  still  feel  that  the  technology  has  much  promise  for   many  applications,  including  unmanned  aerial  vehicles.                        

8    

2  –  Project  Concept   The  team  designed  a  system  that  harvests  S-­‐Band  radio  frequency  energy  and  provides   power  for  an  8-­‐bit  PIC  flash  microcontroller.    The  design  contains  two  main  subsystems,  each   having  very  specific  purposes.    Using  a  custom  designed  microstrip  patch  antenna  optimized   specifically  for  a  narrow  portion  of  the  S-­‐Band  (3.25  GHz),  the  device  captures  electromagnetic   energy  from  the  surrounding  environment.    Then,  the  alternating  current  signal  is  efficiently   rectified  via  a  7-­‐stage  charge  pump  circuit  that  utilizes  S-­‐Band  Schottky  diodes.    A  secondary   subsystem  acts  as  a  backup  power  supply  by  storing  energy  in  supercapacitors.    Then,  when   insufficient  energy  is  captured  from  the  receiving  antenna  to  directly  power  the   microcontroller,  this  secondary  subsystem  distributes  stored  energy  to  the  attached  embedded   system.    A  block  diagram  of  the  designed  system  is  shown  below  in  Figure  1.  

  Figure  1.  Block  Diagram  of  System  

  Please  note  that  energy  can  still  be  provided  for  the  microcontroller  without  the   secondary  energy  storage  and  distribution  subsystem.    Due  to  the  technical  complexity  of  the   design,  the  final  developed  system  only  includes  the  two  primary  subsystems  that  are  described   above.    For  the  final  developed  device,  these  two  subsystems  were  integrated  onto  a  self-­‐ fabricated  printed  circuit  board.   SAIC’s  main  technical  interest  in  radio  frequency  energy  harvesting  technology  centers   around  a  desire  to  potentially  harvest  military  directional  radar  energy  to  increase  the  amount   of  time  an  unmanned  aerial  vehicle  (UAV)  can  stay  airborne.    Unfortunately,  integrating  the   team’s  design  into  a  solution  for  UAV’s  is  outside  the  scope  of  SAIC’s  funding  commitment,  as   well  as  being  far  too  technically  advanced  for  undergraduate  engineering  students.    As  a  result,   the  team’s  main  objective  focused  on  proving  that  S-­‐Band  radio  frequency  energy  harvesting   can  be  feasible  for  powering  a  very  simple  device.    The  team  also  focused  our  efforts  on   improving  the  overall  AC  to  DC  energy  conversion  efficiency.    The  successes  realized  toward   attaining  these  two  objectives  provide  a  foundation  for  SAIC  to  continue  future  research  and   development  in  the  area  of  radio  frequency  energy  harvesting.   9    

3  –  Functional  Specifications   Project  Outcome   Since  the  work  SAIC  asked  us  to  perform  was  mostly  research  and  development  into  an   emerging  technology,  establishing  what  defined  a  successful  project  was  essential  to  ensuring   that  the  team  was  able  to  deliver  an  appropriate  solution.    As  a  result,  at  the  Preliminary  Design   Review  stage,  certain  minimum  design  goals  were  established  upon  completion  of  the  project.     As  the  team’s  understanding  of  realistic  project  outcomes  improved  with  time,  these  minimum   design  goals  were  updated  at  the  Critical  Design  Review  phase,  as  well  as  before  the  Final   Design  Review.    The  following  were  the  minimum  design  goals  that  were  agreed  upon:   ƒ

An  antenna  will  be  custom  designed,  built,  and  tested  that  effectively  captures  an   appropriate  amount  of  RF  energy  

ƒ

The  antenna  will  be  optimized  for  the  frequency  band  selected  

ƒ

A  rectification  circuit  will  be  designed,  built,  and  tested  that  converts  the  input  AC  signal   into  a  DC  signal  

ƒ

 The  rectification  circuit  will  be  optimized  to  have  the  highest  efficiency  possible  to   increase  overall  system  performance  

ƒ

An  energy  storage  and  distribution  subsystem  will  be  designed  that  utilizes  electric   double-­‐layer  capacitors  (supercapacitors)  

ƒ

The  energy  storage  subsystem  will  be  able  to  provide  a  constant  output  voltage/current      

Furthermore,  it  was  determined  that  if  these  minimum  standards  were  reached,  the   following  additional  design  goals  would  be  attempted.       ƒ

The  entire  system  will  be  self-­‐fabricated  onto  a  printed  circuit  board  

ƒ

The  system  will  be  used  to  power  an  embedded  system  performing  a  nominal  task  

     

10    

Design  Specifications   The  major  design  specifications  for  each  subsystem  are  listed  below  in  Table  1.    Specifics   about  each  one  of  these  subsystems,  and  the  justification  for  these  design  specifications  can  be   found  within  the  RF  Harvesting  Subsystems  section.    These  specifications  were  decided  upon   during  the  project’s  Critical  Design  Review  phase.    They  were  drastically  refined  between  the   Preliminary  and  Critical  Design  Review  stages.   Table  1.  Major  Design  Specifications  

Rectification   Energy   Storage  /   Distribution  

Secondary   Subsystems  

 

Antenna  

 

Primary  Subsystems  

 

Description  of  Specification   Resonant  Frequency  

3.25  GHz  

Bandwidth  

>  3000  kHz  

Antenna  Gain  

6  dBi  

Polarization  

Linear  

Radiation  Pattern  

3  dB  Directivity  

Effective  Area  

4.12  x  10-­‐3  m2  

Input  Frequency  

3.25  GHz  

Output  Frequency  

0.0  Hz  (DC  Signal)  

Input  Voltage  Range  

0.50  V  –  3.68  V  

Output  Voltage  

3.3  V  

Power  ĨĨŝĐŝĞŶĐLJ͕ɻrectification  

>  80%  

Output  Voltage  

4.8  V  

Output  Current  

>  20  µA  

Power  Efficiency,  ɻenergy  storage  

>  65%  

     

11    

Specification  

4  –  Overview  of  Final  System  Design   The  S-­‐Band  RF  energy  harvesting  device  consists  of  two  primary  subsystems  and  a   secondary  subsystem.    The  first  primary  subsystem  is  the  receiving  antenna,  which  is  solely   responsible  for  capturing  all  of  the  RF  energy  that  is  used  to  power  the  integrated  embedded   system.    The  second  primary  subsystem  is  the  rectification  circuitry,  which  will  efficiently   convert  the  time  varying  input  energy  into  a  constant  output  voltage.    The  secondary   subsystem  is  the  energy  storage  and  distribution  system,  which  is  responsible  for  acting  as  a   power  backup  by  storing  captured  energy  in  super  capacitors.    The  overall  device  can  operate   effectively  without  the  secondary  subsystem,  although  some  flexibility  is  lost  in  its  operation.    

Statement  of  Final  Design  Approach   A  circuit  schematic  of  the  final  design,  including  the  two  primary  subsystems  and  the   secondary  subsystem,  is  included  on  the  following  page  as  Figure  2.    Due  to  the  technical   complexity  of  the  team’s  overall  design,  only  the  two  primary  subsystems  were  actually  built   and  tested.    The  final  design  was  fabricated  on  a  single  printed  circuit  board  using  National   Instruments’  Ultiboard.      

Statement  of  Final  System  Development   Due  to  time  and  funding  constraints  toward  the  end  of  the  spring  semester,  the  team   determined  that  it  would  be  more  efficient  to  self-­‐fabricate  the  final  printed  circuit  board.     After  consulting  several  engineers  and  hobbyists,  a  specialized,  unique  procedure  was   developed  by  the  team  to  carry  out  the  printed  circuit  board  fabrication  process.    Please   reference  Appendix  D  for  a  copy  of  the  team’s  detailed  fabrication  procedure.    Although   somewhat  time  consuming,  self-­‐fabrication  allowed  the  team  to  make  revisions  to  the  printed   circuit  board  layout  without  having  to  wait  for  a  manufacturer  to  produce  a  new  board.    Since   high  frequency  circuit  design  was  a  fairly  foreign  technical  area  for  the  team,  many  revisions  of   the  final  design  were  made.    Please  see  the  Test  Plan  for  more  specific  discussion  of  the   iterations  that  led  to  the  final  printed  circuit  board  layout  and  design.       Two  separate  three-­‐dimensional  views  of  the  final  printed  circuit  board  layout  can  be   viewed  in  Figure  3  and  4  on  page  15.    The  final  printed  circuit  board  was  fabricated  onto  two   separate  types  of  material.    The  first  was  a  standard  double-­‐sided  copper  clad  board  with  1  oz   copper.    The  second  was  Rogers  Corporation  RT/duroid  5880  (see  Primary  Subsystem  I  –   Antenna  Subsystem  for  more  details).    Besides  the  difference  in  the  materials  used,  the  layout   and  design  of  each  printed  circuit  board  is  identical.       The  final  printed  circuit  board  contains  40  mil  traces  with  through  hole  components.     Due  to  the  high  frequency  signals  that  were  being  transmitted  through  the  circuitry,  the  team   12    

took  special  care  to  minimize  the  number  of  traces  on  the  board.    The  final  printed  circuit  board   design  also  contains  a  conductive  ground  plane.    This  ground  plane  is  electrically  connected   (through  a  via)  to  copper  cladding  surrounding  the  circuitry  on  the  board’s  top  layer.    The  top   layer  copper  cladding  allows  for  any  fringe  field  effects  from  the  high  frequency  signal  to  be   dissipated  into  the  ground  plane,  without  interfering  with  the  circuitry’s  operation.                                                

13    

Figure  2.  Overall  System  Design  Including  Primary  and  Secondary  Subsystems   14    

  Figure  3.  Ultiboard  Representation  of  Final  System  PCB  Layout  I  

 

    Figure  4.  Ultiboard  Representation  of  Final  System  PCB  Layout  II  

   

15    

5  -­  RF  Harvesting  Subsystems   The  following  section  provides  a  detailed  overview  of  the  two  primary  subsystems,  as   well  as  the  secondary  subsystem.    Each  subsystem  is  discussed  in  its  own  subsection.        For  each   one,  a  brief  overview  of  the  technical  solution  is  initially  provided  to  give  a  short  summary  of   the  subsystem’s  purpose.    Next,  insight  into  the  design  approach  and  alternative  designs  that   were  considered  are  discussed  in  depth.    Moreover,  a  detailed  technical  description  of  each   subsystem  is  included.    Finally,  system  analysis  results  that  were  accomplished  to  date  are   included  for  each  subsystem.          

Primary  Subsystem  I  -­  Antenna  Subsystem   Overview  of  Technical  Description   The  antenna  subsystem  consists  of  a  custom  designed  single  patch  antenna  with  a   quarter-­‐wave  edge  fed  microstrip  transmission  line.    The  linearly  polarized  antenna  was   optimized  to  resonate  efficiently  at  3.25  GHz.    Within  the  context  of  the  overall  system  design,   the  antenna  subsystem  harvests  the  radio  frequency  power  and  transfers  this  power  to  the   rectification  circuitry.         Design  Approach   A  microstrip  patch  antenna  consists  of  a  radiating  patch  that  rests  above  a  dielectric   substrate  backed  by  a  thin  conductive  ground  plane.    The  radiating  patch  element  can  be   designed  to  take  the  form  of  any  number  of  planar  geometries,  including  squares,  rectangles,   circles,  and  ellipses.    These  planar  shapes  have  also  been  successfully  wrapped  around  a  three-­‐ dimensional  structure.    Since  an  antenna  is  a  reciprocal  device,  it  can  be  used  to  radiate  (i.e.   transmit)  electromagnetic  energy  or  capture  (i.e.  receive)  electromagnetic  energy.    A  basic   conceptual  model  of  a  standard  rectangular  patch  antenna  is  shown  in  Figure  5  [6].      

  Figure  5.  Basic  model  of  an  edge  fed  patch  antenna  [6]   16    

For  a  typical  patch  antenna,  the  width  dimension  represents  the  two  radiating  edges,   whereas  the  length  represents  the  non-­‐radiating  edges  of  the  conductive  patch.    Note  that   fringing  fields  exist  along  both  of  the  radiating  edges,  and  they  add  in  phase  [6].    The  current   distribution  is  the  highest  at  the  center  of  the  width  (i.e.  all  along  the  length  dimension).    The   current  becomes  smaller  as  the  width  approaches  each  non-­‐radiating  edge.    Moreover,  the   electric  field  is  zero  in  the  center  of  the  patch,  maximum  at  the  left  radiating  edge,  and   minimum  at  the  right  radiating  edge.    As  a  result,  the  antenna  experiences  maximum  directivity   perpendicular  to  the  radiating  element  [7].   The  concept  behind  microstrip  patch  antennas  was  first  introduced  to  the  academic   community  in  1953  and  began  to  have  practical  implications  for  antenna  design  work  in  the   1970’s  [6].    Today,  microstrip  patch  antennas  have  been  successfully  designed  for  use  with   cellular  telephones,  satellite  radio  receivers,  missile  and  weapons  guidance  systems,  as  well  as   a  wide  variety  of  other  applications  [8].    A  summary  of  the  main  advantages  and  disadvantages   of  microstrip  patch  antennas  can  be  found  below  in  Table  2.   Table  2.  Microstrip  Patch  Antenna  Characteristics  [6]  

Advantages  

Disadvantages  

Lightweight  

Narrow  Bandwidth  

Low  Profile  (Aerodynamic)  

Limited  Maximum  Gain  

Easy  to  Design  and  Construct  

Poor  Directivity  

Inexpensive  to  Fabricate  

Susceptible  to  High  Losses  

Easily  Integrated  with  Existing  Electronics  

Low  Power  Handling  

Multiple  Resonating  Frequencies  Possible  

Only  Practical  at  Higher  Frequencies  

Matching  Network/Feed  Line  Fabricated  with   Poor  Antenna-­‐Feed  Isolation   Antenna    

In  order  to  authoritatively  discuss  the  feasibility  of  integrating  an  RF  harvesting  device   with  certain  existing  technologies  (such  as  a  UAV),  the  antenna  subsystem  cannot,  under  any   circumstance,  impede  the  operational  capabilities  of  its  host.    For  an  application  such  as  a  UAV,   microstrip  patch  antennas,  with  their  planar  structure,  provide  the  perfect  geometry  for  the   aerospace  environment,  as  it  does  not  interfere  with  the  UAV’s  aerodynamics.    Many  antenna   designs  were  initially  considered  for  the  harvesting  device,  including  dipole,  log  periodic,  Yagi-­‐ 17    

Uda,  and  horn  designs.    However,  none  of  these  antenna  designs  provide  the  low  profile   necessary  for  integration  with  a  UAV.    Since  high-­‐powered  military  radars  provide  the  most   obvious  potential  RF  energy  source  for  military  UAV’s,  harvesting  high  frequency  energy  is   fundamental  to  the  antenna  subsystem.      Unfortunately,  besides  microstrip  patch  antennas,  the   possibility  for  a  compact  antenna  array  of  multiple  elements  simply  did  not  exist  for  any  other   antenna  type  studied.    Although  the  team’s  goal  is  not  to  provide  an  application-­‐specific  RF   harvesting  solution,  in  order  to  make  a  confident  opinion  as  to  the  feasibility  of  integrating  the   technology  with  a  UAV,  it  was  decided  that  an  antenna  with  similar  specifications  to  one  that   would  be  used  with  a  UAV  was  required.    These  facts,  as  well  as  the  relative  simplicity  of   fabricating  a  patch  antenna,  led  the  team  to  choose  a  patch  antenna  design.   The  resonant  frequency  of  the  designed  microstrip  patch  antenna  was  selected  using   the  Institute  for  Telecommunication  Sciences  Broadband  Spectrum  Survey  Data  for  San  Diego   [9].    This  survey,  conducted  in  1995,  revealed  that  the  highest  power  density  on  Point  Loma  (by   many  order  of  magnitudes),  exists  in  the  S-­‐Band,  specifically  between  approximately  3.2  –  3.35   GHz.    This  power  density,  calculated  to  be  49.16  W/m2,  is  the  result  of  high-­‐powered  shipboard   radar  systems  and  radiolocation  transmissions  within  close  proximity  to  the  coast  near  Point   Loma  (see  Appendix  B  for  information  on  this  calculation).    Due  to  the  conclusions  the  team   made  after  studying  the  Broadband  Spectrum  Survey  data,  as  well  as  the  close  correlation   between  the  S-­‐Band  and  military  radar  systems  (many  radar  systems,  such  as  the  AN/SPY-­‐1D   radar  system  operate  in  this  band),  it  was  decided  that  the  team  would  focus  on  harvesting   energy  near  3.25  GHz.    The  Broadband  Spectrum  Survey  data  for  this  portion  of  the  S-­‐Band  is   reproduced  below  in  Figure  6.      

  Figure  6.  ITS  Broadband  Spectrum  Survey  Received  Signal  Level  Graph  for  3.1  -­‐  3.7  GHz  [9]  

18    

Purchasing,  rather  than  designing  and  constructing  an  antenna  subsystem  was  also   seriously  considered  for  the  RF  energy  harvesting  device.    However,  due  to  limited  budget   constraints  and  potential  integration  issues  with  commercially  available  antenna  designs,  it  was   decided  that  a  single  microstrip  patch  antenna  could  be  designed,  simulated,  and  constructed   with  little  monetary  expense.    Furthermore,  it  was  determined  that  the  necessary  design   resources,  as  well  as  dedicating  one  team  member  to  this  task,  would  not  detract  from  the   overall  design  process.   Technical  Description   The  microstrip  patch  antenna  was  constructed  using  Rogers  Corporation  RT/duroid©   5880  High  Frequency  Laminate.    RT  duroid  is  a  commonly  selected  material  for  microstrip  and   stripline  circuit  applications.    More  importantly,  this  specific  laminate  has  an  extremely  low  loss   tangent,  and  has  a  constant  dielectric  constant  over  a  wide  range  of  high  frequencies.    A  layer   of  electrodeposited  copper  cladding  comes  standard  on  both  sides  of  the  laminate.    A  summary   of  the  relevant  specifications  of  Rogers  Corporation  RT/duroid©  5880  can  be  found  in  Table  3   below.    A  more  exhaustive  list  of  specifications  has  been  provided  in  the  laminate’s  data  sheet,   reproduced  in  Appendix  C.    

Table  3.  Patch  Antenna  Substrate  Specifications  

ŝĞůĞĐƚƌŝĐŽŶƐƚĂŶƚ͕ɸr  

2.20  ±  0.02  spec.  

>ŽƐƐdĂŶŐĞŶƚ͕ƚĂŶɷ  

0.0009  

Height  of  Dielectric  Substrate  

3.175  mm  

Copper  Cladding  

1  oz.  (35  µm)  

       

Using  Matlab  and  a  set  of  universal  equations  describing  the  properties  of  microstrip   patch  antennas,  the  critical  properties  of  the  designed  antenna  were  theoretically  calculated.     These  calculations  can  be  found  in  Table  4.      The  Matlab  code  that  was  written  to  efficiently   determine  these  values  can  be  reviewed  in  Appendix  B,  and  the  equations  that  were  used  to   write  the  functions  was  verified  in  multiple  academic  papers.    Please  note  that  the  actual   substrate  specifications  found  in  Table  3  were  used  to  determine  these  calculations,  as  well.        

Table  4.  Overview  of  Theoretical  Antenna  Specifications  

Microstrip  Patch  Antenna  Width  

36.49  mm  

Microstrip  Patch  Antenna  Length  

27.75  mm   19  

 

Ground  Plane  Width  

36.51  mm  

Ground  Plane  Length  

27.77  mm  

Antenna  Input  Impedance  

100.0  ё  

Antenna  Gain  

6.0  dBi  

Polarization  

Linear  

 

A  microstrip  patch  antenna  can  be  designed  with  a  wide  variety  of  feed  arrangements,   including  bottom  fed  coax  feeds  and  microstrip  transmission  line  feeds.    Since  the  energy  from   the  antenna  will  enter  the  rectification  circuitry  directly,  it  was  determined  that  a  quarter-­‐ wavelength  non-­‐radiating  microstrip  transmission  line  feed  would  be  an  efficient  method  to   transfer  power  from  the  antenna  subsystem  to  the  rectification  circuitry.    The  quarter-­‐ wavelength  feed  was  selected  to  ensure  that  the  entire  incoming  signal  could  be  reproduced   accurately.    This  microstrip  transmission  line  was  calculated  to  have  a  width  of  2.90  mm  and  a   length  of  8.62  mm.    The  transmission  line  is  centered  along  the  midpoint  of  the  patch  antenna   width  (i.e.  along  one  of  the  radiating  edges).    Ansoft  Designer  SV,  a  planar  electromagnetic   solver  and  simulation  software  widely  used  in  industry,  was  used  to  determine  these   calculations.    An  input  impedance  of  100  ёǁas  assumed  for  designing  the  microstrip   transmission  line  in  Ansoft  Designer  SV.    A  two  dimensional  view  of  the  designed  patch  antenna   is  shown  below  in  Figure  7.    

  Figure  7.  Two-­‐Dimensional  View  of  Microstrip  Patch  Antenna   20    

A  three  dimensional  view  of  the  microstrip  patch  antenna  is  shown  below  in  Figure  8.     Note  that  the  “wire  box”  structure  represents  the  dielectric  substrate.    The  exact  specifications   for  the  selected  high  frequency  laminate  were  used  when  creating  the  microstrip  patch   antenna  in  Ansoft  Designer  SV.    Also  note  that  the  ground  plane  is  missing  from  the  three   dimensional  view  of  the  antenna,  although  it  was  included  in  the  design  layers  within  Ansoft   Designer  SV.  

  Figure  8.  Three-­‐Dimensional  View  of  Microstrip  Patch  Antenna  

Based  on  the  theoretical  calculations  for  the  microstrip  patch  antenna,  the  input   characteristics  to  the  rectification  subsystem  were  determined,  and  these  values  are   summarized  below  in  Table  5.    These  calculations  rely  upon  the  assumption  that  the  designed   antenna  will  have  a  minimum  bandwidth  of  3000  kHz,  as  this  was  the  bandwidth  of  the  antenna   used  to  collect  the  Broadband  Spectrum  Survey  data  in  the  S-­‐Band  [9].    This  ensures  the   integrity  of  the  input  power  calculations  that  much  of  the  design  is  based  on.    Although   microstrip  patch  antennas  typically  suffer  from  a  narrow  bandwidth,  a  simple  patch  design  will   yield  a  bandwidth  of  approximately  1%  to  5%  of  the  resonant  frequency  [8].    For  an  antenna   designed  to  operate  at  3.25  GHz,  this  results  in  a  bandwidth  of  32.5  MHz  to  162.5  MHz,  which  is   many  order  of  magnitudes  greater  than  the  minimum  required  bandwidth.   Table  5.  Theoretical  Rated  Input  Characteristics  to  Rectification  Circuitry  

Input  Power  to  Rectification  Circuitry  

135.20  mW  

Input  Voltage  to  Rectification  Circuitry  

3.68  V  

Input  Current  to  Rectification  Circuitry  

36.74  mA  

  21    

Also,  please  note  that  these  calculations  assume  a  constant  power  density,  which  will   obviously  not  be  the  case  while  harvesting  from  ambient  sources.    However,  these  calculated   input  characteristics  provide  a  baseline  that  can  be  used  to  compare  actual  measured  values   against.    These  calculations  also  do  not  take  into  account  losses  that  will  undoubtedly  be   observed  in  the  microstrip  transmission  line  and  radiating  element.    Nonetheless,  these  input   characteristics  are  much  greater  than  the  minimum  specifications  needed  to  successfully  power   the  attached  low-­‐powered  embedded  system.       System  Analysis  Results   Ansoft  Designer  SV,  a  free  version  of  the  professional  Ansoft  Designer  software  suite,   was  used  in  order  to  begin  simulating  the  proposed  microstrip  antenna  design.    Many  software   programs  were  considered  for  this  task,  including  Sonnet  Lite,  Agilent  ADS  Momentum,  and   Zeland  Inc.’s  IE3D.    In  fact,  all  four  programs  were  downloaded  and  fully  researched.    In  the   end,  the  team  decided  to  use  Ansoft  Designer  SV  due  to  its  powerful  range  of  capabilities,   intuitive  interface,  and  exceptional  graphical  simulation  results.    After  building  and  testing  the   designed  microstrip  patch  antenna,  the  dimensions  were  modified  slightly  from  theory  in  order   to  achieve  the  desired  simulation  results.    These  changes,  as  well  as  all  relevant  simulated  data   collected,  are  summarized  in  Table  6.         Table  6.  Results  from  Simulation  of  Microstrip  Patch  Antenna  

Microstrip  Patch  Antenna  Width  

35.80  mm  

Microstrip  Patch  Antenna  Length  

28.50  mm  

Microstrip  Transmission  Line  Width  

2.90  mm  

Microstrip  Transmission  Line  Length  

8.62  mm  

Return  Loss  

-­‐10.21  dB  at  3.22  GHz  

Gain  

6.08  dBi  at  3.22  GHz  

VSWR  

1.89  at  3.22  GHz  

Antenna  Input  Impedance  

100.60  +  j0.0  ёat  3.25  GHz  

 

The  return  loss  specifies  the  amount  of  power  that  is  reflected  in  a  transmission  line  due   to  a  device  being  connected  to  the  transmission  line.    As  a  result,  it  is  important  to  minimize  the   22    

return  loss  at  the  resonant  frequency.    The  current  design  provides  a  minimum  return  loss  of  -­‐ 10.21  dB  at  3.22  GHz,  which  is  extremely  close  to  the  desired  resonant  frequency  of  3.25  GHz.     A  graph  of  the  return  loss  vs.  frequency  is  shown  below  in  Figure  9.      

  Figure  9.  Antenna  Return  Loss  vs.  Frequency  

The  simulated  gain  for  the  designed  microstrip  patch  antenna  was  6.08  dBi  at  3.22  GHz.     At  3.25  GHz,  the  gain  was  5.97  dBi.    A  graph  of  the  gain  vs.  frequency  is  reproduced  below  in   Figure  10.  

  Figure  10.  Antenna  Swept  Gain  vs.  Frequency  

23    

The  voltage  standing  wave  ratio  (VSWR)  is  the  ratio  of  the  amplitude  of  a  standing  wave   at  a  maximum  along  the  transmission  line  to  the  amplitude  of  a  standing  wave  at  a  minimum   along  the  same  transmission  line.    A  VSWR  approaching  1.0  is  desired  for  the  microstrip  patch   antenna  design  at  the  resonant  frequency.    At  3.22  GHz,  the  simulation  yielded  a  VSWR  of  1.89.     These  results  can  be  found  below  in  Figure  11.            

  Figure  11.  Antenna  VSWR  vs.  Frequency  

The  real  part  of  the  antenna  input  impedance  was  designed  to  be  100.0   ё͘dŚĞ simulated  real  part  of  the  input  impedance  was  determined  to  be  100.60   ёĂƚϯ͘Ϯϱ',nj͘ graph  of  the  real  part  of  the  input  impedance  vs.  frequency  is  shown  below  in  Figure  12.  

  Figure  12.  Real  Part  of  Antenna  Input  Impedance   24    

The  imaginary  part  of  the  antenna  input  impedance  was  designed  to  be  0.0   ё͘dŚĞ simulated  imaginary  part  of  the  input  impedance  was  determined  to  be  0.0   ёĂƚϯ͘Ϯϱ',nj͘ graph  of  the  imaginary  part  of  the  input  impedance  vs.  frequency  is  shown  below  in  Figure  13.  

  Figure  13.  Imaginary  Part  of  Antenna  Input  Impedance  

A  radiation  pattern  shows  the  directionality  of  an  antenna.    From  the  simulation   radiation  pattern,  shown  below  in  Figure  14,  it  is  clear  that  the  designed  microstrip  patch   antenna  is  highly  directional.    It  is  desired  to  have  a  microstrip  patch  antenna  that  radiates  in   one  half  of  the  hemisphere,  resulting  in  a  3  dB  directivity  [7].    Clearly,  the  current  design  has   room  for  improvement  on  satisfying  the  specification.    However,  all  efforts  will  be  made  during   construction  to  vary  the  dimensions  of  the  ground  plane,  as  well  as  the  shape  of  the  ground   plane,  which,  according  to  theory,  will  help  the  antenna’s  directionality.          

  Figure  14.  Antenna  Radiation  Pattern   25    

A  Smith  Chart  was  generated  using  Ansoft  Designer  SV.    This  Smith  Chart  has  been   reproduced  below  in  Figure  15.    Although  it  was  not  utilized  for  any  of  the  specified  design   calculations,  it  was  included  in  this  report  due  to  its  historical  significance  and  usefulness  in   impedance  matching.    The  powerful  capabilities  of  Ansoft  Designer  SV  helped  match  the   antenna  transmission  line  to  the  patch  element.  

  Figure  15.  Smith  Chart  

The  near  field  and  far  field  of  an  antenna  describes  the  regions  around  the  radiating   source  and  the  relative  importance  of  the  fields  within  each  region.    Typically,  the  near  field  is   represented  by  the  region  where  the  radius  is  less  than  the  wavelength,  and  the  far  field   represents  the  region  where  the  radius  is  greater  than  the  wavelength  [10].    The  near  field  and   far  field  simulated  results  are  shown  below  in  Figures  16  and  17,  respectfully.          

  Figure  16.  Antenna  Near  Field  Three-­‐Dimensional  Plot  

26    

  Figure  17.  Antenna  Far  Field  Three-­‐Dimensional  Plot  

Note  that  the  far  field  graphic  shows  that  the  field  is  at  a  maximum  at  the  midpoint   between  the  two  non-­‐radiating  edges  of  the  microstrip  patch  antenna.    Moreover,  this  shows   that  the  antenna  radiates  energy  perpendicular  to  the  planar  antenna  surface,  which  was   predicted  by  theory.     Although  the  simulation  results  attained  from  Ansoft  Designer  SV  were  not  ideal,  they   helped  optimize  the  theoretical  calculations  for  the  microstrip  patch  antenna.    The  team  plans   to  begin  constructing  the  designed  antenna,  and  making  needed  changes  during  testing  of  the   antenna.      

Primary  Subsystem  II  -­  Rectification  Subsystem   Overview  of  Technical  Description   The  rectification  subsystem  consists  of  a  7-­‐stage  charge  pump  utilizing  Schottky  diodes.     A  Linear  Technology  LT1965  Low  Dropout  Linear  Regulator  is  placed  at  the  output  to  the  charge   pump  circuitry  to  ensure  a  proper  voltage  across  the  input  to  the  energy  storage  and   distribution  subsystem.    Within  the  context  of  the  overall  system  design,  the  rectification   subsystem  converts  the  time  varying  input  sinusoid  from  the  antenna  subsystem  and  converts   the  signal  to  a  direct  current  (DC)  form  [4].    During  this  conversion,  the  voltage  is  also  increased.     Before  entering  the  energy  storage  and  distribution  subsystem,  the  output  voltage  is  regulated   to  a  steady  value.    Figure  18  below  is  a  schematic  of  the  overall  rectification  design.  

27    

C7 560p

C6 560p Antenna

D3A BAT63

C3 560p

D2A BAT63

C2 560p

D4B BAT63

D3B BAT63

D2B BAT63

D1B BAT63

D1A BAT63

D4A BAT63

C4 560p

C5 560p

C8 560p

C1 560p

Rectification/Charge Pump

  Figure  18.  Rectification  Subsystem  

Design  Approach     This  design  is  based  on  the  principles  behind  diodes  and  capacitors,  and  their  behaviors   when  configured  into  a  charge  pump  circuit.    Charge  pumps  work  in  stages  that  progressively   increase  the  output  voltage  in  a  DC  form  [4].    By  increasing  the  number  of  stages  of  the  charge   pump  it  is  theoretically  possible  to  deliver  any  needed  output  voltage.    The  only  constraint  is   that  the  circuit  must  obey  Ohm’s  law.    In  other  words,  by  increasing  voltage,  current  is   sacrificed.       The  first  stage  of  the  design  is  shown  in  Figure  19.    This  circuit  is  a  voltage  doubler  that   operates  as  follows:     1. Assume  a  sinusoidal  input,  Vin=A  Sin(Zt)  and  a  peak  amplitude  larger  than  Vth  of  the   two  diodes.   2. With  the  first  positive  semi-­‐cycle  after  Vin=Vth  capacitor  C1  begins  to  charge  and   continues  to  charge  until  the  peak  voltage  of  A-­‐Vth  is  reached.    At  that  moment  Vc1=A-­‐ Vth.       3. When  the  semi-­‐cycle  begins  to  decrease,  the  capacitor  C1  retains  its  charge  because  it   has  no  discharge  path.    At  this  point  both  diodes  are  behaving  as  open  circuits.       4. When  Vin  enters  the  negative  semi-­‐cycle  diode  D2  operates  as  a  short  circuit  allowing   the  negative  terminal  of  capacitor  C1  to  connect  to  Vin  and  begins  to  charge  the  same   way  that  the  other  plate  of  C1  charged.      

28    

5. At  this  point  capacitor  C1  has  the  charge  of  Vin  on  both  plates  and  a  total  charge  of  2Vin   [4].   6. To  accommodate  a  load  at  the  output,  an  output  capacitance,  C2  must  be  added.     Capacitor  C2  removes  the  ripple  from  the  output  when  a  load  is  present  [11].    

C1

D1

Vin

C2

D2

  Figure  19.  One-­‐Stage  Voltage  Doubler  

Now,  the  concept  of  the  doubler  circuit  can  be  expanded  into  “n”  stages  by  cascading   charge  pumps  until  the  desired  output  voltage  is  reached.    However,  when  this  circuit  is  applied   to  a  load,  that  load  will  drain  charge  from  the  capacitors  and  decrease  the  output  voltage.    The   charge  drain  per  period  is  [4]:                                                                                                                                                        (1)   Therefore,  the  output  voltage  depends  on  the  load  placed  on  the  circuit  and  the  current   load  must  be  taken  into  account  when  computing  what  the  output  voltage  will  be.    The  output   voltage  of  an  ideal  n-­‐stage  charge  pump  is:                                                                                                                                    (2)   Where  C  is  the  stage  capacitances,  f  is  the  input  frequency,  Iload  is  the  load  current  and  n   is  the  number  of  stages  in  the  charge  pump.    The  above  equation  assumes  ideal  diodes  and   does  not  take  into  account  the  turn-­‐on  voltage  required  and  other  losses  that  are  associated   with  diodes.    When  diodes  are  operated  in  the  reverse-­‐biased  mode  (these  diodes  are  reverse-­‐ biased  50%  of  the  time),  they  exhibit  parasitic  capacitances  and  inverse  current  saturation.     Those  effects  are  outside  the  scope  of  this  project  and  only  cause  a  minimal  difference  in  the   29    

output  voltage.    Therefore,  they  can  be  effectively  ignored.    One  effect  not  taken  into  account   that  cannot  be  ignored  is  the  diode  turn-­‐on  voltage,  which,  using  Schottky  diodes  is  0.3  V.  The   following  equation  is  the  result:                                                                                                              (3)   It  is  also  prudent  at  this  time  to  discuss  other  designs  that  were  considered  and  why  this   specific  design  was  chosen.    First  of  all,  there  are  many  different  designs  of  charge  pumps  that   could  have  been  used.    Each  one  has  its  own  advantages  and  disadvantages.    The  design  that   was  decided  upon  has  very  good  low-­‐voltage  operation  in  comparison  to  some  other  designs.   There  are  also  other  designs  that  use  MOSFET  transistors  instead  of  diodes.    These   designs  work  well  for  applications  at  lower  frequencies  because  the  MOSFET  is  built  with  a   “built  in  diode.”    The  diode  is  not  actually  built  in,  but  rather  an  intrinsic  trait  of  all  transistors.     These  internal  diodes  are  very  powerful,  but  are  slow  to  operate.    This  would  not  work  in  the   high  frequency  range  of  the  S-­‐Band.    MOSFETs  also  require  a  Drain  to  Source  resistance  to   provide  a  control  voltage.    This  parasitic  resistance  would  further  reduce  the  efficiency  of  the   system.       Technical  Description   The  rectification  system  was  self-­‐fabricated  onto  a  printed  circuit  board  that  also   includes  the  microstrip  patch  antenna.    A  Faraday  cage  separates  the  antenna  from  the   rectification  circuitry,  ensuring  that  neither  subsystem  electrically  interferes  with  the  other.       All  components  needed  for  the  rectification  circuitry  come  in  a  through  hole  mount   package.    Through  hole  components  are  easier  to  use  than  surface  mount.    Surface  mount   components  were  originally  going  to  be  used,  but  the  idea  was  abandoned  due  to  technical   difficulties  in  the  construction  phase.   To  determine  the  values  for  the  capacitors,  many  variables  were  taken  into  effect.    The   major  variable  was  the  amount  of  energy  that  was  to  be  harvested  by  the  antenna  system,  then   the  requirements  for  the  energy  storage  system.    For  these  calculations,  a  value  of  500  mV   output  from  the  antenna  was  assumed.    The  minimum  requirement  for  the  LTC3225   supercapacitor  charger  is  2.8  V  and  at  least  20  µA.    The  system  was  designed  to  deliver  3  V  and   3  mA  to  the  energy  storage  system.      These  values  were  determined  by  evaluating  the  other   systems.    Knowing  that  the  antenna  will  provide  500  mV  at  36.74  mA,  it  was  determined  that   the  rectification  system  should  be  designed  to  deliver  3  V.    This  is  0.2  V  above  the  minimum.     This  value  was  decided  on  to  take  into  account  any  losses  and  to  give  a  slight  buffer  if  the   antenna  does  not  deliver  exactly  500  mV.    The  36.74  mV  input  current  was  then  halved  to  give   a  worst  case  scenario  for  losses.    Then  using  Ohm’s  law,  it  was  determined  that  3.03  mA  would   30    

be  delivered  to  the  energy  storage  system.    Using  equation  (3)  and  solving  for  C  it  was   determined  that  the  capacitance  must  be  34.6  pF.   However,  after  simulating  the  circuit,  it  was  determined  that  the  capacitor  values  were   too  small.    As  a  result,  560  pF  capacitors  were  used.             Next,  diodes  had  to  be  found  that  would  work  in  the  S-­‐Band.    The  problem  with  such   high  frequencies  is  that  the  time  that  a  standard  diode  takes  to  transition  from  its  forward  to   reverse  bias  state  is  longer  that  one  period  at  3.25  GHz.    Therefore,  diodes  with  a  very  fast   switching  time  had  to  be  used.    Also,  since  this  project  operates  at  very  low  voltage  levels,   Schottky  diodes  were  used.    Schottky  diodes  use  a  metal-­‐semiconductor  junction  instead  of  a   semiconductor-­‐semiconductor  junction.    This  allows  the  junction  to  operate  much  faster  and   gives  a  forward  voltage  drop  of  0.15  -­‐  0.45  V  instead  of  0.7  -­‐  1.7  V  of  normal  diodes[11].    The   specifications  for  the  specific  parts  that  were  used  in  the  final  design  can  be  found  in  Table  7   below.               Table  7.  Specifications  of  Rectification  Components  

Capacitor  

Component  

Schottky  Diode  

 

Specification   Manufacturer  

PROSPERITY  DIELECTRIC  

Part  Number  

MA0603XR-­‐561K-­‐500PR  

Size  Code  

DO-­‐15  

Capacitance  

560pF  

Rated  Voltage  

50  VDC  

Mounting    

Through  Hole  

Temperature  Tolerance  

X7R  

Manufacturer  

Avago  Technologies  

Part  Number  

5082-­‐2835  

Package  

DO-­‐15  

Forward  Voltage  

0.34  V  

Maximum  Frequency  

12  GHz  

  31    

At  this  point,  the  output  of  the  system  is  determined  by  the  input  received  from  the   antenna.    All  of  the  calculations  were  done  assuming  minimum  power  values.    But  the  antenna   has  the  ability  to  deliver  up  to  3.6  V.    If  this  happens,  the  output  of  the  rectification  system  will   be  nearly  16  V.    The  maximum  input  for  the  LTC3225  Supercapacitor  charger  is  5.5  V.     Therefore,  a  voltage  regulator  was  put  in  series  with  the  rectification  circuit.    The  LT1965  Low   Dropout  Linear  Regulator  allowed  an  input  of  1.8-­‐20  V  and  was  configured  to  output  the  exact   voltage  required  for  the  PIC  microcontroller.    The  output  was  configured  at  3.3  V  to  allow  the   LTC3225  to  operate  at  its’  highest  efficiency  (see  data  sheet  in  appendix  C).    The  output  from   the  LT1965  was  then  delivered  directly  to  the  supercapacitor  charger.    If  the  power  level  ever   drops  below  the  needed  power  for  the  microcontroller,  the  charge  that  is  stored  in  the   supercapacitor  energy  storage  system  will  take  over  to  power  the  device  until  normal  operating   power  is  restored.       The  LT1965  linear  regulator  was  ordered  to  deliver  a  constant  3.3  V  out  and  only   requires  two  capacitors  to  be  attached  to  it  to  regulate  the  input  and  output  ripple  and  to   provide  a  proper  input  voltage  to  the  device.       System  Analysis  Results   The  rectification  system  was  initially  designed  and  tested  in  National  Instrument’s   Multisim  10.1.    Multisim  is  software  that  is  available  to  the  group  on  the  laboratory  computers   provided  by  the  University  of  San  Diego.    The  group  members  are  all  familiar  with  the  software   from  use  in  other  labs  in  the  engineering  department.    Multisim  is  also  very  capable  of   simulating  circuits.    The  included  database  of  components  includes  the  components  that  were   selected  for  the  design,  making  simulating  very  easy.    Another  benefit  of  using  Multisim  is  that   it  can  transfer  the  circuit  to  Ultiboard,  which  is  a  printed  circuit  board  design  program.    The   ability  to  transfer  this  information  ensures  that  the  traces  made  when  making  the  PCB  will  be   accurate  and  connect  correctly  to  the  components.    Ultiboard  was  used  to  finalize  the  design   incorporating  all  the  primary  subsystems.   The  first  tests  of  the  design  were  done  in  Multisim  at  10  MHz  to  confirm  that  the  system   worked  properly.    It  was  important  to  test  at  lower  frequencies  because  there  are  more   challenges  to  designing  circuits  in  the  higher  frequency  S-­‐Band.    Having  the  knowledge  that  the   circuit  works  before  converting  it  to  high  frequency  allows  for  easier  diagnostics  and   troubleshooting  of  the  circuit.    Figure  20  below  is  the  circuit  designed  in  Multisim  for  10  MHz   and  the  results.    Figure  21  shows  the  transient  analysis  for  the  circuit.      

32    

  Figure  20.  10  MHz  Charge  Pump  Design    

  Figure  21.  Transient  Analysis  for  10  MHz  Charge  Pump  Design  

33    

This  simulation  demonstrates  that  the  theory  behind  the  charge  pump  is  feasible.     Different  values  of  capacitors  and  different  diodes  were  used  for  the  simulation  to  account  for   the  lower  frequency.    Also  in  this  simulation,  only  five  stages  were  used  to  simplify  the  design.     A  1  kё  load  resistor  is  added  to  simulate  the  attached  load  to  the  circuit.       Theoretically  the  above  circuit  should  have  an  output  of  five  times  the  input:                                                                                            (4)   Where  Vin  is  0.5Volts  giving  an  output  of  2.5  V    But  after  equation  (3)  must  now  be  analyzed:  

  As  shown,  the  calculated  output  voltage  is  0.30024  V  less  than  the  theoretical  output.     This  is  mainly  due  to  the  loss  of  the  diodes  of  0.3  V.    But  there  is  also  a  difference  between  the   theoretical  output  and  the  measured  output  from  Multisim.                                (5)   These  losses  are  mostly  caused  by  diode  parasitic  capacitances  and  inverse  current   saturation.    These  losses  are  rather  high  for  this  simulation,  but  that  is  mainly  due  to  a  poor   simulation  of  the  diodes.    Better  diodes  would  produce  better  results.       The  next  step  was  to  bread  board  this  test  circuit  using  components  that  are  available  in   the  lab.    Diodes  with  a  Vth  of  0.34  V  were  used  with  5  µF  capacitors.    Figure  22  below  is  a   photograph  of  the  test  circuit  built  on  the  bread  board.      

  Figure  22.  Bread  Boarded  Rectification  Test  Circuit   34    

The  input  delivered  to  this  circuit  is  500  mV  RMS  at  10.0  MHz.    This  was  delivered  with   an  Agilent  33250A  Function  Generator.    The  output  was  then  read  on  an  Agilent  MSO6012A   Mixed  Signal  Oscilloscope.    The  output  of  the  test  circuit  is  shown  in  Figure  23.    The  yellow  trace   is  the  input  of  500  mV  at  10  MHz  and  the  green  trace  is  the  output.    The  output  was  measured   to  be  2.030  V  with  a  ripple  too  small  for  the  oscilloscope  to  detect.      

  Figure  23.  Oscilloscope  Output  for  Rectification  Test  Circuit  

These  test  values  are  closer  to  the  theoretical  value  of  2.199  V  with  a  voltage  difference   of     This  measurement  is  a  much  better  simulation  of  the  actual  performance  of  a  charge   pump  circuit.    The  169  mV  voltage  drop  is  a  much  more  accurate  representation  of  losses  due   to  diode  parasitic  capacitance  and  inverse  current  saturation.       The  final  stage  of  the  system  analysis  was  simulating  the  design  at  3.25  GHz.    For  this   simulation,  the  actual  components  that  were  used  for  the  final  system  were  simulated.    It  was   also  determined  that  seven  stages  would  have  to  be  used  instead  of  five  to  achieve  the   required  output.    This  was  determined  by  plugging  in  N  values  into  equation  (3)  and  solving  for   C.    When  N  was  less  than  7,  the  values  for  the  capacitance  were  negative,  and  therefore   impossible.    Striving  to  keep  the  amount  of  stages  at  a  minimum,  seven  were  used.    Then,  the   capacitor  value  was  approximated  to  the  nearest  manufactured  value,  which  was  560  pF.    The   output  was  then  calculated  using  equation  (3)  to  be  

35    

  Again,  this  is  nearly  200  mV  less  than  what  the  output  theoretical  output  of,  using  equation  (4)     Causing  a  voltage  difference  of,         This  can  be  attributed  to  the  voltage  loss  from  the  diodes  and  other  small  losses  in  the   circuit.    Notice  that  the  forward  voltage  of  this  diode  is  only  190  mV.    A  circuit  diagram  of  the  7-­‐ stage  charge  pump  design  can  be  seen  below  in  Figure  24.    Also,  this  circuit  was  simulated  in   Multisim  using  the  results  from  the  above  equations,  and  can  be  reviewed  in  Figure  25  on  the   next  page.      

  Figure  24.  7-­‐Stage  Charge  Pump  at  3.25  GHz    

36    

  Figure  25.  Transient  Analysis  for  7-­‐Stage  Charge  Pump  Circuit  Operating  at  3.25  GHz  

    This  simulation  proves  that  the  design  will  work.    With  500  mV  input  the  system  outputs   3.1448V.    Now  using  equation  (5),     Again,  there  are  discrepancies  between  the  calculated  value  and  the  measured  value   due  to  the  diode  parasitic  capacitance  and  inverse  current  saturation.    In  this  test,  however,  the   difference  in  output  voltage  is  much  closer.    This  is  because  the  components  used  were  of   better  quality  and  were  designed  to  work  under  these  conditions.       This  design  was  then  transferred  first  to  a  breadboard,  then  to  a  printed  circuit  board   for  testing.    When  bread-­‐boarded,  the  system  output  was  3.14V,  which  is  nearly  identical  to  the   values  that  were  determined  using  Multisim.    The  final  testing  process  was  to  build  the  circuit   on  a  printed  circuit  board.    The  first  few  attempts  used  surface  mount  components  to  minimize   overall  board  size.    But  the  team  quickly  learned  that  surface  mount  construction  was  difficult   and  decided  to  change  the  design  to  use  through  hole  components.       When  the  board  was  finally  assembled  and  tested,  with  an  input  of  500mV  the  output   was  3.05VDC.    The  cause  of  this  additional  loss  is  most  likely  due  to  losses  in  the  traces  on  the   board.    The  team  is  currently  working  on  an  updated  board  design  that  will  minimize  trace   length,  and  in  theory  provide  better  efficiency.    These  results  will  be  presented  in  the   addendum  that  will  be  submitted  on  Friday,  May  8th.            

Secondary  Subsystem  -­  Energy  Storage  and  Distribution  Subsystem   Overview  of  Technical  Description   The  energy  storage  and  distribution  subsystem  consists  of  a  Linear  Technology  LTC3225   Supercapacitor  Charger  with  two  supercapacitors  connected  in  series  which  acts  as  a  secondary   37    

subsystem  and  is  not  vital  to  the  overall  functionality  of  the  RF  energy  harvesting  device.     Various  Schottky  diodes,  resistors,  capacitors,  and  DC1220B  Supercapacitor  Charger   Demonstration  Board  are  necessary  for  the  subsystem  to  perform  as  desired.    Within  the   context  of  the  overall  system  design,  the  energy  storage  and  distribution  subsystem  is   responsible  for  storing  harvested  energy  and  distributing  the  energy  to  the  embedded  system.     Under  normal  operating  conditions,  the  supercapacitors  store  charge  and  act  as  a  backup   power  supply.    If  insufficient  energy  is  captured  by  the  antenna  subsystem  and  rectified  with   the  rectification  subsystem,  the  charge  stored  on  the  supercapacitors  provides  the  necessary   voltage  required  to  power  the  embedded  system.       Design  Approach   The  design  team  determined  that  using  supercapacitors  will  prove  to  be  the  most   effective  approach  to  the  team’s  specific  design  requirements.    Supercapacitors,  as  shown  in   figure  26,  are  electromagnetic  double-­‐layer  capacitors  that  provide  thousands  of  times  the   storage  capacity  of  a  typical  capacitor.    They  are  passive  electronic  components  that  store   energy  electrostatically  between  a  solid  electrode  and  oppositely  charged  electrolyte  ions  by   creating  a  voltage  potential  difference.    Supercapacitors  are  extremely  high  power  devices,   however  have  a  very  low  energy  density.    Although  the  technology  has  been  around  for  many   years,  in  recent  years  supercapacitor  technology  has  provided  much  higher  energy  densities  in   a  much  smaller  package,  allowing  for  inclusion  in  a  wider  array  of  applications.    Unfortunately,   the  energy  densities  of  supercapacitors  are  still  typically  only  one-­‐fifth  to  one-­‐tenth  that  of   rechargeable  batteries.    However,  there  is  no  risk  of  overcharging  a  supercapacitor,  and  they   can  be  fully  charged  in  seconds.    Supercapacitors  can  also  be  charged  and  discharged  millions  of   times  before  needing  to  be  replaced,  making  them  an  ideal  choice  for  applications  where   access  to  the  energy  storage  component  is  extremely  costly  and  time  consuming  [12].        

 

  Figure  26.  Various  Supercapacitors.  

  38    

Throughout  the  design  phase,  supercapacitors  have  proven  to  be  the  optimal  energy   storage  system.    The  team  ruled  out  using  a  rechargeable  battery  early  on  primarily  due  to  the   complex  charging  characteristics  for  most  rechargeable  batteries.    Furthermore,  due  to  the   variable  nature  of  ambient  radio  frequency  energy,  the  risk  of  applying  an  overvoltage  to  a   rechargeable  battery  could  jeopardize  the  functionality  of  the  entire  device.    Since  rechargeable   batteries  use  an  electro-­‐chemical  process,  the  number  of  times  they  can  be  recharged  is   limited.    Supercapacitors  are  capable  of  tolerating  the  immediate  energy  demands,  versus  a   rechargeable  battery,  thus  also  preventing  a  decline  in  charge  capacity  over  the  battery  life   [12].    These  shortcomings  associated  with  rechargeable  batteries  would  severely  hinder  the   functionality  of  the  design  as  well  as  the  benefits  of  radio  frequency  energy  harvesting.    The   design  team  determined  that  a  supercapacitor  design  is  far  more  appropriate  for  the  design   specific  applications  and  will  allow  for  greater  functionality  of  the  final  product.     Table  8.  Supercapacitor  Advantages  and  Disadvantages  [3]  

Advantages  

Disadvantages  

High  Power  Density  

Low  Energy  Density  (1/5th  to  1/10th  of   Rechargeable  Battery)  

Rapid  Charging  Rate  

Rapid  Discharge  Rate  

Unlimited  Cycle  Life  

Low  Cell  Voltages  (Requires  Series  Connections)  

Straightforward  Charging  Methods  

Only  Partial  Use  of  Energy  Spectrum  

Low  Impedance  

High  Cost  of  Price  per  Watt  

 

Technical  Description   Due  to  the  rapid  discharge  rate  of  supercapacitors  and  the  inconsistency  of  energy   available,  a  system  that  provides  a  constant  output  voltage  assists  the  RF  energy  harvesting   system  in  continually  powering  the  embedded  system.    The  final  design  makes  use  of  a   programmable  LTC3225  Supercapacitor  Charger  chip  that  ensures  that  this  design  is  functional.     Since  the  amount  of  energy  captured  from  the  receiving  antenna  varies  with  time,  this  chip  acts   as  a  backup  power  supply  when  sufficient  energy  is  not  available  for  harvesting  and  supplies  a   constant  output  voltage  to  the  embedded  system.       The  LTC3225  Supercapacitor  Charger  has  been  put  on  the  market  within  the  last  year  by   Linear  Technology  which  charges  two  series  supercapacitors  with  an  voltage  input  range  of  2.8   V  to  5.5  V  while  providing  a  constant  output  voltage  that  can  be  programmed  to  either  4.8  V  or   39    

5.3  V  by  setting  the  VSEL  pin  low  or  high,  respectively.    Low  input  noise,  low  quiescent  current,   and  low  external  parts  count  make  the  LTC3225  ideal  for  small,  battery-­‐powered  applications.     With  its  special  design,  the  LTC3225  maintains  relatively  constant  input  current  form  the  lowest   possible  input  noise.    Automatic  cell  balancing  ensures  that  overcharging  cannot  occur  and   maintains  equal  voltages  across  each  supercapacitor  (selectable  to  2.4  V  or  2.65  V).    The   charging  current  is  also  programmable  up  to  150  mA,  and  a  very  low  20  µA  quiescent  current   [14].     When  sufficient  energy  is  available  and  being  harvested  it  is  delivered  from  the  linear   regulator  which  outputs  a  programmed  voltage  of  3.3  V  based  off  of  minimum  voltage  and   current  values  collected  by  the  receiving  antenna  and  rectified  through  the  rectification   subsystem.    This  voltage  is  first  supplied  to  the  regulated  dual  cell  LTC3225  Supercapacitor   Charger  chip.    The  chip  provides  charge  current  to  a  set  of  two  1  F  supercapacitors  in  series  and   regulates  a  programmed  constant  voltage  charge  of  4.8  V  across  the  supercapacitors.    After   they  have  been  charged,  the  output  voltage  of  the  linear  regulator  is  supplied  directly  to  the   embedded  system  that  performs  a  nominal  task  such  as  blinking  an  LED.    The  linear  regulator  is   programmed  to  output  a  constant  voltage  of  3.3  V,  contingent  upon  sufficient  energy  available,   in  order  to  protect  the  integrity  of  the  LTC3225  as  well  as  the  embedded  system.       At  times  when  the  energy  available  is  too  low,  the  LTC3225  acts  as  a  backup  power   supply  for  the  embedded  system.    When  insufficient  energy  is  being  harvested,  the  linear   regulator  enters  shutdown  mode,  thus  removing  the  input  voltage  to  the  LTC3225.    With  the   input  supply  to  the  supercapacitor  charger  eliminated,  the  LTC3225  enters  a  low  current  state,   drawing  less  than  1  µA  from  the  supercapacitors  which  have  already  been  charged.    At  this   point  the  LTC3225  begins  to  discharge  the  4.8  V  fixed  output  voltage  from  the  charged   supercapacitors  where  it  is  then  output  to  the  embedded  system.       The  design  team  is  using  two  supercapacitors  in  series  both  at  a  value  of  1  F.    Along  with   these  supercapacitors,  the  charger  chip  configuration  includes  a  ceramic  flying  capacitor  of  1  µF   that  is  low  equivalent  series  resistance  (ESR)  which  controls  the  strength  of  the  charge  pump   and  a  0.22  µF  capacitor.    Other  components  include  a  60.4  k ёŽŶƚŚe  charging  current   programming  pin  which  sets  the  input  charging  current  at  a  lower  value,  a  100  k ёƉƵůů-­‐up   resistor,  and  two  BAT63-­‐07WE6811  Schottky  diodes  [15].    All  components  were  soldered  to  a   demonstration  board  from  Linear  Technology  to  ensure  that  everything  was  functioning   properly  during  the  testing  phase  since  it  was  virtually  impossible  to  test  the  chip  due  to  its  3   mm  x  2  mm  dimensions  and  DFN  (Dual  Flat  No-­‐Lead)  packaging.    The  following  figure  shows  the   energy  storage  subsystem  with  the  LTC3225  Supercapacitor  Charger  integrated  with  the   DC1220B  Demonstration  Board.  

40    

  Figure  27.  Energy  storage  and  distribution  subsystem      

System  Analysis  Results   The  overall  secondary  subsystem  is  designed  to  be  integrated  between  the  DC1220B   Demonstrations  Board  (3  in  x  3  in  dimensions)  and  the  self-­‐fabricated  printed  circuit  board  that   includes  the  antenna  and  rectification  subsystems  connected  with  rubber  spaces  at  the  corners.     The  first  board  is  the  demo  board  with  the  LT3225  Supercapacitor  Charger  at  the  center  with   exposed  pad  (Pin  11)  soldered  to  a  low  impedance  ground  plane  for  optimal  thermal   performance.    Only  specific  electrical  components  mentioned  in  earlier  paragraphs  are  used  in   the  integration  of  the  LTC3225  and  demonstration  board  with  those  accompanying   components  soldered  to  the  board  as  in  the  following  figure:    

41    

  Figure  28.  LTC3225  demonstration  board  configuration  [15]  

The  second  board  is  a  through  hole  printed  circuit  board  made  of  RT/duroid©  5880  High   Frequency  Laminate  which  the  team  self  fabricated.    This  PCB  was  designed  to  have  the  voltage   regulator  mounted  on  it  with  a  jumper  wire  connecting  it  to  the  LTC3225  and  a  jumper  wire   connecting  the  rectification  circuitry  to  the  LTC3225  demo  board.    Along  with  the  linear   regulator,  the  rectification  circuitry  as  well  as  the  embedded  system  is  designed  to  be  mounted   on  this  board  with  the  receiving  antenna  on  the  same  side  of  this  board.    In  the  final  design,  the   product  package  contains  the  two  boards  stacked  upon  one  another  in  multiple  PCB  layers.          

42    

6  -­  Embedded  System     An  8-­‐bit  PIC  flash  microcontroller  was  selected  during  the  Critical  Design  Review  phase   as  the  attached  embedded  system  that  would  be  powered  by  the  RF  energy  harvesting  system.     However,  due  to  additional  technical  issues  with  integrating  this  microcontroller  into  the  final   design,  the  team  made  the  decision  to  merely  bypass  the  microcontroller  and  directly  power  a   light  emitting  diode  instead.    This  change  did  not  affect  the  final  success  toward  meeting  the   stated  project  outcomes.    Furthermore,  with  additional  time  to  overcome  some  technical   challenges  not  initially  realized,  the  team’s  final  developed  system  could  still  be  integrated  with   the  selected  microcontroller.        

During  the  Critical  Design  Review  phase,  care  was  taken  to  select  the  most  simplistic   microcontroller,  as  well  as  one  with  a  wide  operating  voltage  range.    The  team  decided  that  a   Microchip  PIC10F202  flash  microcontroller  would  be  ideal.    The  device  uses  a  Harvard   architecture,  and  the  microcontroller  can  be  programmed  using  either  C  or  assembly  language.     Microchip  provides  a  development  platform,  including  a  C  compiler.    This  software  could  be   used  to  program  the  microcontroller’s  flash  memory  to  power  an  attached  LED,  although  a   programmer  chip  would  probably  be  required.    All  relevant  specifications  for  the   microcontroller  that  was  selected  can  be  found  in  Table  9  below.  Appendix  C  also  contains   additional  specifications  for  the  microcontroller.       Table  9.  Microchip  PIC10F202  Flash  Microcontroller  Specifications  

Specification  Description  

Specification  Value  

Operating  Voltage  Range  

2.0  V  –  5.5  V  

Operating  Current  

<  175  µA  

Standby  Current  

100  nA  

Maximum  Operating  Speed  

4  MHz  Internal  Oscillator  

Number  of  I/O  Pins  

4  

Flash  Program  Memory  

512  bytes  

Data  Memory  

24  bytes  

Package  

6-­‐pin  SOT-­‐23  (3  lead  plastic  surface  mount)  

    43    

7  –  Personnel   In  order  to  adequately  meet  the  specified  project  goals,  three  team  members  were   selected.    Although  all  three  individuals  have  similar  educational  backgrounds,  each  team   member  brings  a  distinct  set  of  technical  interests  and  skills  to  the  project  group.    As  a  result,   each  team  member  was  primarily  accountable  for  specific  portions  of  the  design,  although  each   team  member  spent  considerable  time  working  on  each  of  the  subsystems.    Below  is  a  brief   description  of  each  team  member’s  educational  background,  as  well  as  the  specific   responsibilities  he  was  assigned  throughout  the  project.    Please  note  that  Hanner  Hart’s  area  of   responsibility  was  changed  to  Energy  Storage  Specialist,  and  Michael  Sass’s  area  of   responsibility  was  changed  to  Antenna  Specialist.    This  change  was  made  after  the  Preliminary   Design  Review  due  to  the  formal  coursework  with  applied  electromagnetics.   Energy  Storage  Specialist:                      Hanner  Hart   Hanner  Hart  has  a  very  strong  background  in  the  area  of  hardware  development.  He  has   demonstrated  firm  skills  in  hardware  related  coursework  as  well  as  shown  a  propensity  for  the   design  and  analysis  of  electronic  circuits.  Some  of  Hanner’s  coursework  has  included  electronic   circuit  design,  electrical  power,  systems  logic  design,  communication  principles  and  circuits,   applied  mathematics,  as  well  as  signals  and  systems  where  he  showed  a  firm  understanding  of   conceptual  and  tangible  concepts.  His  skills  in  these  areas  include  computer  simulation,   principles  in  electricity  and  magnetism,  and  communication  theory.  Hanner  has  been  assigned   the  primary  responsibility  of  designing  and  testing  the  energy  storage  and  distribution   subsystem,  although  helped  in  the  design  and  fabrication  of  each  subsystem.    A  resume  for   Hanner  can  be  found  in  Appendix  A.   Hardware  Developer:                                        Kelty  Lanham    

Kelty  Lanham  is  a  senior-­‐level  Electrical  Engineering  student  at  the  University  of  San   Diego.    He  has  had  great  success  in  hardware  design  as  well  as  software  development.    Kelty   has  had  success  in  hardware  related  coursework  as  well  as  in  lab  sessions  and  design  projects.     He  has  shown  a  particular  aptitude  for  designing  circuits  incorporating  amplifiers,  filters  and   logical  systems.    His  skills  include  computer  simulation  design  as  well  as  discrete  circuit   implementation  and  testing.    Kelty  has  experience  from  previous  design  projects  including   designing  a  thermostat  circuit  and  digital  alarm  clock.    He  is  also  proficient  in  assembly   language  and  VHDL  programming  languages,  and,  as  a  result,  has  been  in  charge  of  the   programming  needs  within  the  project.    For  these  reasons,  Kelty  was  chosen  as  the  hardware   designer.    He  has  been  primarily  responsible  for  the  design,  testing,  and  integration  of  the   advanced  rectification  circuit,  although  helped  in  the  design  and  fabrication  of  each  subsystem.       h   A  resume  for  Kelty  can  be  found  in  Appendix  A.     44    

Antenna  Specialist:                                                  Michael  Sass    

Michael  Sass  has  a  strong  interest  in  digital  and  analog  communications  systems,  as  well   as  signal  processing  techniques.      Michael  has  developed  a  strong  theoretical  background  in   applied  mathematics  and  electromagnetics.    He  also  has  a  firm  understanding  of  the  analysis   and  design  of  analog  filters  and  amplifiers,  as  well  as  digital  logic  devices.    As  a  licensed  Extra   Class  Amateur  Radio  Operator,  Michael  has  developed  practical  experience  in  building  and   testing  antennas  and  related  communications  equipment.    One  of  his  main  strengths  continues   to  be  his  high  level  of  work  ethic  and  ability  to  work  well  within  a  team,  both  as  a  leader  and   follower.      As  a  result  of  these  specific  interests  and  skills,  Michael  was  assigned  primary   responsibility  for  designing  and  testing  the  antenna  subsystem.    Michael  has  been  accountable   for  ensuring  successful  integration  of  the  antenna  subsystem  with  the  remaining  subsystems,   although  helped  in  the  design  and  fabrication  of  each  subsystem.    A  resume  for  Michael  can  be   found  in  Appendix  A.        

8  –  Test  Plan   Due  to  the  complexity  level  of  the  RF  harvesting  system  design  relative  to  the   experience  level  of  the  design  team,  it  was  of  paramount  importance  that  the  test  plan  was   developed  in  such  a  way  that  each  primary  subsystem  was  tested  separately  before  attempting   integration.    As  a  result,  the  following  test  plan  includes  a  detailed  overview  of  all  stages  of   testing  that  were  conducted  for  both  primary  subsystems.    Moreover,  a  detailed  plan  for  how   to  begin  testing  and  integration  of  the  secondary  subsystem  is  overviewed,  as  well.  

Antenna  Subsystem  Testing   Stage  1:  Microstrip  Patch  Antenna  Simulation   Before  attempting  construction  of  the  microstrip  patch  antenna,  Ansoft  Designer  SV  was   used  to  optimize  the  dimensions  of  the  antenna.    This  ensured  that  the  theoretical  calculations   that  were  made  regarding  the  antenna  dimensions  actually  yielded  the  desired  antenna  design   specifications.    Please  reference  the  Antenna  Subsystem  section  for  detailed  information  on  all   simulation  results  that  were  attained.    It  is  important  to  note  that  although  the  Ansoft  Designer   SV  is  a  powerful  tool  for  verifying  theoretical  calculations  and  the  feasibility  of  the  antenna   design  specifications,  the  majority  of  the  time  testing  the  antenna  subsystem  should  be  during,   and  after,  actual  construction  of  the  patch  antenna.    For  example,  the  dimensions  of  the  ground   plane  have  a  major  effect  on  the  desired  design  specifications.    However,  varying  the  ground   plane  dimensions  using  Ansoft  Designer  SV  is  not  ideal.    All  results  that  were  obtained  from   Stage  1  testing  can  be  found  in  the  section  titled  Primary  Subsystem  I  –  Antenna  Subsystem.            

45    

 Stage  2:  Construction  of  Microstrip  Patch  Antenna     Construction  of  the  microstrip  patch  antenna  was  completed  in  April.    Basically,  the   radiating  patch  was  cut  out  of  the  top  layer  of  electrodeposited  copper  foil  on  the  RT/duroid   substrate  and  matched  to  the  precise  dimensions  that  were  calculated  and  simulated.    A  band   saw  was  used  to  actually  cut  the  antenna  pattern  out  of  the  material.    Two  microstrip  patch   antennas  were  built  simultaneously.    One  of  the  antennas  was  used  as  a  transmitting  antenna.     This  antenna  was  placed  on  a  non-­‐conductive  plastic  backing  for  mechanical  stability.     Furthermore,  using  magnet  wire  and  some  basic  connectors,  the  transmitting  antenna  can  be   fed  directly  into  laboratory  test  equipment.    The  second  antenna  was  used  as  the  receiving   antenna,  although  the  team  decided  to  incorporate  the  antenna  subsystem  directly  onto  the   printed  circuit  board.    As  a  result,  the  initial  receiving  antenna  that  was  made  was  not  used  in   the  final  device.    At  the  time  of  this  writing,  we  are  still  in  the  process  of  finishing  construction   of  the  final  printed  circuit  board  results.    The  addendum  to  this  report  will  contain  more  specific   information  about  the  final  receiving  antenna.       Unfortunately,  the  laboratory  test  equipment  available  in  the  Department  of   Engineering  will  not  easily  allow  for  generating  a  3.25  GHz  source  signal.    However,  Dr.  Ernest   Kim,  Associate  Professor  of  Electrical  Engineering  at  USD,  has  given  the  design  team  permission   to  use  the  following  two  pieces  of  test  equipment:   HP  8756A  Scalar  Network  Analyzer   HP  8620C  Sweep  Oscillator     Data  sheets  for  these  two  testing  devices  can  be  found  in  Appendix  C.    These  two   devices  allow  the  team  to  generate  a  3.25  GHz  signal  to  effectively  test  the  antenna  subsystem.     A  basic  conceptual  overview  of  the  testing  configuration  can  be  seen  below  in  Figure  29.    The   transmitting  antenna’s  coax  feed  will  be  inputted  into  the  network  analyzer.    

46    

Transmitting  Antenna  

Receiving  Antenna     Figure  29.  Antenna  Subsystem  Generic  Test  Setup  [17]  

The  distance  the  receiving  antenna  will  be  from  the  transmitting  source  will  be  varied  to   attempt  to  reproduce  the  input  voltage  specification  for  the  rectification  circuitry,  as  well  as  the   conditions  that  were  realized  through  the  Broadband  Spectrum  Survey  data.    The  theoretical   output  characteristics  for  both  of  these  two  extremes  can  be  found  below  in  Table  10.       Table  10.  Proposed  Testing  Conditions  and  Theoretical  Results    

Conditions  Required  for   Minimum  Design   Specifications  

Conditions  Required  to   Mimic  Broadband   Spectrum  Survey  Data  

Antenna  Output  Power  

2.66  mW  

1.38  W  

Antenna  Output  Voltage  

0.52  V  

3.5  V  

Power  Density  

0.968  W/m2  

50.20  W/m2  

Distance  from  Transmitting   Source  

1.0  m  

0.15  m  

Transmit  Power  

3.0  W  

3.5  W  

 

The  receiving  antenna  will  also  be  rotated  and  the  directivity  of  the  antenna  will  be   determined.    From  these  measurements,  a  radiation  pattern  for  the  antenna  can  be  compared   against  the  radiation  pattern  that  was  generated  in  Ansoft  Designer  SV.    To  date,  these   calculations  have  not  been  performed  as  the  team  is  still  in  the  process  of  fabricating  our  final   printed  circuit  board.    Detailed  information  about  antenna  testing  will  be  included  in  the   addendum  discussed  above.         47    

Stage  3:  Integration  with  Rectification  Circuitry     As  described  above,  the  team  decided  to  produce  a  printed  circuit  board  that  fully   integrates  the  antenna  subsystem  with  the  rectification  subsystem.    The  team  initially   underestimated  the  complexity  of  dealing  with  high  frequency  circuit  design,  so  it  has  taken   many  iterations  of  our  printed  circuit  design.    The  major  integration  issue  with  inputting  the   antenna  directly  into  the  rectification  circuitry  is  matching  the  impedances  on  the  transmission   line  coming  off  of  the  receiving  antenna.    The  team  plans  to  use  a  stub  to  correct  any  issues  that   might  arrive  during  final  construction  and  testing.    Information  regarding  integration  issues   between  these  two  subsystems  will  also  be  included  in  the  report’s  addendum.  

Rectification  Subsystem  Testing   Stage  1:  Simulate  simple  circuit   To  begin  testing  the  rectification  subsystem,  National  Instruments’  Multisim  10.1  will  be   used.    This  software  is  available  to  the  team  in  the  Loma  207  laboratory  and  all  team  members   have  extensive  knowledge  of  the  program  from  previous  labs.    In  Multisim’s  library  are  all  the   components  that  will  be  used  for  designing  the  rectification  circuit.    Multisim  allows  for  a   variety  of  testing,  including  voltage,  current  and  transient  analysis,  all  of  which  will  be  used  in   this  phase  of  the  design.   First,  a  simpler  variant  of  the  design  will  be  tested  at  a  lower  frequency.    This  is  to  prove   that  the  design,  in  essence,  will  be  effective.    A  five-­‐stage  charge  pump  will  be  tested  at  10MHz.     The  output  voltage  and  current  will  be  measured  as  well  as  performing  a  transient  analysis.     These  values  will  then  be  compared  against  the  simulated  input  power  to  obtain  the  efficiency   of  the  system.    See  Figure  30  for  simulation  of  five-­‐stage  charge  pump.  

48    

  Figure  30.  Simulation  of  5-­‐Stage  Charge  Pump  

Stage  2:  Breadboarding  Five  Stage  Charge  Pump   The  next  stage  is  to  breadboard  the  circuit  that  was  simulated  above.    The  most   important  reason  for  this  is  to  assure  that  the  calculations  done  on  the  computer  are  accurate   and  depict  how  the  system  will  operate.    Another  important  reason  to  breadboard  this  simple   circuit  is  to  gain  better  understanding  of  how  the  system  operates.    By  being  able  to  easily   switch  out  components  and  see  the  effects  on  the  Oscilloscope,  the  team  gains  a  better   understanding  of  what  each  component  does  in  the  system  and  how  they  all  interact.  To  do  this   testing  an  Agilent  33250A  Function  Generator  and  MSO6012A  Oscilloscope  were  used.  See   Figure  31  below  for  the  oscilloscope  results  from  the  test.    

  Figure  29.  Oscilloscope  Results  of  5-­‐Stage  Charge  Pump  

49    

Stage  3:  Simulate  and  Test  Seven  Stage  Charge  Pump   Stage  three  of  testing  the  rectification  circuit  is  simply  to  repeat  stages  one  and  two  for   the  seven  stage  charge  pump  operating  at  3.25  GHz.    This  is  the  most  important  stage  of  testing   since  it  is  the  most  important  part  of  this  subsystem.    The  major  challenge  of  the  rectification   subsystem  is  designing  the  circuit  itself.    Multisim  will  be  used  just  as  in  stage  one  to  simulate   the  circuit  and  to  perform  the  transient  analysis.    Then  the  circuit  will  be  assembled  and  directly   connected  to  a  500  mV  input  operating  at  3.25  GHz.       Stage  4:  Integration   After  the  rectification  circuit  is  fully  tested  on  its  own,  it  can  be  integrated  into  the  rest   of  the  overall  system.    First  it  will  be  tested  with  the  LT1965  linear  regulator.    This  testing  will   input  a  variety  of  voltages  into  the  rectification  circuit  and  ensure  that  the  output  of  the  LT1965   is  a  constant  3.3  V.    Next  the  LT3225  and  its’  output  will  be  connected.    This  test  will  ensure  that   the  rectification  circuit  can  provide  enough  power  to  pass  through  the  components  and  power   the  output.    Lastly  the  system  will  be  integrated  with  the  antenna  and  tested  using  intentional   transitions.      

Energy  Storage  and  Distribution  Subsystem  Testing   After  selecting  the  LTC3225  as  the  optimal  means  of  providing  a  constant  voltage  across   the  supercapacitors,  the  team  realized  that  the  chip  was  only  commercially  available  in  a  DFN   package.    This  packaging  is  made  for  mass  production,  and,  as  a  result,  is  not  conducive  for   easily  testing  in  a  laboratory  setting  at  low  quantities.    However,  after  talking  with  a  Linear   Technologies  representative,  the  team  was  able  to  receive  a  demonstration  board  free  of   charge.   Unfortunately,  the  team  realized  early  on  that  there  was  a  threshold  to  the  amount  of   testing  that  could  be  accomplished  on  the  energy  storage  and  distribution  subsystem.    This   threshold  was  based  on  the  success  of  the  testing  of  the  other  two  primary  subsystems.    As  a   result,  all  three  team  members  focused  primarily  on  constructing  and  testing  the  two  primary   subsystems.       Due  to  the  immense  technical  difficulties  encountered  with  constructing  and  testing  the   two  primary  subsystems,  only  initial  testing  of  the  energy  storage  and  distribution  subsystem   was  undertaken.    Since  the  energy  storage  and  distribution  subsystem  is  not  essential  to  the   overall  operation  of  the  RF  energy  harvesting  device,  the  team  decided  collectively  to  focus   completely  on  ensuring  that  the  two  primary  subsystems  would  be  integrated  properly.     Nonetheless,  the  team  is  still  confident  in  the  actual  design  of  the  energy  storage  and  

50    

distribution  subsystem.    With  more  time,  integrating  this  secondary  system  with  the  two   primary  subsystems  is  entirely  possible.                

9  –  Design  Schedule    

Based  on  specific  design  requirements  and  a  timeline  given  for  the  final  project,  a   detailed  design  schedule  along  with  Gantt  charts  gives  a  fairly  accurate  agenda  for  the  full  two   semesters  of  the  Senior  Design  and  Practice  course.    These  Gantt  charts  were  originally  made   during  the  Fall  semester,  and  the  team’s  progress  in  achieving  these  goals  has  been   continuously  monitored  by  the  course  instructor  during  weekly  progress  reports.    The   preliminary  design  stages  spanned  the  full  length  of  the  Fall  2008  semester  while  the  final   design  stages  lasted  throughout  the  Spring  2009  semester.  This  detailed  design  schedule  shows   reasonably  accurate  time  requirements  in  order  to  complete  certain  critical  phases  of  the   design.    The  preliminary  design  review  phase  was  mostly  completed  on  schedule.    The  only  two   goals  that  were  not  met  during  the  preliminary  design  phase  were  choosing  the  specific   supercapacitor  values  and  ordering  all  components.    It  was  not  known  at  the  time  these  goals   were  written  (early  in  the  fall  semester)  that  a  range  of  supercapacitor  values  would  be  tested,   and  a  final  value  would  not  be  selected  until  after  the  Critical  Design  Review.    Furthermore,  it   was  also  not  understood  that  the  design  would  take  many  iterations  before  reaching  the  point   of  being  able  to  purchase  parts.       However,  we  are  currently  at  the  end  of  the  design  and  still  have  some  portions  of  the   project  that  have  not  been  completed.    During  the  spring  semester,  the  design  team  spent  the   months  of  January  and  February  behind  schedule.    The  team  did  not  anticipate  the  breadth  and   depth  of  the  technical  challenges  that  this  project  proposed,  nor  did  the  team  realize  the   amount  of  technical  background  knowledge  in  analog  circuit  design  and  antenna  theory  that   would  be  necessary  to  complete  the  final  design.    However,  by  the  time  of  submission  of  the   Critical  Design  Review,  the  team  has  dedicated  much  time  to  ensuring  the  design  provides  a   solid  foundation  to  begin  construction  and  testing.      After  the  Critical  Design  Review,  the  team   realized  that  some  of  the  goals  set  were  unattainable  due  to  the  lack  of  time.    Therefore,  it  was   decided  to  focus  in  primarily  on  the  two  primary  systems,  the  antenna  and  rectification  circuit.     This  was  decided  upon  because  if  completed,  it  would  show  the  proof  of  concept.    All  three   team  members  concentrated  on  the  two  primary  systems  to  ensure  their  completion.    The   secondary  systems  were  put  on  hold  until  the  primary  systems  were  complete.    In  the   addendum,  the  team  will  discuss  any  progress  that  is  made  with  the  secondary  systems.       The  Gantt  charts  that  the  team  developed  at  the  beginning  of  the  fall  semester,  as  well   as  the  team’s  progress  in  satisfying  each  goal,  has  been  included  on  the  next  two  pages  in   51    

Figures  36  and  37,  respectively.    Figure  36  includes  an  overview  of  the  fall  semester  (Proposal   Stage  and  Preliminary  Design  Review),  and  Figure  37  includes  an  overview  of  the  spring   semester  (Critical  Design  Review  and  Final  Design).      

52    

Figure  30.  Gantt  Chart  for  Fall  Semester  

53    

 

  Figure  31.  Gantt  Chart  for  Spring  Semester   54    

10  –  Budget    

The  following  table  contains  updated  cost  estimates  for  the  design,  development,  and   construction  of  the  RF  energy  harvesting  system.       Table  11.  Critical  Design  Review  Updated  Budget    

Rectificatio n   Subsystem  

 

Energy  Storage   /  Distribution   Subsystem  

 

Cost  per   Unit  

Total   Cost  

$0.00  

$0.00  

Ansoft  Designer  SV  Software  

1  

$0.00  

$0.00  

BAT63-­‐07WE6811  Schottky  Diodes  

50  

$0.77  

$130.55  

Linear  Technology  LT1965  Linear  Regulator  

5  

$3.14  

$15.70  

MA0603XR-­‐561K-­‐500PR  560  pF  Capacitor  

50  

$0.05  

$2.50  

Capacitors  (Various)  

15  

N/A  

$5  

Linear  Technology  LTC  3225  Supercap  Charger    

4  

$2.86  

$11.44  

Linear  Technology  LTC  3225  Demo  Board  

1  

N/A  

$0  

Various  Supercapacitors  

8  

N/A  

$30  

Capacitors  (various  capacitances)  

22  

N/A  

$10  

Resistors  (various  resistances)  

20  

N/A  

$2  

Microchip  PIC10F202  Flash  Microcontroller  

5  

$0.57  

$2.85  

Light  Emitting  Diode  

5  

$0.30  

$1.50  

Printed  Circuit  Board  Fabrication  Materials  

5  

N/A  

$176.19  

 

2  

Total  Shipping  Costs  To  Date.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

$85.19  

Total  Tax  To  Date.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

$18.94  

 

Miscellaneous  

 

Quantity  

RT/duroid©  5880  High  Frequency  Laminate  

Sub

Ant enn a  

Description  of  Cost  

Total  Cost  Estimate.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     $491.86  

55    

Please  note  that  the  team  was  able  to  receive  complimentary  samples  of  the  high   frequency  laminate  from  Rogers  Corporation  for  use  in  constructing  the  antenna  subsystem   and  the  final  printed  circuit  board.    A  demonstration  board  for  the  LTC  3225,  which  is  regularly   $125,  was  also  donated  to  our  group  from  Linear  Technology  for  educational  purposes.    The   cost  estimate  for  these  items  reflects  the  great  opportunities  that  our  group  was  able  to   capitalize  on.   During  the  fall  semester,  SAIC  reviewed  the  preliminary  cost  estimate  that  was  included   with  the  original  Proposal  and  verbally  agreed  to  fund  the  project  up  to  our  original  cost   estimate  of  $700.    However,  at  the  completion  of  the  project,  the  team  only  spent  $491.86.    At   the  completion  of  the  project,  the  design  team  lowered  the  project’s  final  cost  from  the  Critical   Design  Review  budget  due  to  a  more  comprehensive  understanding  of  the  individual  costs   associated  with  purchasing  components,  as  well  as  due  to  our  decision  to  self-­‐fabricate  our  own   printed  circuit  boards.   Since  a  larger  funding  commitment  was  not  probable  at  the  conclusion  of  the  fall   semester,  the  team  applied  at  the  start  of  the  spring  semester  for  a  research  grant  from  the   University  of  San  Diego’s  Associated  Students.    The  team  was  awarded  additional  funding  from   Associated  Students.    However,  at  the  time  this  additional  funding  became  available,  the  team   did  not  feel  that  it  was  required.    As  a  result,  the  funding  was  declined.      

                   

56    

REFERENCES   [1]  Rahmel,  Ronald  S.  and  Gerald  C.  Gerace.  Method  and  System  for  Energy  Reclamation  and   Reuse.  United  States:  Patent  US  7268517  B2.  11  September  2007.   [2]  Shearer,  John  G.,  Charles  E.  Greene  and  Daniel  W.  Harrist.  POWERING  DEVICES  USING  RF   ENERGY  HARVESTING.  United  States:  Patent  PCT/US2006/021940.  14  December  2006.   [3]  Vujovic,  Dr.  Ljubo.  Tesla  Memorial  Society  of  New  York.  10  July  1998.  7  December  2008   .   [4]  Espejel,  Juventino  Delfino  Roas.  "RF  to  DC  Power  Generation."  Master  of  Science   Dissertation.  University  of  Maryland,  2003.   [5]  Upson,  Sandra.  "Putting  Wireless  Power  to  Work."  IEEE  Spectrum  June  2008.   [6]  Silver,  J.  P.  (n.d.).  Micro-­‐strip  Patch  Antenna  Primer.  Retrieved  February  22,  2009,  from  RF,   RFIC  &  Microwave  Theory,  Design:  http://www.zen118213.zen.co.uk/   [7]  Moernaut,  D.  O.  (n.d.).  The  Basics  of  Patch  Antennas.  Retrieved  February  22,  2009,  from   Orban  Microwave  Products:  http://www.orbanmicrowave.com/   [8]  Microstrip  patch  antennas.  (2008,  January  5).  Retrieved  February  22,  2009,  from  Microwave  

Encyclopedia:  http://microwaves101.com/encyclopedia/antenna_ustrip.cfm   [9]  Frank  H.  Sanders,  B.  J.  (1996).  Broadband  Spectrum  Survey  at  San  Diego,  California.  Institute  

for  Telecommunication  Sciences.   [10]  Theory:  Near-­‐Field  and  Far-­‐Field.  Retrieved  March  1,  2009,  from  Lulea  University  of   Technology:  http://www.sm.luth.se/~urban/master/Theory/3.html   [11]  Pylarinos,  L.  (2006,  May  25).  Charge  Pumps:  An  Overview.  University  of  Toronto,  Canada.   Retrieved  from  University  of  Toronto.   [12]  Tecate  Group.  (n.d.).  Tecate  Ultracapacitor  Solutions.  Retrieved  March  1,  2009,  from   Ultracapacitor  Solutions  Home:   http://www.tecategroup.com/ultracapacitors/ultracapacitors.php   [13]  Buchmann,  Isidor.  What's  the  Role  of  the  Supercapacitor?  July  2003.  3  November  2008   .   [14]  Linear  Technology.  (2008).  LTC3225  150mA  Supercapacitor  Charger.  Retrieved  March  1,   2009,  from  Linear.com:   57    

http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1042,C1098,P 84365,D26420   [15]  Linear  Technology.  (2008,  July  23).  DC1220B  Quick  Start  Guide  -­‐  LTC3225EDDB  Low  Profile   Regulated  Dual  Cell  SuperCAP  Charger.  Milpatas,  California,  United  States  of  America.    [16]  Intel.  (2000).  Leaded  Surface  Mount  Technology  (SMT).  Retrieved  March  1,  2009,  from   Intel.com:  http://www.intel.com/design/packtech/Ch_07.pdf   [17]  Zibrat,  T.  (2002,  March  21).  Test  Results  -­‐  Round  2.  Retrieved  March  2,  2009,  from  K3TZ   Ham  Radio  Experimentation  Page:  http://www.qsl.net/k3tz/        

58    

   

    S-­‐Band  Radio  Frequency  Energy  Harvesting   An  Integrated  Solution  for  Low-­‐Powered  Embedded  Systems        

Appendix  A          

Resumes   Hanner  Hart   Kelty  Lanham   Michael  Sass      

 

59   k  

HANNER HAZEN HART 3665 PAUL JONES AVE. Ƈ SAN DIEGO, CA 92117 (208) 447-9919 [email protected]   EDUCATION University of San Diego, San Diego, CA BS/BA in Electrical Engineering Minor in Mathematics

GPA: 2.99/4.0 Major GPA: 3.21/4.0 Expected Graduation: May ‘10

Relevant Coursework ƒ ƒ ƒ ƒ ƒ ƒ

Electrical Power Systems Logic Design (VHDL) Digital Logic Design Programming Circuits Communication Principles and Circuits

ƒ ƒ ƒ ƒ ƒ ƒ

Microcomputers (8051) Electronics Signals & Systems Applied Mathematics Probability and Statistics Control Systems

DESIGN EXPERIENCE Microprocessor Fall ‘07 ƒ Designed and Analyzed a microprocessor with an Intel 8051 microcontroller. ƒ Programmed to act as a Digital Thermostat which analyzed and controlled temperature. ƒ Built the microprocessor from scratch, including soldering all chips. Digital Alarm Clock Spring ‘08 ƒ Designed alarm clock using a Xilinx Spartan 3-E FPGA . ƒ Programmed the design using Xilinx ISE Design Suite. ƒ Design featured accurate time and available alarm clock. Nifty Project Spring ‘06 ƒ Designed an automatic Golfing Tee using Nifty electric motors and parts. WORK EXPERIENCE University of San Diego San Diego, CA Computer Lab Assistant January ’06-Present ƒ Assisted students in Computer lab with Microsoft Word, Excel, and PowerPoint Documents. ƒ Helped students with their homework assignments. SKILLS ƒ ƒ ƒ ƒ

Computer Skills MATLAB MathCAD Maple C/C++

ƒ ƒ ƒ

Electronic Workbench (Multisim & Ultiboard) VHDL AutoCAD

AFFILIATIONS University of San Diego Collegiate Football ƒ Division 1AA Mid-Major National Champions

   

ƒ ƒ

Microsoft Office (Excel, Word, PowerPoint) Assembly Language (8051 Architecture)

Fall ’05-Present 2005, 2006

  1349 B Goshen St San Diego, CA, 92110

Phone 831.234.7089 E-mail [email protected]

Kelty Lanham Education

[ September 2005-Present ]

University of San Diego

BA/BS Electrical Engineering/ Math Minor Expected Graduation: May 2010 Relevant  Coursework   ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ

Electrical Power Systems Logic Design (VHDL) Digital Logic Design Applied Mathematics Programming Communication Principles and Circuits Microcomputers Electronics Signals & Systems Control Systems

Interests and activities

NROTC- Aug 2005-Present Future plans on entering the Navy to become a Naval Aviator.

Work experience

[ June-Aug 2004, 2005,2006 ]

Parreira Almond Processing Co Los Banos, CA

Electrical Engineer Assistant ƒ Working  hand  in  hand  with  an  electrical  engineer  to  rewire  and  maintain   the   plant.     Inc   running/pulling   wire,   wiring   motors,   setting   up   controls,   etc.   [  June-­‐Aug  2007  ]                                                    Moore  and  Sons  Marine  Engine  Repair     Santa  Cruz,  CA   Assistant Mechanic ƒ

Worked  with  a  mechanic  to  repair  marine  inboard,  outboard  and  stern-­‐ drive  engines.   [  Oct  2005-­‐  Present  ]                                                                                                    USD  Parking  Services   San  Diego,  CA  

Parking Service Supervisor ƒ Supervised  22  people  as  well  as  office/administrative  duties     Security clearance

Available upon request

   

Michael D. Sass Phone: (952) 292-6369

5998 Alcalá Park Unit 6130 • San Diego, CA 92110

Email: [email protected]

Education University of San Diego, San Diego, CA BS/BA in Electrical Engineering Minor in Mathematics

GPA: 3.97 / 4.00 Expected Graduation: Dec ’10

Select Coursework (through Fall 2008) Applied Electromagnetics, Electrical Power, Communication Principles & Circuits, Electronics, Systems Logic Design (VHDL), Signals and Systems, Fourier Methods and Wavelets in Signal Processing, Microcomputers (8051),

Design Experience Digital Alarm Clock Project ƒ Designed around a Xilinx Spartan 3-E FPGA platform ƒ VHDL written using Xilinx ISE Design Suite

Spring 2008

Digital Thermostat Project ƒ Intel 8051 used to analyze and control temperature ƒ RS-232 compatible serial port and LCD display provided user interface ƒ DC motors simulated heating/air conditioning subsystems ƒ $VVHPEO\ODQJXDJHSURJUDPPLQJZULWWHQXVLQJ.HLOȝ9LVLRQ

Fall 2007

Work Experience University of San Diego San Diego, CA Mathematics Department Grader September ’06 – Present ƒ Grade sections of Calculus II & III, Differential Equations, and Applied Mathematics II

Skills ƒ C/C++ ƒ Electronics Workbench (Multisim & Ultiboard) MATLAB, Mathcad, & Maple

ƒ Assembly Language (8051 Architecture) ƒ VHDL ƒ AutoCAD

Awards & Affiliations Institute of Electrical and Electronics Engineers ƒ Outstanding EE Junior at USD [2008] ƒ Outstanding EE Sophomore at USD [2007] ETA KAPPA NU – Electrical and Computer Engineering Honor Society ƒ Member [Spring 2008 – Present] Naval Reserve Officers Training Corps, San Diego Consortium ƒ Company Executive Officer [Spring 2008] ƒ Platoon Commander [Fall 2007] Federal Communications Commission ƒ Licensed Extra class amateur radio operator [2006 – Present] k   2    

ƒ

     

    S-­‐Band  Radio  Frequency  Energy  Harvesting   An  Integrated  Solution  for  Low-­‐Powered  Embedded  Systems  

Appendix  B          

Calculations  –  Matlab  Code   Main  Code   Functions:   Microstrip  Patch  Antenna  Dimensions   Power  Density   Lab  Testing  Conditions  

k  3    

Main  Code   %S Band RF Energy Harvesting Team %February 18, 2009 %We have decided to create a microstrip patch antenna array in our project %This code will determine the relevant design specifications for a single %element of the antenna and ground plane (i.e. substrate) clear all %Input Specifications: %Operating Frequency = 3.25 [GHz] freq = 3.25E9; %Dielectric Constant of the ground plane substrate %Typical PCB = 4.6 +/- 0.2 dielectric = 4.6; %Height Above Substrate height_in_mm = 1.5; %[meters] height = height_in_mm * 1E-3; %Function to compute antenna / ground plane dimensions [antennaWidth, actualLength,lengthGroundPlane,widthGroundPlane] = antennaCalculations(freq,dielectric,height); stringWidth = sprintf('The microstrip patch antenna array element width is %d [mm]', antennaWidth); stringLength = sprintf('The microstrip patch antenna array element length is %d [mm]', actualLength); stringGroundWidth = sprintf('The ground plane (substrate) width is %d [mm]',widthGroundPlane); stringGroundLength = sprintf('The ground plane (substrate) length is %d [mm]',lengthGroundPlane); disp(stringWidth) disp(stringLength) disp(stringGroundWidth) disp(stringGroundLength) %Function to compute power density from Broadband Spectrum Survey powerIn_dBm = 20; %Gain [dBi] of Broadband Spectrum Survey equipment Gain = 3; powerDens = PowerDensity (freq, powerIn_dBm, Gain); stringPD = sprintf('The calculated power density is %d [W/m^2]', powerDens); disp(stringPD) %Gain of microstrip antenna [dBi] gainMicrostrip = 6; %Input antenna impedance = 75 [ohms]

k   4    

impedanceInput = 75; [voltageInput, powerInput, areaEffective] = InputVoltage (freq, powerDens, gainMicrostrip, impedanceInput); stringPowerInput = sprintf('The power input using Broadband Spectrum Survey data is %d [W]',powerInput); stringVoltageInput = sprintf('The voltage input Using Broadband Spectrum Survey data is %d [V]',voltageInput); disp(stringPowerInput) disp(stringVoltageInput) %Lab Setting Conditions %Gain of transmitter in dBi gainTransmitter = 15; %Power is expressed in watts powerTransmitter = 4; %Radius of harvesting antenna from transmitter [meters] radiusFromTransmitter = 0.45; [LabInputVoltage, LabInputPower, LabPowerDensity] = LabConditions (freq, impedanceInput, areaEffective, gainTransmitter, powerTransmitter, radiusFromTransmitter); stringLabPowerInput = sprintf('The power input using lab test conditions is %d [W]',LabInputPower); stringLabVoltageInput = sprintf('The voltage input using lab test conditions is %d [V]',LabInputVoltage); stringLabPowerDensity = sprintf('The power density using lab test conditions is %d [W/m^2]', LabPowerDensity); disp('') disp(stringLabPowerInput) disp(stringLabVoltageInput) disp(stringLabPowerDensity) %To mimic Broadband Spectrum Survey data at 3.25 [GHZ], transmit 4 [W] at a distance of 0.45 [m] %Military Operational Conditions %AN/SPY-1/D Radar (AEGIS Combat System) %Gain of transmitter in dBi gainTransmitter_M = 25; %Power is expressed in watts powerTransmitter_M = 4e6; %Radius of harvesting antenna from transmitter [meters] radiusFromTransmitter_M = 1000; [LabInputVoltage_M, LabInputPower_M, LabPowerDensity_M] = MilitaryConditions (freq, impedanceInput, areaEffective, gainTransmitter_M, powerTransmitter_M, radiusFromTransmitter_M); stringLabPowerInput_M = sprintf('The power input using military conditions is %d [W]',LabInputPower_M); stringLabVoltageInput_M = sprintf('The voltage input using military conditions is %d [V]',LabInputVoltage_M); stringLabPowerDensity_M = sprintf('The power density using military conditions is %d [W/m^2]', LabPowerDensity_M);

k  5    

disp('') disp(stringLabPowerInput_M) disp(stringLabVoltageInput_M) disp(stringLabPowerDensity_M) %MQ-1 Predator Drone wing surface area = 11.5 [m^2] - See Wikipedia %Single patch surface area: 27 [mm] x 20 [mm] = 540 [um] %Assuming you could cover 75% of wing with patch antennas, you could have 16,000 patch antennas %Your input power to the system would be 16,000 * 0.2717 [W] = 4.34 [kW] at a distance of 1 [km] from transmitter %Increase the dielectric constant, you can decrease the patch element dimenions = more antennas = more power harvested!

Functions   Microstrip  Patch  Antenna  Dimensions   %February 18, 2009 %Fucntion to determine dimensions of antenna and ground plane for %microstrip patch antenna element function [antennaWidth, actualLength,lengthGroundPlane,widthGroundPlane] = antennaCalculations(freq,dielectric,height) %Speed of Light [m/s] c = 3.0E8; %Antenna Width [meters] width = c/(2*freq*sqrt((dielectric+1)/2)); %Antenna Width [mm] antennaWidth = (width*1000); %Effective Dielectric Constant dielectricEffective = (dielectric+1)/2+((dielectric-1)/2)*(1+12*(height/antennaWidth))^(1/2); %Effective Length [meters] lengthEff = c/(2*freq*sqrt(dielectricEffective)); %Effective Length [mm] lengthEffective = (lengthEff *1000); %Length Extension [meters] intermed = 0.412*height; top = (dielectricEffective+0.3)*((antennaWidth/height)+0.264); delta = (intermed*top/((dielectricEffective-0.258)*((antennaWidth/height)+0.8))); %Length Extension [mm] deltaLength = (delta*1000); %Actual Length of Patch Antenna actualLength = (lengthEffective - 2*deltaLength);

%Ground Plane (Substrate) Dimensions

k  6    

lengthGroundPlane = (6*height +actualLength); widthGroundPlane = (6*height +antennaWidth); end

Power  Density   %This function will return the power density when given the input power to %a system and an antenna's effective area function [powerDens] = PowerDensity(freq, powerIn_dBm, Gain) c= 3.0e8; powerInWatts = 1e-3*10^((powerIn_dBm)/10); wavelength = (c / freq); powerDens = (4*pi*powerInWatts)/((wavelength^2)*Gain); end

Lab  Testing  Conditions   %This function will compute the input power/voltage to our system for the given lab testing conditions function [InputVoltage, InputPower, PowerDensity] = LabConditions (freq, impedanceInput, areaEffective, gainTransmitter, powerTransmitter, radiusFromTransmitter) gainDimensionless = 10^(gainTransmitter/10); PowerDensity = (powerTransmitter*gainDimensionless)/(4*pi*radiusFromTransmitter^2); InputPower = (PowerDensity*areaEffective); InputVoltage = sqrt(InputPower*impedanceInput); end

               

k  

  7    

   

S-­‐Band  Radio  Frequency  Energy  Harvesting   An  Integrated  Solution  for  Low-­‐Powered  Embedded  Systems  

Appendix  C      

Component  Data  Sheets   Antenna  Subsystem   Rogers  Corporation  RT/duroid©  5880     Rectification  Subsystem   5082-­‐2835  Schottky  Diode   LT1965  Linear  Regulator   MA0603XR-­‐561K-­‐500PR  560  pF  Capacitor     Energy  Storage  and  Distribution  Subsystem   LTC3225  Supercapacitor  Charger   PIC10F200     Test  Equipment   HP 8756A Scalar Network Analyzer HP 8620C Sweep Oscillator k  

8    

Advanced Circuit Materials Division 100 S. Roosevelt Avenue Chandler, AZ 85226 Tel: 480-961-1382, Fax: 480-961-4533 www.rogerscorporation.com

Advanced Circuit Materials

D a t a S h ®

RT/duroid 5870 /5880 High Frequency Laminates

k  

9    

forced PTFE composites are designed for exacting stripline and mi crostrip circuit applications. Glass reinforcing microÀEHUVDUHUDQGRPO\RULHQWed to maximize beneÀWVRIÀEHUUHLQIRUFHPHQWLQWKH direc tions most valuable to circuit producers and in the ÀQDOFLUFXLWDSSOLFDWLRQ The dielectric constant of RT/duroid 5870 and 5880 laminates is uniform from panel to panel and is constant over a wide frequency range. Its low dissipation factor extends the usefulness of RT/duroid 5870 and 5880 to Ku-band and above. RT/duroid 5870 and 5880 laminates are easily cut, sheared and machined to shape. They are resistant to all solvents and reagents, hot or cold, normally used in etching printed circuits or in plating edges and holes. Normally supplied as a laminate with electrodeposited copper of ¼ to 2 ounces/ ft. WRǍP RQ both sides, RT/duroid 5870 and 5880 composites can also be clad with rolled copper foil for more critical electrical applications. Cladding with aluminum, copper or brass plate may also be speciÀHG 2

When ordering RT/duroid 5870 and 5880 laminates, it is important to specify dielectric thickness, tolerance, rolled or electrodeposited copper foil, and weight of copper foil required.

RT/duroid 5870 and 5880 glass microÀEHUUHLQ®

he information in this data sheet is intended to assist you in designing with Rogers’ circuit material laminates. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or ÀWQHVVIRUD particular purpose or thatthe results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers’ circuit material laminates for each application.

The world runs better with Rogers.®

k  10    

®

Typical Values RT/duroid 5870/5880 Laminates

STANDARD THICKNESS: 0.005” (0.127mm), 0.031” (0.787mm) 0.010” (0.254mm), 0.062” (1.575mm) 0.015” (0.381mm), 0.125” (3.175mm) 0.020” (0.508mm),

 

STANDARD PANEL SIZE: 18” X 12” (457 X 305mm) 18” X 24” (457 X 610mm) 18” X 36” (457 X 915mm) 18” X 48” (457 X 1.224m)

STANDARD COPPER CLADDING: ¼ oz. (8 ȝP HOHFWURGHSRVLWHGFRSSHUIRLO òR] ȝP R] ȝP R] ȝP HOHFWURGHSRVLWHGDQG rolled copper foil.

  k  

  2    

k  

3    

k  

4    

k  

5    

k   6    

k   7    

k  

8    

k   9    

k  10    

k   11    

 

k   12   k  

k   13    

k   k   k   k  k  k   k  

 

k  14   k   k  k   k  

 

k   k  

S-­‐Band  Radio  Frequency  Energy  Harvesting   An  Integrated  Solution  for  Low-­‐Powered  Embedded  Systems  

Appendix  D          

Self-­Fabrication  of  Printed  Circuit  Board  –  Detailed  Procedure   Developed April 25, 2009

                         

k  

15    

Self-­Fabrication  of  Printed  Circuit  Board  –  Detailed  Procedure   Developed  April  25,  2009     1. First,  cut  the  copper  clad  board  down  to  the  desired  size  of  the  final  printed  circuit  board.   2. Use  Scotch  Brite  pads  to  clean  off  the  copper  board  in  conjunction  with  isopropyl  solution  (90%   concentrate  is  preferred).    Make  sure  entire  board  is  defect  free  before  continuing  (i.e.  no   fingerprints,  oxidation,  glue,  etc.).   3. Print  the  circuit  board  layout  (from  Ultiboard)  onto  a  high  gloss  photo  paper.    It  is  important  to   use  a  laser  jet  printer  and  photo  paper  designed  for  a  laser  jet  printer.    It  is  desirable  to  cut  the   printed  sheet  down  to  a  size  slightly  larger  than  the  actual  size  of  the  final  printed  circuit  board,   as  well.    If  the  board  contains  a  bottom  layer,  print  a  copy  of  that  design  out  onto  a  separate   piece  of  photo  paper.   4. Place  the  high  gloss  paper  over  the  copper  layer.    If  a  second  layer  exists,  place  that  piece  of   paper  over  the  bottom  of  the  board.    Place  tape  between  the  board  and  the  high  gloss  paper.     Only  place  tape  on  a  portion  of  the  copper  board  that  will  not  have  any  traces  or  components.     The  tape  will  ensure  that  the  high  gloss  paper  does  not  move  during  the  heating  process.       5. Place  a  piece  of  regular  paper  on  top  of  the  gloss  paper.    Also  place  a  piece  of  paper  between   the  ironing  surface  and  the  copper  board.    Apply  an  iron  set  on  the  highest  setting  to  the  paper.     Use  the  largest  iron  you  can  find,  and  make  sure  that  no  water  is  in  the  iron.   6. Apply  the  iron  evenly  across  the  entire  board  (i.e.  move  it  around)  with  much  pressure.    Once   you  think  you  have  applied  it  long  enough,  leave  it  on  for  a  few  more  minutes  to  be  sure.    You   want  the  entire  toner  ink  to  be  transferred  to  the  copper  surface.    This  typically  takes  20-­‐30   minutes  depending  on  the  amount  of  toner  that  needs  to  be  transferred  from  the  paper  to  the   board.   7. Place  the  copper  board  (and  photo  paper)  into  a  tub  of  water.    This  will  help  loosen  the  paper   from  the  copper  board.    Use  a  toothbrush  to  ensure  that  all  paper  is  removed  from  the  copper   board.    A  large  disposable  Ziploc  container  can  be  used  as  the  tub.     8. If  there  are  some  spots  where  the  toner  wasn’t  fully  transferred  to  the  copper,  use  a  fine  tip   Sharpie  (or  an  etching  pen)  in  those  spots.    The  Sharpie  has  similar  chemical  properties  as  the   toner.    If  large  amounts  of  toner  weren’t  transferred,  steps  1-­‐7  will  have  to  be  repeated.   9. Place  1  part  Muriatic  Acid  and  2  Parts  Hydrogen  Peroxide  in  another  disposable  Ziploc  container.     Place  the  Hydrogen  Peroxide  in  the  container  first,  and  then  add  the  Muriatic  acid.    Do  NOT,   under  any  circumstances,  mix  the  solutions  the  other  way  around.    Since  Muriatic  Acid  is  a  toxic   chemical,  only  mix  the  solutions  in  a  location  where  the  fumes  can  be  vented,  too.    Do  this   outdoors  if  necessary.    Also,  you  need  approximately  1  oz.  of  Muriatic  acid  for  11  sq2  of  1  oz.   16    

copper  foil.    Even  though  the  acid  will  saturate  quickly,  do  not  use  more  than  required.    Use   rubber  gloves  and  safety  glasses  at  all  times  while  handling  these  chemicals.     10. Place  the  copper  clad  board  in  the  etching  solution  and  let  it  sit  there  for  around  3-­‐5  minutes.     To  speed  up  the  etching  process,  use  a  sponge  and  rub  the  copper.    You  can  heat  the  solution  to   around  100F  to  speed  up  the  process,  as  well.   11. Note:  It  is  important  to  ensure  that  portions  of  the  copper  that  don’t  have  an  etching  on  it   should  be  cut  off  before  placing  in  the  solution.    Large  portions  of  copper  that  don’t  have   etchings  will  allow  the  chemical  to  reach  the  bottom  layer  and  it  could  corrupt  the  entire   process.   12. Once  the  etching  process  has  been  completed,  remove  the  copper  board  and  place  in  a  tub  of   water.    Leave  in  the  water  for  approximately  5-­‐10  minutes  to  ensure  that  all  of  the  etching   solution  has  been  removed.   13. At  this  point,  the  only  copper  on  the  board  should  be  where  the  toner  was  transferred  onto  the   copper  board.   14. Next,  place  the  copper  board  in  a  solution  of  pure  acetone  (paint  thinner).    This  process  will   remove  the  toner  from  the  remaining  copper.    You  might  need  to  use  a  sponge/rag  to  rub  off   the  toner.       15.  Next,  if  available,  use  a  Silicon  Conformal  Coating.    This  coating  will  prevent  the  PCB  board  from   oxidizing.    It  will  also  reduce  the  chance  of  having  cold  solder  joints.    However,  Silicon  Conformal   Coating  typically  takes  24-­‐48  hours  to  fully  dry.     16. Before  soldering  any  chips,  use  a  digital  multimeter  to  check  that  there  are  no  shorts  between   electrical  connections  on  the  copper  traces.    

17