Enhancing GPS Accuracy and Security using DSRC

Report 3 Downloads 88 Views
           

R-­‐GPS  (Robust  GPS):  Enhancing  GPS   Accuracy  and  Security  using  DSRC      

VENKATESAN  EKAMBARAM   PhD  Student   Department  of  EECS   University  of  California  Berkeley    

KANNAN  RAMCHANDRAN   Professor   Department  of  EECS   University  of  California  Berkeley  

 

 

1  

TABLE  OF  CONTENTS   EXECUTIVE  SUMMARY .....................................................................................3   NEED  FOR  HIGH  ACCURACY  POSITIONING................................................4   A.   FALLBACKS  OF  THE  GPS  SYSTEM ..................................................................................................................4   B.   APPLICATIONS  ENABLED  BY  HIGH  ACCURACY  POSITIONING ...................................................................5   B.1.  Safety  Applications ..................................................................................................................................... 5   B.2  Mobility  Applications.................................................................................................................................. 6  

NEED  FOR  SECURITY.........................................................................................7   EXISTING  SOLUTIONS  AND  DRAWBACKS ..................................................8   PROPOSED  TECHNOLOGY  USING  DSRC ......................................................9   DETECTING  MALICIOUS  USERS .............................................................................................................................12  

CONCLUSION..................................................................................................... 13   BIBLIOGRAPHY................................................................................................ 14  

                 

 

2  

Executive  Summary    

We  propose  a  novel  way  of  using  the  Dedicated  Short  Range  Communication  (DSRC)   spectrum   to   enhance   the   accuracy   and   security   of   GPS.   Traditionally   the   DSRC   spectrum   is   designed   to   carry   information   such   as   the   location   estimates   of   the   vehicles   provided   by   GPS   that   are  assumed   to   be   accurate.   However   the   accuracy   of   GPS  is  severely  affected  by  environmental  factors  like  multipath  and  adverse  factors   like   intentional   jamming   and   spoofing   by   malicious   users.   We   ask   the   question   of   whether   DSRC   communication   could   in   fact   be   exploited   to   enhance   the   position   accuracy   and   security   of   GPS.   Many   safety   and   mobility   applications   as   envisioned   by   the   Federal   Highway   Authority   (FHWA)   for   Intelligent   Transportation   System   (ITS)  applications,  mandate  sub-­‐meter  or  higher  accuracies  that  is  not  delivered  by   the   GPS   system.   Department   of   Transportation   (DoT)’s   and   other   agencies   are   actively   involved   in   exploring   technologies   such   as   NRTK,   DGPS   to   provide   a   high   accuracy   location   service   for   ITS   applications.   The   cost   of   implementation   and   maintenance  of  these  systems  are  expensive  and  further  are  not  robust  to  multipath   interference   and   malicious   attacks.   Our   proposed   solution   aims   to   enhance   the   accuracy  and  security  of  GPS  through  collaboration  between  vehicles  using  DSRC.  By   exploiting   the   diversity   in   the   DSRC   measurements   and   using   consistency   checks,   we   aim   to   discard   the   bad   measurements   and   obtain   highly   precise   position   estimates.   The   system   can   complement   existing   technologies   such   as   NRTK   to   provide  a  robust,  precise  and  secure  location  service  for  the  benefit  of  ITS  and  other   applications  that  mandate  high  accuracy  positioning.  

 

3  

Need  for  High  Accuracy  Positioning       In   this   section   we   will   talk   about   the   problems   faced   by   GPS   and   the   need   for   augmenting  GPS  for  high  positioning  accuracy.  We  define  high  accuracy  positioning   to   be   sub-­‐meter   (decimeter)   level   accuracy.   We   will   enlist   the   several   applications   related  to  transportation  systems  that  would  be  benefitted  by  such  a  service.    

 

A. Fallbacks  of  the  GPS  system  

The   Department   of   Defense   operating   the   GPS   constellation   guarantees   a   location   service   accurate   to   7   m   for   97%   of   the   time.   Even   though   the   level   of   accuracy   suffices   for   most   of   the   applications,   there   are   various   other   safety   and   mobility   related  applications  that  demand  sub-­‐meter  or  lesser  accuracy.  The  main  problems   faced  by  GPS  are  signal  degradation  and  multipath  interference  that  are  particularly   pronounced   in   harsh   environments   like   urban   canyon   environments   where   the   accuracies   can   be   as   bad   as   50m   or   so.       Figure   1   shows   the   example   of   a   typical   urban   environment   where   the   GPS   signals   get   reflected   off   the   surrounding   buildings   significantly   degrading   the   positioning   accuracy.   The   reflected   signals   introduce  a  bias  in  the  estimates  that  lead  to  large  errors  in  the  position  estimates.   Solutions   such   as   the   AGPS,   cellular   triangulation   improve   the   accuracy   to   some   extent   but   are   far   from   sub-­‐meter   accuracies.   There   are   several   upcoming   GPS   augmentation   technologies   such   as   NRTK,   DGPS,   HA-­‐NDGPS   etc   that   are   aimed   at   providing  sub-­‐meter  accuracies,  which  we  will  detail  in  the  next  chapter.    

 

4  

  Figure  1.  Multipath  interference  

B. Applications  enabled  by  High  Accuracy  Positioning    

There   is   a   suite   of   ITS   applications   that   benefit   from   a   high   accuracy   positioning   service.     They   can   be   broadly   classified   into   safety   and   mobility   applications.   A   comprehensive  list  of  these  applications  is  provided  by  the  FHWA  [1].  We  will  list  a   few  of  these  applications  that  require  sub-­‐meter  level  or  lane  level  accuracy  that  can   be  enabled  by  high  accuracy  positioning.   B.1.  Safety  Applications     These  applications  focus  on  reducing  accidents  and  thereby  fatalities  and  injuries.    

 

5  

a) Curve  speed  warning  –  These  would  aid  the  drivers  in  negotiating  curves  at   appropriate   speeds.   There   have   been   various   studies   that   talk   about   the   significant  number  of  injuries  and  fatalities  due  to  accidents  that  took  place   in  curves.   b) Forward   Collision   Warning   –   These   alert   a   driver   when   a   vehicle  in   the   front   brakes  hard.     c) Lane  change  warning  –  Warning  if  there  is  a  vehicle  occupying  the  blind  spot.   d) Intersection   collision   warning     -­‐   Warns   a   driver   of   a   likely   collision   at   upcoming  intersections  due  their  own  speed  or  that  of  the  other  drivers.   e) Left  turn  Assistant  –  Provides  information  of  oncoming  traffic  when  trying  to   take  a  left  turn  at  an  unprotected  intersection.   There   are   many   other   such   safety   applications   that   mandate   sub-­‐meter   accuracies   that  are  not  possible  with  the  present  levels  of  accuracies  guaranteed  by  GPS.   B.2  Mobility  Applications       These   applications   aim   at   reducing   delay,   congestion,   which   can   further   have   an   impact   on   the   environment.   One   of   proposed   applications   is   to   have   intelligent   traffic   controls.   For   example,   if   a   vehicle   were   to   know   the   signal   phase   timing   at   upcoming   traffic   signals,   the   speed   could   be   optimally   adjusted   to   reduce   emissions.   Further   the   traffic   signal   could   be   adjusted   to   provide   priority   to   buses   etc   to   encourage   public   transport.     Another   interesting   application   is   to   have   free   flow   tolling  and  dynamic  lane  pricing  systems,  which  can  reduce  toll  plazas  etc.  All  these   applications  require  lane  level  accuracies  that  are  not  provided  by  GPS.  

 

6  

Need  for  Security    

One   of   the   major   concerns   regarding   GPS   is   its   vulnerability   to   spoofing   and   jamming.   There   is   an   excellent   article   [6]   that   talks   about   the   dangers   of   GPS   due   to   malicious   users   and   unintentional   interferers.     The   known   signal   structure   of   GPS   renders  it  vulnerable  to  spoofing  and  jamming.    

 

 

Figure  2:  The  dice  is  a  small  jammer  (picture:  [6])   Jamming   is   the   intentional   degradation   of   the   GPS   signal.   Spoofing   involves   intentionally   simulating   a   GPS   signal   in   order   to   bias   the   position   estimates   of   the   GPS   users.   Jamming   could   sometimes   be   unintentional   due   to   interference   from   strong   transmissions   in   RF   bands   that   are   in   the   vicinity   of   the   GPS   transmission   bands.   Nevertheless   addressing   both   of   these   issues   is   very   important   in   order   to   have   a   robust   system   considering   that   the   application   involves   the   safety   of   the   users.   We   will   see   how   we   could   use   DSRC   and   collaboration   between   vehicles   to   detect  malicious  users  who  can  also  intentionally  bias  their  own  location  estimates   to  misguide  the  other  vehicles.    

 

7  

Existing  solutions  and  drawbacks     There   are   various   GPS   augmentation   technologies   that   have   been   proposed   and   implemented   in   order   to   enhance   the   accuracy.   The   most   notable   amongst   these   technologies  include  DGPS,  N-­‐RTK,  HA-­‐NDGPS  and  pseudolite  based  systems  such  as   those  proposed  by  Locata  Corp[4,5].    DGPS,  N-­‐RTK,  HA-­‐NDGPS  aim  to  improve  the   GPS   positioning   accuracy   by   providing   location   fixes   calculated   at   a   known   reference   station.   These   primarily   correct   for   the   ionospheric   and   tropospheric   effects.  Many  of  the  state  DoT’s  are  actively  involved  in  deploying  these  systems  in   order  to  aid  transportation  applications.  Examples  of  such  deployments  include  the   Ohio   State   RTK   networks   [2],   Washington   State   Reference   Network   [3]   etc.     The   pseudolite   technology   proposed   by   Locata   involves   transmitting   GPS   like   signals   from   ground   based   reference   stations   and   obtain   the   location   estimate   based   on   triangulation  from  three  or  more  ground  based  reference  stations  whose  locations   are  known.   The   proposed   systems   have   certain   drawbacks.   These   systems   do   not   explicitly   tackle   the   problem   of   multipath.   Unless   we   have   a   highly   dense   deployment   of   reference  stations,  the  problem  of  multipath  would  still  exist.  Secondly,  the  cost  of   establishing   and   maintaining   these   reference   stations   is   quite   expensive   (around   $500k  to  1million  per  base  stations,  including  the  annual  maintenance  costs  [2,3]).   Thus,   it   would   be   highly   beneficial   to   have   an   inexpensive   system   augment   these   reference   stations   in   order   to   reduce   the   density   of   deployment   and   also   tackle   multipath.  Our  proposed  system  aims  at  achieving  these  objectives.  

 

8  

Proposed  technology  using  DSRC     GPS  works  by  obtaining  relative  distance  measurements  from  the  target  vehicle  to   three   or   more   satellites   and   estimating   the   position   using   triangulation.   The   distance   measurements   are   obtained   by   transmitting   a   known   signal   sequence   over   the   allocated   band   and   measuring   the   time   delay   in   the   signal   reception,   which   is   converted   to   a   distance   estimate.   Locata   works   in   a   similar   manner   by   obtaining   distance  measurements  to  ground  based  pseudolites  having  known  locations.     The   high-­‐level   idea   of   the   proposed   technology   is   to   convert   each   vehicle   into   a   “virtual  pseudolite”  using  the  DSRC  communication  between  the  vehicles.  This  can   be   achieved   by   transmitting   a   known   sequence   of   bits   in   the   WAVE   packet   that   would  be  exchanged  between  the  vehicles.  The  sequence  of  bits  can  be  processed  to   get   a   coarse   estimate   of   the   distance   between   the   vehicles.   The   received   measurements   by   each   vehicle   can   then   be   efficiently   processed   to   improve   its   location   estimate   by   enforcing   consistency   amongst   the   different   measurements.     This   is   illustrated   using   an   example   in   Figure   3.   We   have   three   cars   with   GPS   and   DSRC  radios.  The  blue  stars  represent  the  predicted  locations  of  the  cars  by  GPS  and   the   corresponding   blue   circles   represent   the   position   uncertainty   of   the   GPS.   By   position   uncertainty,   we   mean   that   the   car   could   be   located   anywhere   in   the   blue   circle  whose  center  would  be  the  GPS  location  estimate.  The  error  could  be  due  to   signal   degradation,   multipath   etc.   The   black   lines   represent   the   estimate   of   the   distance  measurements  between  the  cars  obtained  using  the  DSRC  radios.  The  red   circle  imposes  the  consistency  of  the  distance  estimates.  

 

9  

  Figure  3:  Improving  location  accuracy  using  DSRC    The   overlap   of   the   red   and   blue   circles   represents   the   new   uncertainty   in   the   vehicle  locations,  which  is  significantly  smaller  than  the  original  uncertainty  due  to   GPS.   The   red   stars   are   the   new   estimates   of   the   location   that   are   significantly   better   than   the   GPS   estimates.   As   one   can   see   from   this   example,   the   position   accuracy   could  be  significantly  improved  using  measurements  from  the  DSRC  radios.  This  is   just  a  toy  example  to  illustrate  the  benefits  of  using  DSRC  for  positioning.  One  can   come  up  with  a  more  general  and  distributed  signal  processing  algorithm  in  a  larger   setting  where  different  cars  get  measurements  with  respect  to  their  neighbors  with   whom   they   can   talk   to.   The   algorithms   can   be   developed   in   a   such   a   way   that   the   processing   happens   only   locally,   i.e.   each   vehicle   would   only   need   to   locally   process  

 

10  

the  measurements  that  it  extracts  from  the  DSRC  packet  received  from  its  neighbors   and   estimate   its   location.   A   more   detailed   description   of   a   sample   algorithm   that   we   propose   can   be   found   in   [7]   (a   fairly   theoretical   paper),   where   we   describe   a   decentralized  algorithm  to  improve  position  estimates  in  a  multipath  environment.   The   effects   of   multipath   are   more   elaborately   modeled   in   the   paper   under   some   assumptions.   Simulation   results   (in   a   restrictive   setting)   show   that   even   if   90%   of   the  readings  are  corrupted  by  multipath,  one  can  obtain  precise  location  estimates   using   collaboration.   Practical   issues   such   as   time   synchronization   could   be   taken   care  of  by  using  techniques  such  as  time  difference  of  arrival  methods  that  require   the  DSRC  radios  to  reflect  back  the  packets  that  they  receive.  We  could  also  have  a   centralized   implementation   wherein   the   road-­‐side   base   stations   or   a   centralized   infrastructure   could   calculate   the   position   estimates   and   feed   them   back   to   the   vehicles.   Our   framework   also   provides   a   platform   to   integrate   multiple   technologies   to   improve  the  positioning.  For  example,  WiFi,  cellular,  inertial  navigation  system,  road   side   cameras,   bluetooth   etc   could   be   processed   locally   by   each   vehicle   and   these   could  be  exchanged  between  adjacent  vehicles  to  improve  their  location  accuracies.   We   could   also   integrate   external   sensors   like   multiple   antennas   that   can   operate   over   the   DSRC   band   between   vehicles   to   further   enhance   the   position   accuracies.   Note  that  the  proposed  solution  only  aims  to  augments  GPS  and  terrestrial  ground   based  solutions  for  a  more  robust  system  and  not  replace  it  altogether.    

 

11  

Detecting  malicious  users    

We  can  use  the  same  idea  of  collaboration  to  detect  malicious  users.  Lets  consider   the   simple   scenario   of   a   malicious   car   on   the   road   that   reports   its   location   incorrectly.   The   falsely   provided   position   information   could   potentially   lead   to   accidents,  lane  congestion  etc.  This  could  also  reduce  the  confidence  of  the  drivers   on   the   warning   systems   thereby   rendering   them   ineffective.   However,   by   collaborating   and   using   consistency   checks,   such   malicious   users   can   be   detected   and  in  some  cases  their  positions  could  also  be  determined  precisely.  

                                               

 

Figure  4:    Collaborative  detection  of  malicious  users  using  DSRC   A   simple   example   of   detecting   and   estimating   the   positions   of   malicious   users   is   shown  in  Figure  4.  As  before,  consistency  checks  are  imposed  using  the  DSRC  radio   measurements   between   cars   to   detect   if   a   car   is   reporting   its   true   position.   It   is   possible  that  the  malicious  car  would  also  tamper  with  the  DSRC  signals.  However,   in  this  case,  the  malicious  car  would  need  to  manipulate  the  measurements  in  such  a  

 

12  

way  that  they  all  be  consistent  with  a  wrongly  reported  position.  This  would  be  hard   to  achieve  when  there  are  many  neighbors  with  whom  the  consistency  constraints   would   need   to   be   imposed.   In   such   a   case,   even   though   the   position   of   the   malicious   car  may  not  be  determined,  one  can  at  least  detect  that  there  is  a  malicious  vehicle   whose   messages   can   be   ignored   by   the   other   vehicles.   The   idea   could   also   be   extended  to  the  case  where  a  user  is  trying  to  spoof  or  jam  the  GPS  signals.  The  idea   is  similar  to  consensus  based  systems  where  redundancy  and  collaboration  is  used   to  detect  abnormal  users  in  the  system.  

Conclusion    

Highly  accurate  positioning  with  sub-­‐meter  accuracy  guarantee  has  a  lot  of  potential   applications  both  on  the  safety  and  mobility  side  for  ITS.  GPS  does  not  guarantee  the   required   level   of   accuracy   for   these   applications   and   the   existing   solutions   are   expensive  and  do  not  address  the  problem  of  multipath  errors.  Further  GPS  is  also   prone   to   other   security   issues   such   as   spoofing,   and   malicious   users   can   affect   the   safety   of   other   vehicles   in   the   system.   The   proposed   solution   is   a   simple   collaborative   scheme   that   makes   use   of   the   DSRC   band   enabling   the   vehicles   to   behave  as  virtual  pseudolites  thereby  increasing  the  accuracy  and  reliability  of  the   system.   The   proposed   technology   in   conjunction   with   augmented   GPS   systems   such   as  NRTK,  HA-­‐NDGPS  etc  can  be  used  to  significantly  improve  the  position  estimates   enabling  a  suite  of  applications  that  mandate  sub-­‐meter  accuracies.    

 

13  

Bibliography    

1.  The  CAMP  Vehicle  Safety  Communications  Consortium.  Identify  Intelligent   Vehicle  Safety  Applications  Enabled  by  DSRC.  March  2005.     2. ODOT’s  VRS  RTK  Network.  Ohio  Department  of  Transportation.   http://www.dot.state.oh.us/Divisions/ProdMgt/Aerial/Pages/VRSRTK.aspx.     3. Washington  State  Reference  Network.  A  Regional  Cooperative  of  Real  Time  GPS   Networks.  http://wsrn2.org/.     4. J  Barnes,  C  Rizos,  J  Wang,  D  Small,  G  Voigt  and  N  Gambale,  Locata:  The   positioning  technology  of  the  future,  July  2003.   5. http://www.locatacorp.com/index2.html   6. http://mycoordinates.org/pdf/feb09.pdf   7. Venkatesan  Ekambaram,  Kannan  Ramchandran,  Distributed  High  Accuracy  Peer-­‐ to-­‐Peer  Localization  in  Mobile  Multipath  Environments,  IEEE  Globecom  2010,   Miami  Fl.   http://www.eecs.berkeley.edu/~venkyne/venky2010p2ploc.pdf    

 

14