Extended Formulations for Independence Polytopes of Regular Matroids Volker Kaibel, Jon Lee, Matthias Walter, Stefan Weltge
Aussois 2015
extended formulation P ⇤ { x | x ⇤ ⇡ (y) , Cy d } size # inequalities extension complexity xc (P) ⇤ smallest size of any EF for P
M ⇤ (E, I ) matroid independence polytope of M
P (M ) ⇤ conv{ (I ) 2 {0, 1}E | I 2 I }
R������ ’11 There are matroids M such that xc (P (M )) grows exponential.
graphic matroid of G ⇤ (V, E) F ✓ E independent () F is a forest M����� ’91 xc (Psp.forests (G)) O ( |V|· |E| ) Corollary xc (Pforests (G)) O ( |V|· |E| ) Proof: Pforests (G) ⇤ { x 2 RE+ | x x0 , x0 2 Psp.forests (G) }
cographic matroid of G ⇤ (V, E) dual matroid M ? of graphic matroid bases complements of spanning forests P (M ?) ⇤ { x 2 RE+ | x
x0 , x0 2 Psp.forests (G) }
Summary For (co)graphic matroids M we have xc (P (M )) O ( |V|· |E| ) O ( |E| 2 ) .
matrix A 2 Fm⇥E linear matroid MF (A) set of columns independent () linearly independent over F regular matroid for every �eld F there exists some A such that M ⇤ MF (A) examples (co)graphic matroids are regular
R10 is regular 1 0 1 0 0 0
*.0 . R10 ⇤ MR ..0 .0 ,0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 +/ 0 // / 1/ 1-
but neither graphic nor cographic
Theorem For regular matroids M we have xc (P (M )) O ( |E| 2 ) .
Seymour’s decomposition theorem regular matroid
non-leaf nodes are 1-, 2-, or 3-sums of its children
graphic, cographic or R10 number of nodes is linear in |E|
1-sum
I
M1 ⇤ MF2
M1
1
M2 ⇤ MF2
P (M1 xc (P (M1
A
!
1
1
I
M2 ⇤ MF2
I
A
M2 ) ⇤ P (M1 ) Corollary
I
B
B
!
P (M2 )
M2 )) xc (P (M1 )) + xc (P (M2 ))
!
2-sum
I
M1 ⇤ MF2
M1
I 2 M1
2
a
A
r1
2
M2 ⇤ MF2
M2
spanI1
()
1
!
M2 ⇤ MF2
I r2
I
A
I
bT !
B
abT !
B
I ⇤ I1 [ I2 with I1 2 M1 \ {r1 }, I2 2 M2 \ {r2 } :
! ! I A O abT \ spanI2 ⇤ {O} O O I B
2-sum (cont.) spanI1
a
O
!
< spanI1
! ! I A O abT \ spanI2 ⇤ {O} O O I B I A O O
!
I1 [ {r1 } 2 M1
I
a r1
A
() or ()
or
a
O
!
< spanI2
O abT I B
I2 [ {r2 } 2 M2 1
bT
I r2
B
!
independent sets of a 2-sum M1 2 M2 ⇤ { I \ {r1 , r2 } | I 2 M1
M2 , I \ {r1 , r2 } , ; }
extended formulation P (M1
2
xc (P (M1
M2 ) ⇤ { ⇡ (x) | x 2 P (M1 ) P (M2 ) , xr1 + xr2 ⇤ 1}
Corollary 2 M 2 )) xc (P (M 1 )) +xc (P (M 2 ))
3-sum
I
a a
A
0 1
cT
I M1
I A
abT
dcT
B
0 1 d d
bT
B
3 M2
⇤ { I \ {p1 , p2 , r1 , r2 , q1 , q2 } | I 2 M1 M2 , I \ {p1 , p2 } , ;, I \ {r1 , r2 } , ;, I \ {q1 , q2 } , ; }
xc (P (M1
Again M )) xc (P (M1 )) + xc (P (M2 )) 3 2
xc (P (M ))
X i
O
xc (P (Mi )) O
✓⇣ X
⇤ O |E|
i 2
|Ei |
⌘ 2◆
✓X i
|Ei | 2
◆
open problems I xc (P (M )) bounded polynomially for F-linear matroids M for some �xed F? I explicit series of matroids M where xc (P (M )) grows exponential
I more methods to design extended formulations (unfortunately, we didn’t need to do this here)