Figure S1

Report 2 Downloads 295 Views
Supplementary Information accompanies the paper on www.nature.com/nature.

Hittinger et al.

Table S1. Summary of sequenced strains, sequencing coverage, and spore viability. See attached.

Table S2. Summary of numbers of GAL sites available for various analyses. See attached.

Table S3. Constitutive expression of the GAL network in S. cerevisiae is deleterious under non-inducing conditions. See attached.

Table S4. List of strains used in experiments. See attached.

Figure S1. The S. kudriavzevii GAL loci segregate independently. Histogram of the number of functional GAL+ loci recovered from F2 segregants from a cross of a Gal+ Portuguese strain and a GalJapanese strain. Spore viability was high (82%), and alleles at the GAL loci assort independently (P = 0.36). Blue, observed; red, expected. See attached.

Figure S2. The wild isolates of S. kudriavzevii are not hybrids. Proportion of hits to each Saccharomyces species (y-axis) for each gene (x-axis, sorted by systematic name in S. cerevisiae) based on Solexa short-read data from the Portuguese reference strain (a), a known1 S. cerevisiae/S. kudriavzevii hybrid (b), and another S. cerevisiae/S. kudriavzevii hybrid not isolated from the wild (c). By definition, the sum of the proportion of hits from each species is 1.0 for each gene. Therefore, the closer the value of S. kudriavzevii (blue diamond) is to 1.0 for a given gene, the more confidently introgression can be excluded. In the two hybrid strains, regions are clearly evident where only one species has contributed genetic material, as are likely regions of aneuploidy. Note that Database S1 contains the complete unfiltered data for all 20 strains, as well as analyses with more liberal mismatch criteria, but no convincing evidence of introgression. See attached.

Figure S3. Relaxed molecular clock estimation of coalescence of GAL and non-GAL loci. Estimation of relative timing of coalescence of Saccharomyces GAL genes and pseudogenes (a), an equivalent number of sites selected randomly from non-GAL genes (b), and an equivalent number of sites selected randomly from non-GAL genes using all strains of S. kudriavzevii shown in Fig. 1c. Scales show estimated

2

substitutions per site; branch lengths are printed immediately above or below their respective internodes or above the population whose coalescence they estimate. See attached.

Figure S4. No sequenced strains of Saccharomyces support introgression as the source of the functional S. kudriavzevii GAL genes. Phylogeny built from aligned and concatenated GAL genes and pseudogenes from Fig. 1a with strains added from the imputed Q20 dataset of the Saccharomyces Genome Resequencing Project2, which includes the previously described species of Saccharomyces boulardii and Saccharomyces cariocanus as strains of S. cerevisiae and S. paradoxus, respectively. Values correspond to Bayesian posterior probabilities and bootstrap values obtained with maximum likelihood, respectively. Scales show estimated substitutions per site under the Bayesian framework. Internodes corresponding to recognized species are darker, while Portuguese (blue) and Japanese (red) lineages are colored. See attached.

Figure S5. The divergence of the GAL loci contrasts sharply with the rest of the genome at nearly all sites. Sliding window estimates of pairwise divergence (d) between ZP591 and IFO1802T: GAL80 (a), GAL4 (b), GAL7/GAL10/GAL1 (c), and GAL2 (d). GAL coding regions are red and oriented from left to right (except GAL7 and GAL10), while intergenic regions are black. Tick marks on the x-axis represent 100 aligned bps, and a dashed line shows the genome-wide background of 0.011. Note that nearly all promoters and untranslated regions also possess elevated divergence levels. See attached.

Database S1. Complete supporting data for Figure S2. See Excel file.

Database S2. Divergence of all genes between Japanese (IFO1802T) and Portuguese (ZP591) reference strains. See Excel file.

1

Gonzalez, S. S., Barrio, E., Gafner, J. & Querol, A. Natural hybrids from Saccharomyces

cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6, 1221-1234, (2006).

2

Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337-341, (2009).

2

Table S1. Summary of sequenced strains, sequencing coverage, and spore viability.

Hittinger et al.

Strain

Nationality Locality

Substrate

Isolation date Sequenced strain Coverage10

ZP513

Portugal

Lisbon

Q. pyrenaica

Mar. 2005

FM10691

87% (7807789)

ZP537

Portugal

L. Albufeira

Q. faginea

May 2005

FM10562

82% (3097180)

ZP542

Portugal

Adagoi

Q. pyrenaica

Jun. 2005

FM10572

73% (3269665)

ZP591

Portugal

Cast. Vide

Q. pyrenaica

Aug. 2005

FM10092

94% (12459524)

ZP594

Portugal

A. Dez

Q. faginea

Sep. 2005

FM10781

84% (3138597)

88% (16)

4

ZP595

Portugal

A. Dez

Q. faginea

Sep. 2005

FM10791

79% (5087661)

90% (20)

4

ZP620

Portugal

Arrábida

Q. ilex

Oct. 2005

FM10721

81% (3081430)

100% (14)

4

ZP621

Portugal

Arrábida

Q. ilex (accorn)

Oct. 2005

FM10731

73% (3882742)

94% (16)

4

ZP623

Portugal

Arrábida

Q. ilex (leaf litter)

Oct. 2005

FM10741

76% (5347358)

95% (20)

ZP625

Portugal

Arrábida

Q. faginea

Oct. 2005

FM10622

71% (2786785)

0% (12)

ZP627

Portugal

Arrábida

Q. faginea

Oct. 2005

FM10751

75% (3104399)

100% (16)

4

ZP629

Portugal

L. Albufeira

Q. ilex

Dec. 2005

FM10761

81% (2763826)

100% (16)

4

ZP630

Portugal

L. Albufeira

Q. ilex

Dec. 2005

FM10771

85% (4472512)

88% (16)

ZP634

Portugal

Cast. Vide

Q. pyrenaica

Jan. 2006

FM10662

68% (2864521)

0% (8)

IFO1802

Japan

Mt. Daisen

partially decayed leaf

< 1992

IFO18022

100% (reference)3 IFO18022

IFO10990 Japan

Mt. Daisen

soil

< 2005

IFO109902

IFO10991 Japan

Mt. Daisen

partially decayed leaf

< 2005

IFO1803

Japan

Yakushima Island partially decayed leaf

W27

Switzerland Waedenswil

Lallemand wine strain

CBS679

Other strain Other Coverage Spore viability11 Notes

FM10941

FM10711

67% (2728243)

82% (4544569)

mixture of 25 bp and 36 bp reads

4

11% (28)

No MATa or HMR; ZP537 partially endoreduplicated but not FM1094

4

0% (24)

reason for sterility unknown; 34 bp reads after trimming "GT" barcode

4

94% (16)

Portuguese reference strain; mixture of 32 bp and 36 bp reads (ZP591)

4

4 No MATα or HML; 34 bp reads after trimming "CT" barcode

4 4

type strain and originally sequenced strain

5

89% (3222318)

34 bp reads after trimming "GT" barcode

6

IFO109912

87% (3294821)

34 bp reads after trimming "TT" barcode

6

< 1992

IFO18032

86% (8542642)

very distant subspecies; mixture of 34 bp reads after trimming "CT" barcode and 36 bp reads

5

< 1995

FM1043

NA (635858)

known hybrid of S. cerevisiae and S. kudriavzevii; 34 bp reads after trimming "AT" barcode

7, 8

< 1913

FM1054

NA (755492)

hybrid of S. cerevisiae and S. kudriavzevii; 34 bp reads after trimming "TT" barcode

9

67% (2710233)3

0% (20)

Single spore derivative.

2

Wild derivative, presumed diploid.

3

The reference sequence was assumed correct and complete when analyzing other strains, and the Solexa data was used only to estimate the error rate of the assemblies.

4

Sampaio JP, Gonçalves P. 2008. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 74: 2144-2152.

5

Kaneko Y, Bano I. 1991. Reexamination of Saccharomyces bayanus strains by DNA-DNA hybridization and electrophoretic karyotyping. IFO Res Commun 15: 30-41.

6

Mikata K. Japan National Institute of Technology and Evaluation Biological Resource Center (http://www.nbrc.nite.go.jp).

7

Schuetz M, Gafner J. 1994. Dynamics of the yeast strain population during spontaneous alcoholic fermentation determined by CHEF gel electrophoresis. Lett Appl Microbiol 19: 253-257.

8

González SS, Barrio E, Gafner J, Querol A. 2006. Natural hybrids from Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6: 1221-1234.

9

Guilliermond A. 1912. Deposited into CBS culture collection.

11

4

No MATa or HMR; 34 bp reads after trimming "AT" barcode

1

10

Reference

62% (16)

Coverage shows the percent of called bases, relative to the IFO1802T reference sequence described in the Methods, while the number of non-adapter (no exact 15-mer hits) sequencing reads obtained is in parentheses.

Spore viability shows the percent of viable spores with the number of spores tested in parentheses.

Table S2. Summary of numbers of GAL sites available for various analyses. 1 2 3 Gene Pseudogene (bp) Codon (bp) S YML053C 573 121 SUR7 909 211 GAL80 1673 1104 254 AIM32 936 206

YPL247C GAL4 GYP5 RPL36B KAP104 GAL7 GAL10 GAL1 FUR4 POA1 SIC1 EMP46 GAL2 SRL2 EMP70

2324

3369 3369 3369

1825

dS4 (0.00, 0.04) (0.04, 0.12) (0.39, 0.62) (0.19, 0.34)

1569 355 (0.01, 0.03) 1560 346 (0.49, 0.71) 2907 558 (0.22, 0.32) 246 58 (0.00, 0.00) 2742 354 561 714 1902 534

586 78 133 164 436 123

(0.03, 0.06) (0.83, 2.48) (0.98, 2.26) (1.06, 2.30) (0.14, 0.22) (0.01, 0.09)

864 1347 645 1179 1995

194 289 153 242 464

(0.01, 0.06) (0.02, 0.07) (1.24, saturated) (0.64, 1.02) (0.01, 0.04)

1

Hittinger et al.

Phylogenetics5 All strains6 Upstream7 Coding8 Downstream9

1068

1017

225

996

199

1659

1339

248

1525

176

360 573 744

352 552 690

0 35 35

271 486 569

135 0 493

456

435

70

559

145

Length of pseudogenes in IFO1802T (entire intergenic region between adjacent functional genes). 2 Aligned bp remaining after including only fully aligned codons between ZP591, IFO1802T, S. bayanus, S. mikatae, S. paradoxus, and S. cerevisiae. 3 Synonymous sites between ZP591 and IFO1802T (Fig. 2). 4 95% confidence interval of average number of synonymous differences between ZP591 and IFO1802T (low, high) (Fig. 2). 5 Number of bp in phylogenetic data matrix with S. castellii and IFO1803 added (Fig. 1a, S3a). 6 Number of bp in phylogenetic data matrix with full strain set (Fig. S4). 7 Number of upstream bp aligned between ZP591 and IFO1802T (Fig. S5). 8 T Number of coding bp aligned between ZP591 and IFO1802 (Fig. S5). 9 Number of downstream bp aligned between ZP591 and IFO1802T (Fig. S5). Missing data was either not calculated or not applicable.

Hittinger et al. Table S3. Constitutive expression of the GAL network in S. cervisiae is deleterious under non-inducing conditions. Genotype 2% Raffinose (non-induced) 2% Glucose (repressed) 2% Galactose (induced) GAL80+ 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 gal80 -0.116 ± 0.003 -0.008 ± 0.003 +0.069 ± 0.003 Malthusian selection coefficients are reported ± s. d. with N = 12 as described in the Methods. Note that mutants lacking the Gal80 co-repressor are very unfit in non-inducing conditions, 1 as previously observed in 5% glycerol by MacLean in a study of GAL mutants 2 created by the systematic deletion project . 1

Maclean RC. 2007. Pleiotropy and GAL pathway degeneration in yeast. J Evol Biol 20: 1333-1338. Giaever G et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387-391.

2

Table S4. List of strains used in experiments. Strain FM1009 FM1071 FM1097

Species S. kudriavzevii S. kudriavzevii S. kudriavzevii

Population Portuguese Portuguese Japanese

Derived from ZP591 ZP591 IFO1802T

FM1098 FM1109 FM1110 FM1111 FM1112 FM1123 FM1131

S. S. S. S. S. S. S.

Japanese Portuguese Portuguese hybrid hybrid Portuguese Portuguese

IFO1802 FM1071 FM1071 FM1097/FM1109 FM1098/FM1110 FM1109 FM1110

kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii

T

FM1142 S. kudriavzevii Portuguese FM1146 S. kudriavzevii Portuguese

FM1123 FM1142

FM1153 S. kudriavzevii Portuguese

FM1071/FM1146

FM1157 S. kudriavzevii Portuguese FM1159 S. kudriavzevii Portuguese

FM1123/FM1131 FM1153

FM1160 S. kudriavzevii Portuguese FM1161 S. kudriavzevii Portuguese

FM1153 FM1153

FM1162 S. kudriavzevii Portuguese

FM1153

FM1163 S. kudriavzevii Portuguese FM1164 S. kudriavzevii Portuguese

FM1153 FM1153

FM1165 FM1166 FM1183 FM1184 FM1185 FM1186 FM1187 FM1188 FM1189 FM1190 FM1282 FM1283

FM1153 FM1153 FM1157 FM1157 FM1157 FM1157 FM1157 FM1157 FM1157 FM1157 BY4724 BY4724

S. S. S. S. S. S. S. S. S. S. S. S.

kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii cerevisiae cerevisiae

Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese laboratory laboratory

Hittinger et al. Genotype MATa/MAT MATa/MAT

Use Table S1 Table S1

Notes 1 2

MAT ho ::natMX

3

MATa ho ::natMX MATa ho ::kanMX MAT ho ::kanMX MATa/MAT ho ::kanMX/ho ::natMX MATa/MAT ho ::kanMX/ho ::natMX MATa ho ::kanMX ura3- MAT ho ::kanMX trp1- + MATa ho ::kanMX ura3- trp1 ::ScerURA3

3 3 3 4 4 5 6 7

Fig. S1 Fig. S1

MATa ho :kanMX ura3- trp1 ::ScerGAL3+ +

8

+

+

MATa/MAT ho ::kanMX/HO ura3- /URA3 trp1 ::ScerGAL3 /TRP1 + + MATa/MAT ho ::kanMX/ho ::kanMX ura3- /URA3 trp1- /TRP1

+

9 9

MATa ho ::kanMX ura3- trp1 ::ScerGAL3+ + MATa ho ::kanMX ura3- trp1 ::ScerGAL3

Fig. 3c Fig. 3c

MATa ho ::kanMX ura3- trp1 ::ScerGAL3+

Fig. 3c

MATa ho ::kanMX ura3- trp1 ::ScerGAL3 + MATa ho ::kanMX ura3- trp1 ::ScerGAL3

+

Fig. 3c Fig. 3c

MATa ho ::kanMX ura3- trp1 ::ScerGAL3+ + MATa ho ::kanMX ura3- trp1 ::ScerGAL3

Fig. 3c Fig. 3c

MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa

+

ho ::kanMX ura3- trp1 ::ScerGAL3 ho ::kanMX ura3- trp1- ho ::kanMX ura3- trp1- ho ::kanMX ura3- trp1- ho ::kanMX ura3- trp1- ho ::kanMX ura3- trp1- ho ::kanMX ura3- trp1- ho ::kanMX ura3- trp1- ho ::kanMX ura3- trp1- ura3- lys2- PTDH3-yEGFP-TCYC1 ura3- lys2- PTDH3-yBGFP-TCYC1

Fig. 3c Fig. 3c Fig. 3c Fig. 3c Fig. 3c Fig. 3c Fig. 3c Fig. 3c Fig. 3c Table S3 Table S3

10 11

+

FM1284 S. cerevisiae

laboratory

FM1282

MATa ura3- lys2- PTDH3-yEGFP-TCYC1 GAL80

Table S3

12

FM1285 S. cerevisiae

laboratory

FM1282

+ MATa ura3- lys2- PTDH3-yEGFP-TCYC1 GAL80

Table S3

12

FM1286 S. cerevisiae FM1287 S. cerevisiae

laboratory laboratory

FM1282 FM1282

lys2- PTDH3-yEGFP-TCYC1 GAL80+

Table S3

12

FM1288 S. cerevisiae FM1289 S. cerevisiae

laboratory laboratory

FM1282 FM1282

MATa ura3- MATa ura3- MATa ura3- MATa ura3-

lys2- PTDH3-yEGFP-TCYC1 gal80- lys2- PTDH3-yEGFP-TCYC1 gal80- lys2- PTDH3-yEGFP-TCYC1 gal80-

Table S3 Table S3 Table S3

13 13 13

FM1290 S. cerevisiae

laboratory

FM1282

MATa ura3- lys2- PTDH3-yEGFP-TCYC1 GAL3+

Fig. 3c

14

FM1291 S. cerevisiae

laboratory

FM1282

MATa ura3- lys2- PTDH3-yEGFP-TCYC1 GAL3

+

Fig. 3c

14

+

lys2- PTDH3-yEGFP-TCYC1 GAL3 lys2- PTDH3-yEGFP-TCYC1 gal3- lys2- PTDH3-yEGFP-TCYC1 gal3-

Fig. 3c Fig. 3c Fig. 3c

14 15 15

lys2- PTDH3-yEGFP-TCYC1 gal3-

Fig. 3c

FM1292 FM1293 FM1294 FM1295

S. S. S. S.

cerevisiae cerevisiae cerevisiae cerevisiae

laboratory laboratory laboratory laboratory

FM1282 FM1282 FM1282 FM1282

MATa MATa MATa MATa

ura3- ura3- ura3- ura3-

FM1332 FM1334 FM1335 FM1336 FM1337

S. S. S. S. S.

kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii

Portuguese Portuguese Portuguese Portuguese Portuguese

FM1123 FM1123 FM1123 FM1123 FM1123

MATa MATa MATa MATa MATa

ho ::kanMX ho ::kanMX ho ::kanMX ho ::kanMX ho ::kanMX

FM1338 FM1340 FM1343 FM1345 FM1346 FM1348 FM1351 FM1352 FM1353 FM1354 FM1355 FM1356 FM1357 FM1358 FM1359 FM1360 FM1361 FM1362

S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S.

kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii kudriavzevii

Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese Portuguese

FM1123 FM1123 FM1123 FM1123 FM1123 FM1123 FM1132 FM1132 FM1132 FM1134 FM1135 FM1135 FM1136 FM1137 FM1137 FM1137 FM1138 FM1138

MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa MATa

+

ura3- ura3- ura3- ura3-

gal80 ::ScerURA3 gal80 ::ScerURA3+ gal80 ::ScerURA3+ gal80 ::ScerURA3+

ura3- ho ::kanMX ura3- ho ::natMX ura3- ho ::natMX ura3- ho ::natMX ura3- ho ::natMX ura3- ho ::natMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3- ho ::kanMX ura3-

gal80 ::ScerURA3 + gal80 ::ScerURA3

+

gal80 gal80 gal80 gal80 gal80 gal80 gal80 gal80 gal80 gal80 gal80 gal80

15 16 16 16 16

Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.

3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b 3b

16 16 17, 18 17 17 17 17 19 19 19 19 19 19 19 19 19 19 19 19

1

Lab stock of wild ZP591 isolate; Portuguese reference strain20. Homozygote of ZP591 derived from a single spore. 3 Heterothallic single spore isolate after deletion of HO. 4 F1 Japanese/Portuguese strain sporulated to generate F2 segregants. 2

5

Start codon to stop codon deletion made transforming with PCR product and selecting against URA3+ . Start codon to stop codon deletion made transforming with PCR product and selecting against TRP1+ . + Start codon to stop codon replacement made transforming with PCR product and selecting for URA3 plus its intergenic sequences. 8 Start codon to stop codon replacement made transforming with PCR product containing ScerGAL3+ plus its intergenic sequences and selecting against URA3+ . 9 Cross used to generate panel of experimental strains. 10 GFP competition strain21. 11 BFP competition strain21. 12 + + + GAL80 re-introduced in triplicate strains to MATa ura3-  lys2- PTDH3-yEGFP-TCYC1 gal80 ::URA3 by transforming with PCR product and selecting against URA3 . 6 7

13

URA3+ removed from MATa ura3-  lys2- PTDH3-yEGFP-TCYC1 gal80 ::URA3+ by transforming with engineered oligonucleotides and selecting against URA3+.

14

GAL3+ re-introduced in triplicate strains to MATa ura3-  lys2- PTDH3-yEGFP-TCYC1 gal3 ::URA3+ by transforming with PCR product and selecting against URA3+21.

15

+

+

+21

URA3 removed from MATa ura3-  lys2- PTDH3-yEGFP-TCYC1 gal3 ::URA3 by transforming with engineered oligonucleotides and selecting against URA3

16

Start codon to stop codon replacement made transforming with PCR product and selecting for ScerURA3+ plus its intergenic sequences. 17 Drug marker changed by selecting for natMX, control competition strains competed against parental FM1123. 18 Competition strain with no detectable defect. 19 Start codon to stop codon deletion made transforming with PCR product and selecting against URA3+ , competed against FM1340. 20 Sampaio JP, Gonçalves P. 2008. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol. 74: 2144-2152. 21 Hittinger CT, Carroll SB. 2007. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449: 677-681.

.

Hittinger et al.

Figure S1 50

Number of F2 segregants

40

30 Observed Expected 20

10

0 0

1

2

Number of functional GAL+ loci

3

4

Figure S2

a

Hittinger et al.

Proportion of hits

1.0 0.9

S. kudriavzevii

0.8

S. cerevisiae

0.7

S. paradoxus

0.6

S. mikatae

0.5

S. bayanus

0.4 0.3 0.2 0.1

Genes

ZP591 (Portuguese S. kudriavzevii)

Genes

W27 (known hybrid)

Genes

CBS679 (hybrid)

0.0

b

1.0 0.9

Proportion of hits

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

c

1.0 0.9

Proportion of hits

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Hittinger et al.

Figure S3 0.0644

a

S. cerevisiae

0.0514 0.0644

S. paradoxus

0.0828

0.0500

0.1158

S. mikatae

0.0603 0.1711

0.0581

0.0276

0.1883

S. kudriavzevii ZP591 S. kudriavzevii IFO1802T

0.1130 0.0581

S. kudriavzevii IFO1803

0.2589

S. bayanus

0.4472

S. castellii

b

0.0455

S. cerevisiae

0.0455

S. paradoxus

0.0395 0.0362

0.0300

0.0850

S. mikatae

0.0442

0.0042

S. kudriavzevii ZP591

0.0166

S. kudriavzevii IFO1802T

0.1004

0.0727

0.0042 0.0209

0.1654

S. kudriavzevii IFO1803 S. bayanus

0.2382

S. castellii

c 0.0010 0.0020

ZP591 Portuguese Population

0.0037

0.0094 0.0008 0.0039

0.0141

IFO1802T Japanese Population IFO1803

Hittinger et al.

Figure S4 S. bayanus

98/91

S. kudriavzevii

100/100

S. mikatae

99/84

99/100

99/100

S. paradoxus

99/100

99/100

S. cerevisiae

S. castellii

0.08

Hittinger et al.

Figure S5 a

b

0.4

0.4

GAL80

0.3

0.3

d

GAL4

d 0.2

0.2

0.1

0.1

0

0

c

d

0.6

0.6

0.5 0.4

d

GAL7

GAL10

0.5

GAL2

GAL1

0.4

d 0.3

0.3

0.2

0.2

0.1

0.1

0

0